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Abstract— Sleep spindles are transient waveforms observed
on the electroencephalogram (EEG) during the N2 stage of
sleep. In this paper we evaluate the use of line length, an
efficient and low-complexity time domain feature, for automatic
detection of sleep spindles. We use this feature with a simple
algorithm to detect spindles achieving sensitivity of 83.6% and
specificity of 87.9%. We also present a comparison of these
results with other spindle detection methods evaluated on the
same dataset. Further, we implemented the algorithm on a
MSP430 microcontroller achieving a power consumption of
56.7 µW. The overall detection performance, combined with
the low power consumption show that line length could be
a useful feature for detecting sleep spindles in wearable and
resource-constrained systems.

I. INTRODUCTION

Human sleep is divided into two distinct phases known as
Rapid Eye Movement (REM) and Non-Rapid Eye Movement
(NREM). The NREM phase is further classified into three
stages namely N1, N2 and N3 with the former being the
lightest and latter being the deepest stage of sleep [1]. The
beginning of N2 stage is marked by the presence of distinct
burst of high frequency transients, which are observed on the
sleep electroencephalogram (EEG), occurring for a duration
of at least 0.5 seconds. These transient waveforms are known
as sleep spindles. Their rate of occurrence is highest during
N2 stage and they can also be seen during N3 stage of
sleep. Identification of sleep spindles are of particular interest
because of their role in classifying N2 stage of sleep.
Further they are also linked with melatonin secretion aiding
circadian rhythms [2], early stage development of central
nervous system (CNS) [3], indication of intellectual ability
[4] and memory consodilation during sleep [5]. An example
of a sleep spindles during N2 stage is shown in Fig. 1a.
The number of sleep spindles observed during an overnight
sleep is in the range of 200-1000 [6]. Hence, their manual
identification is a laborious and error-prone task. There may
be subjective differences in multiple spindles scored by a
single scorer and between different scorers. A previous study
showed the variability between different scorers to be around
20% [7]. Hence automatic detection of spindles is desirable
in order to save time and reduce variability.

Several methods of automatic sleep spindle detection using
various features already exist in literature. Gorur et al. [8]
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extracted spectral features of the signal with Fourier trans-
form and used the resulting coefficients as input to artificial
neural network (ANN) and support vector machine (SVM)
classifiers. [9] also demonstrated the use of both ANN and
SVM classifiers for spindle detected but used coefficients ex-
tracted from adaptive autoregressive (AR) modelling as fea-
ture input. [10] also used AR modelling with relative power
and filtered signal thresholding. A data-driven probabilistic
approach was used by Babadi et al. [11] that showed high
detection accuracy. For detection of spindles in children [12]
presented a method using Hilbert-Huang transform while
[13] used amplitude-frequency normal modelling to detect
spindles in both children and adults. In another method,
Schönwald et al. [14] evaluated the use of matching pursuit
(MP) for spindle detection and achieved good results. Duman
et al. [15] used Teager energy, maximum frequency and
harmonic decomposition with a decision tree classifier to
mark the presence of spindles. In our previous work [16] we
also used Teager energy of the signal as a feature together
with spectral edge frequency to score spindles in a two stage
algorithm.

Most of the methods cited above achieved good per-
formance with sensitivity of at least 70%. However direct
comparison between them is difficult because of the varying
dataset and performance metrics used in each. To avoid
this problem, [10] proposed a set of performance metrics
and also published a spindle database online to allow fair
comparison of methods assessed using the same set of signals
and metrics.

In this paper we introduce the use of line length [17] as a
potential feature for automatic spindle detection and evaluate
its detection performance with a simple algorithm. We also
implement this low-complexity algorithm on a resource-
constrained hardware to demonstrate its applicability within a
wearable setting. In the following section we briefly describe
the spindle dataset used in this study and define line length.
We then explain the spindle detection algorithm used with
line length as the only feature and describe its hardware
implementation on a MSP430 microcontroller. Section III as-
sesses the spindle detection performance of the algorithm and
its overall power consumption. Section IV discusses these
results and compares the detection ability of our algorithm
against other methods that have reported performance on the
same dataset.

