
  

 

Abstract—This paper presents a medication adherence 

monitoring system for pill bottles based on a wearable inertial 

sensor. Signal templates corresponding to the two actions of 

twist-cap and hand-to-mouth are created using a 

camera-assisted training phase. The act of pill intake is then 

identified by performing a moving window dynamic time 

warping in real-time between signal templates and the signals 

acquired by the wearable inertial sensor. The outcomes of the 

experimentations carried out indicate that the developed medical 

adherence monitoring system identifies the act of pill intake with 

a high degree of accuracy. 

I. INTRODUCTION 

Adherence to medication regimens continues to rank as a 

major clinical problem in disease management. Achieving 

optimal medication adherence requires patients being 

prescribed the right medication, filling it and taking it 

correctly over time. This requires appropriate prescribing, 

effective patient-provider communication, coordination 

among care-providers and active engagement and 

participation by patients. Poor adherence to medication 

regimens accounts for a substantial load on health care costs in 

the United States. Of all medication-related hospital 

admissions in the United States, 33 to 69 percent are due to 

poor medication adherence, costing more than $100 billion 

annually in increased medical costs [1]. 

There have been a number of efforts addressing systems or 

devices for medication adherence. For example, a 

context-aware pill bottle/stand was developed in [2], which 

provides audio/visual alerts for taking a medication on time. 

However, this system operates based on the limiting 

assumption that the pill is in fact consumed when a pill bottle 

is removed from the stand. A smart medication dispenser was 

proposed in [3], which dispenses a predetermined medication 

at a predetermined time. Again, this device does not detect 

whether the user is actually taking the medication. Methods 

based on computer vision techniques have also appeared in 

[4-6]. Obviously, the limitation with such vision based 

systems is that they require the user to take a medication 

within the field of view of a camera and cannot monitor the 

user wherever the user goes. A system consisting of several 

sensors (motion sensor, wearable sensor and bed sensor) was 

proposed in [7], which is rather complex to set up and operate.  

One can easily see that the availability of a low-cost and 

easy-to-use device for pill intake has been lacking. In this 

paper, an attempt has been made to introduce such a device. 
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More specifically, a watch-like motion sensor that can identify 

the act of opening a pill bottle and transporting a pill from the 

bottle to the mouth is developed in this paper. This system 

incorporates a camera-assisted training phase where the user 

imitates the act of taking fake placebo pills, and a signal 

processing algorithm is designed to train the inertial sensor for 

the act of pill intake. After training or during the actual 

operation, no camera is used and only the inertial sensor 

monitors the act of pill intake. 

The principal novelty of our solution lies in offering a 

low-cost wearable device thus not creating a cost burden on 

users/health-care providers. This solution can be incorporated 

into smart watches in the near future considering that the 

newer generations of smart watches are beginning to 

incorporate motion sensors and micro-controllers capable of 

executing signal processing tasks. The signal processing 

involved in our system is based on a computationally efficient 

implementation of dynamic time warping (DTW) that is 

designed for processing time series acquired from inertial 

sensors. A major contribution of this work lies in its 

camera-assisted training of the inertial sensor providing 

adaptation to specific users and the way they open pill 

containers dispensed by pharmacies in the US. This 

user-specific attribute leads to a high degree of accuracy for 

the signal processing tasks involved.  

The rest of the paper is organized as follows. Section II 

provides the details of our developed monitoring system 

followed by the results and discussion in section III. The paper 

is concluded in section IV.  

II. DEVELOPED MONITORING SYSTEM 

To achieve medication adherence monitoring, the user is 

asked to wear an inertial sensor on the right or left wrist 

(depending on whether right-handed or left handed) similar to 

a smart watch or as part of a smart watch. Fig. 1(a) shows the 

placement of an inertial sensor on the wrist and the sensor 

world coordinates. Our monitoring approach involves 

detecting two actions of “twist-cap” and “hand-to-mouth” that 

one normally goes through when taking a pill out of pharmacy 

bottles used in the US. The signals generated by the inertial 

sensor are used to detect these two actions. It is worth 

emphasizing that the detection of the second action 

(hand-to-mouth) is activated only after the detection of the 

first action (twist-cap), i.e. only after the bottle cap is detected 

to have been opened. Note that our focus in this paper is on 

pill bottles, see Fig. 1(b), that are dispensed by pharmacies in 

the US.  
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A. Training Phase or Signal Template Setup 