II. MATERIAL & METHODS

A. Database

EEG signals from the DREAMS Sleep Spindles database
available online courtesy University of MONS - TCTS Labo-
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Fig. 1: (a) EEG signal with two sleep spindles marked between
vertical lines; (b) Line length of the EEG signal showing higher
values during spindle occurrence

ratory and Universite Libre de Bruxelles - CHU de Charleroi
Sleep Laboratory [18] were used to test the algorithm. This is
the recommended dataset to use to be able to fairly compare
different methods [10]. It consists of 30-minute recording
each from six subjects inlcuding 3 males and 3 females. The
spindles have been marked visually by two scorers and the
union of their markings is taken as the reference set. All the
subjects have channel CZ-A1 annotated with data sampled
at 200 Hz except subjects 1 and 3, for whom the annotated
channel is C3-A1 and sampling frequencies are 100 Hz and
50 Hz respectively.

B. Line length

Line length was introduced as a low-complexity feature
for seizure onset detection by [17]. It is the sum of absolute
differences between subsequent samples and is defined by
the following equation:

LL =

N∑

n=1

|x(n− 1)− x(n)| (1)

where LL is the line length, x is the input signal and N

is the number of samples in the signal (or a block of signal
under analysis).

Fig. 1a shows an EEG signal with two sleep spindles. The
line length corresponding to this signal, calculated in blocks
of 1 s (with 50% overlap) is shown in Fig. 1b. It can be
seen on the figure that the occurrence of a spindle in the
original signal leads to a rise in the line length. This lasts
approximately until the end of spindle duration returns to a
lower level thereafter. This effect of line length having higher
values during spindle occurrence will be used in an algorithm
to test its utility for detecting spindles.

C. Algorithm

A block diagram of the algorithm with line length as
the analysis feature is shown in Fig. 2. EEG signal for a
single channel is used as input to the algorithm. At the first
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Fig. 2: Block diagram of sleep spindle detection algorithm

stage, a second order Butterworth bandpass filter is applied
to the input signal to limit it in the 11-16 Hz frequency
range, which is the spindle range of interest. The filtered
signal is then partitioned into blocks of 1 s epochs with
50% overlap between subsequent epochs. The line length
for each epoch is calculated using (1). It is normalized by a
factor which is obtained by taking the median line length
value of the last 80 epochs. This step obviates the need
of any patient-specific adjustments. The number of epochs
to use in the computation of the median was determined
empirically by trying out various values. Initially when the
number of epochs processed is less than 80, the median
of all available previous values is taken. This normalized
value is then compared against a detection threshold K.
If the value is found to be greater than K, the epoch is
marked as spindle. The detection threshold also controls the
sensitivity of the algorithm, with higher values resulting in
stricter classification criterion.

D. Hardware implementation

The algorithm was implemented on Texas Instruments
MSP430F5438A microcontroller [19] to measure its online
performance and power consumption. All arithmetic oper-
ations were performed in fixed point arithmetic to make
use of the hardware multiplier on the chip and the micro-

5025



controller was put to idle mode (LPM3) whenever there
was no data to process. The coefficients of the bandpass
filter were represented as fixed point numbers in Q15 format
and the whole filtering operation required only three 16-bit
multiplication and addition operations. The line length was
calculated by taking the absolute difference between each
new and previous filtered sample and accumulating the result
in a register which is initialized to zero at the start of an
epoch. This way it is updated with each new sample without
the need to store all previous samples in an epoch. The
median was then computed using a linked list method based
on [20] that has a sorting complexity of N . The resulting
value is used to normalize the line length. Finally, a detection
flag is raised and time noted whenever the normalized line
length is found to be greater than the threshold K.

III. RESULTS

A. Performance metrics

The algorithm performance was characterised using the
following metrics, where sensitivity represents the fraction
of spindles detected while specificity refers to the fraction of
background EEG rejected as non-spindle.