Kinect is a low-cost RGB-Depth camera (see Fig. 1(c)) 

introduced by Microsoft for human-computer interface 

applications [8]. The Kinect SDK software [9] allows tracking 

20 body joints as illustrated in Fig. 1(d). In order to identify 

the portions of relatively long duration inertial sensor signals 

that correspond to the two actions of twist-cap and 

hand-to-mouth, users are asked to go through a training phase 

by sitting/standing in front of a Kinect camera. The Kinect 

camera is then used to automatically determine the start and 

end of the inertial signals corresponding to the two actions by 

tracking the joint positions via the SDK software. This 

software is programmed to detect the twist-cap action by using 

the positions of the left and right wrists denoted by 

 and , and the 

hand-to-mouth action by using the positions of the right wrist 

(the roles are reversed for left-handed users), and the shoulder 

center denoted by . More specifically, the 

pose detection which is a built-in function of the Kinect SDK 

is used to trigger the detection of the twist-cap or 

hand-to-mouth actions. In other words, the user is asked to 

start with his/her own pose  before performing a twist-cap or 

hand-to-mouth action. The start and end of a twist-cap action 

is then determined sequentially by measuring the closeness 

between the two wrists via . The procedure is 

provided as a pseudo-code in Algorithm 1. At the same time, 

the inertial sensor signals between the time stamps  and  

are obtained to form a template of a user-specific twist-cap 

action. The detection of the hand-to-mouth action is achieved 

similarly. The start is determined by  and 

the end is determined by , where  was 

experimentally found to work well across different users.   
 

 
(a) 

 
(b) 

 
(d) 

 
(c) 

Figure 1. (a) Inertial sensor placement and the corresponding world 

coordinates, (b) twist-cap pill bottle, (c) Kinect camera and the 

corresponding world coordinates, (d) skeleton joints tracked by Kinect 
 

This training phase allows creating inertial signal templates 

for the two actions of “twist-cap” and “hand-to-mouth”. 

Basically, the Kinect camera is used during a training phase in 

order to obtain the inertial sensor signal segments which 

correspond to the two actions of interest by automatically time 

stamping the start and end of the actions. Fig. 2 shows an 

example of the segments of a sensor signal (x-axis 

acceleration) automatically determined by using the Kinect 

camera.  

The training phase consists of the user taking a fake 

placebo pill a few times (e.g., 5 times) in front of a Kinect 

camera the way he/she naturally does. Templates of the two 

actions (twist-cap and hand-to-mouth) are then generated by 

taking averages of the signal segments that are automatically 

identified by the Kinect camera. Notice that all the signal 

segments of an action are re-sampled to have the same 

normalized length before averaging. Also, it is important to 

note that the training is user-specific which has a major impact 

on the monitoring accuracy reported later.  
 

Algorithm 1 Pseudocode for twist-cap detection 

Initialization: twist_start = false, twist_end = false,  

if (  pose detected)   // only if   pose is detected, the signal processing begins  

     twist_start = true                                                // twist-cap detection 

     if (twist_start = true)    

          if ( )   // indicating two hands are together  

               record time stamp  for the inertial sensor signals 

               twist_end = true 

          end if 

     end if 

     if (twist_end = true)    

          if ( )   // indicating two hands are separated 

               record time stamp  for the inertial sensor signals 

          end if 

     end if 

end if 

 

 
Figure 2. Segmented sensor signal using Kinect camera during training phase 

B. Operation Stage or Signal Template Matching 

During the operation stage, the Kinect camera is removed 

and only the inertial sensor is used. This is because it is not 

practical to use the Kinect camera during actual operation as it 

is a stationary platform and it is not worn by the user while the 

inertial sensor is worn and carried by the user. The template 

signal gets matched to the signal from the inertial sensor in 

real-time. A sliding or moving window is used to do the 

matching with the template by utilizing the dynamic time 

warping (DTW) technique. DTW is known to be an effective 

matching algorithm for measuring similarity between two time 

series which may have different lengths or durations [10]. The 

window size is chosen to be the average length of the 

segmented signals during the training phase. Let  indicate 

the window size. For example, the sliding window can be 

shifted by  with the overlap of  between 

neighboring windows.  

C. Visual Verification or Ground Truth Generation 

To evaluate the performance of our developed system, a 

visual verification is done by using a video camera during the 

operation stage to record videos of the actions. The software 

developed in [11] is used to align the readings from the 

accelerometer with the video recording as the ground truth. 

Examples of the segmented signals obtained by visual 

verification of the two actions are shown in Fig. 3. The time 

stamps or sample indices indicating the start and end of the 

two actions are used to serve as the ground truth. 
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D. Pill Intake Detection 

Since the twist-cap and hand-to-mouth actions take place 

sequentially for a pill intake, the system first tries to detect the 

twist-cap action. If the twist-cap action is detected, the system 

then tries to detect the hand-to-mouth action within a 

user-specified time duration (30 seconds considered in our 

experiments). It is reasonable to expect that the hand-to-mouth 

action gets performed after the twist-cap action within this 

time duration. If the hand-to-mouth action is not detected 

within this time duration, the system status returns to the 

detection of the twist-cap action. Note that when the system is 

attempting to detect the hand-to-mouth action after the 

twist-cap action has occurred, the detection of the twist-cap 

action also runs at the same time. If a new twist-cap action is 

detected within the time duration of 30 seconds, a new 

30-second time duration for hand-to-mouth detection gets 

initiated. This sequential detection of the two actions leads to 

a high detection accuracy for the act of pill take. 
 

 

 
                             (a)                                                        (b) 

Figure 3. Visual verification of (a) “twist-cap” and (b) “hand-to-mouth” 

actions using recorded video: solid and dashed vertical lines indicate the start 

and end of a “twist-cap”/ “hand-to-mouth” action (only the x-axis 

acceleration signal is displayed in the figure) 
 

III. MONITORING RESULTS AND DISCUSSION 

A.  Template Selection 

An experiment was first carried out by examining all the 

signals from an inertial sensor developed in the ESSP Lab 

including its 3-axis acceleration signals and its 3-axis angular 

velocity signals with the sampling rate of 200Hz [12]. The 

detection accuracies of the two actions are shown in Table I. 

In this table, TP denotes true positive, TN true negative, FP 

false positive, FN false negative, and 20 TP and 20 TN cases 

were considered for each action. The accuracy was found 

according to  

                      .                   (1) 

     It was found that the acceleration signals provided more 

discriminatory power than the angular velocity signals for the 

two actions involved in pill intake. Therefore, the acceleration 

signals were used for the matching step. In other words, the 

template considered was a matrix of size , where  

denotes the length of the time series. Here, it is worth pointing 

out that it is possible to use only one signal template, e.g., 

acceleration of the x-axis signal, for matching purposes if it is 

desired to achieve lower computational complexity for 

real-time signal processing. Note that each user may perform 

the two actions of pill intake differently. In other words, the 

template signal reflects the way a user performs pill intake or 

is user specific. Fig. 4 displays the template signals (3-axis 

accelerations) of a user for the two actions of “twist-cap” and 

“hand-to-mouth”, respectively.  

TABLE I.  TWIST-CAP AND HAND-TO-MOUTH DETECTION ACCURACY 

USING DIFFERENT INERTIAL SIGNALS 

Template Accuracy FP FN 

Twist-cap 

Acc-X 92.5% 3 0 

Acc-Y 82.5% 5 2 

Acc-Z 92.5% 3 0 

Acc-(X, Y, Z) 95.0% 2 0 

Gyro-X 80.0% 7 1 

Gyro-Y 75.0% 8 2 

Gyro-Z 82.5% 6 1 

Gyro-(X, Y, Z) 80.0% 6 2 

Acc + Gyro 95.0% 2 0 

Hand-to-mouth 

Acc-X 97.5% 1 0 

Acc-Y 77.5% 7 2 

Acc-Z 90.0% 4 0 

Acc-(X, Y, Z) 97.5% 1 0 

Gyro-X 87.5% 5 0 

Gyro-Y 72.5% 7 3 

Gyro-Z 85.0% 6 0 

Gyro-(X, Y, Z) 92.5% 2 1 

Acc + Gyro  97.5% 1 0 
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                                  (a)                                                  (b) 

Figure 4. Templates of acceleration signals for (a) “twist-cap” and                       

(b) “hand-to-mouth” actions (A-X, A-Y and A-Z denote accelerations 

obtained from X, Y and Z axes of the accelerometer, respectively)  

B. Detection Accuracy 

To examine the detection accuracy, we carried out two sets 

of experiments. In the first set of experiments, five subjects (3 

males and 2 females) were asked to perform the twist-cap 

action and the hand-to-mouth action sequentially and as 

naturally done for 20 times over a 20-minute time duration. 

The pill bottle used is the one normally dispensed by 

pharmacies in the US with one tightness level. No subjects 

suffered from hand jitters or tremors. A dataset was collected 

by considering 20 correctly done pill intake to form a positive 

set. In the second set of experiments, the act of pill intake was 

done incorrectly on purpose. More specifically, the following 

two realistic scenarios were considered: (i) the subjects were 

asked to twist the bottle cap, then close the bottle and put it 

away, and (ii) the subjects were asked to twist the cap of a 

water bottle, then drink the water. These realistic scenarios 

were considered to form the negative set.  

Fig. 5 shows the DTW distances obtained by matching the 

templates to the signals within each sliding window. Solid and 

dashed vertical lines indicate the start and end of a twist-cap 

action, respectively, which were found by visual inspection or 

verification of the recorded video frames. In other words, the 

visual inspection was used to provide the ground truth actions. 

Circles indicate the DTW distances for the windows. The 

solid horizontal line denotes a detection threshold. A DTW 

distance smaller than the threshold indicated a twist-cap or a 

hand-to-mouth action. For easier visual appearance of the 

detection outcome, the DTW distances smaller than the 

threshold were assigned a value of 1, and 0 otherwise, to 

4985



  

generate Fig. 6. This way, 1 indicated the action took place 

and 0 indicated the action did not take place. In order to 

increase the robustness of the detection, the majority vote over 

a number of consecutive 1’s was considered. The results 

reported here correspond to the majority voting over 3 

consecutive 1’s. The optimal thresholds for detecting the two 

actions were obtained from the training data. Fig. 7 illustrates 

how the accuracy varied with different thresholds for the 

twist-cap and hand-to-mouth actions. Based on this figure, a 

threshold of 60 was thus chosen during testing or operation. 

Each of the five subjects went through the training phase 

before the operation phase. Each subject carried out two 

aforementioned experiments. In the second set of experiments, 

each scenario was performed 10 times. Table II shows the 

detection accuracies for the pill intake (twist-cap and 

hand-to-mouth) corresponding to each subject. As can be seen 

from this table, our developed medical adherence monitoring 

system generated no FN and FP for the positive set, primarily 

due to our user-specific training phase. Our system generated 

low FPs for the negative set. Specifically, our system was able 

to reject all the negative cases associated with the first 

scenario (no hand-to-mouth action) since pill intake was 

associated with the sequential detection of the two actions. 

The FPs in Table II were caused by the second scenario which 

was drinking water from a water bottle. Since the hand during 

drinking stays to the mouth longer than during pill intake, the 

DTW was able to reject most of the negative cases associated 

with the second scenario. 

TABLE II.  DETECTION ACCURACIES OF PILL  INTAKE (TWIST-CAP AND 

HAND-TO-MOUTH) DETECTION FOR FIVE SUBJECTS 

 Positive set Negative set 

Subject FP FN FP FN 

Subject 1 0 0 0 0 

Subject 2 0 0 1 0 

Subject 3 0 0 2 0 

Subject 4 0 0 0 0 

Subject 5 0 0 1 0 

IV. CONCLUSION 

In this paper, a medication adherence monitoring system 

for pill intake from pharmacy bottles has been introduced 

based on a low-cost wearable inertial sensor. The Kinect 

depth camera was used to automatically generate templates for 

signal matching during a training phase. For actual operation, 

only the inertial sensor was used to identify the two actions of 

“twist-cap” and “hand-to-mouth” that are associated with the 

act of pill intake. The experimental results demonstrated that 

our proposed monitoring system can detect pill intake with 

high degree of accuracy. In our future work, we plan to utilize 

an inexpensive passive RFID tag attached to pill containers in 

order to provide enhanced reliability of the developed medical 

adherence monitoring system. Furthermore, we intend to 

extend the method discussed in this paper to cover other forms 

of medication containers including foil-wrapped pills, syrups 

containers and cream tubes. 
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Figure 5. DTW distances for the twist-cap action: x-axis 

index indicates sample number of the sliding window start 

position  

 
Figure 6. Twist-cap action indicator: 1 indicates a 

twist-cap action took place and 0 indicates no twist-cap 

action took place  

 
Figure 7. Detection accuracies for various thresholds  
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