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

A detection by the algorithm is considered to be a True
Positive (TP) if there is at least an overlap of 0.5 s between
the reference spindle (visually scored) and the detected one.
A False Positive (FP) is scored when there is no such overlap
or the overlap is smaller than 0.5 s. A False Negative (FN)
represents spindles which have been scored visually but are
not detected by the algorithm and True Negative (TN) counts
the number of events successfully rejected as non-spindle.
The number of TN was estimated using (4), as suggested in
[10], where average detected spindle duration was calculated
separately for each subject.

TN =
Total record duration

Avg. detected spindle duration
−TP −FP −FN

(4)
We used leave-one-out cross validation (LOOCV) to de-

termine the detection performance of the algorithm on each
subject while training it on the five remaining subjects. A
receiver operating characteristic (ROC) curve was plotted
for average sensitivity against specificity by varying the
detection threshold K in small steps using five training
subjects. The best performing threshold was determined
from the curve as the point that maximised both sensitivity
and specificity. This threshold was then used to test the
performance of the remaining sixth subject. This procedure
was carried out six times such that each subject becomes the
test case once with other five being used for training.

The total number of spindles visually scored and those
detected by the algorithm for each subject are shown in

Table I. The average sensitivity of the algorithm is 83.6%
and its 95% confidence interval range is between 80.5% and
86.8%. The sensitivity results are consistenly greater than
80% for all cases except subject 4 where less than half of
reference spindles are automatically detected. In this case,
the sensitivity is low because of the high proportion of Wake
stages and artefacts present in the signal making detection
difficult. Of the 63 spindles visually scored in subject 4,
half of them are marked in Wake stage (according to the
corresponding hypnogram). We have used all signals from
the dataset as is in our analysis, including those with artefacts
and noisy segments. The addition of any artefact removal
preprocessing stage is likely to help improve the performance
in such cases. The specificity in all the subjects is close to
the overall average of 87.9% which shows that most of the
non-spindle data has been successfully rejected.

TABLE I: Spindle detection algorithm performance

Subject Total Spindles True Pos. Sens. (%) Spec. (%)

1 134 121 90.3 83.4
2 77 62 80.5 94.0
3 44 44 100 85.8
4 63 28 44.4 88.1
5 103 87 84.5 88.2
6 117 108 92.3 86.5

All 538 450 83.6 87.9

A breakdown of the spindles detected in each sleep stage
is shown in Table II. Of the 841 spindles detected by the
algorithm (SSdet) 61.5% true positives were in N2, 58.2%
in N2 and N3 combined and 53.5% across all sleep stages.
The proportion of false positives was highest in subjects 3
and 4. From the total detections made by the algorithm, 90%
were in N2 and N3 combined and less than 6% were recorded
in the Wake stage.

TABLE II: Sleep Spindles (SS) detected in each sleep stage

Sub SSdet SSWake SSN1 SSN2 SSN3 SSREM

1 202 13 1 141 47 0
2 99 0 2 84 13 0
3 126 11 11 95 9 0
4 87 16 23 42 6 0
5 154 7 0 103 44 0
6 173 0 1 114 58 0

Total 841 47 38 579 177 0

B. Power consumption

The epoch size used for processing is 1 s and there are
two epochs being processed during this time because of the
overlap between subsequent epochs. The microcontroller was
found to be active for only 10% of the time to perform
all of the signal processing needed for the algorithm while
spending the rest of the time in idle mode until a new sample
arrives. Opearting at a clock frequency of 1 MHz and supply
voltage of 1.8 V the power consumption for the algorithm
was found to be 56.7 µW with one channel of EEG input.
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IV. DISCUSSION

We compared the performance of this algorithm against
other sleep detection methods that report their results on
the same database (shown in Table III). In contrast to
[10], our algorithm detected a higher number of spindles
overall but also resulted in a higher proportion of false
positives resulting in a lower specificity. Individual subject-
specific performance was not reported in [10]. In another
method, [13] reported a sensitivity of 75.1% after normal
modelling however they were not able to detect any spindles
in subject 4 and averaging the results including this case
reduces their method’s sensitivity to 62.6% only. However,
they obtained specificity of more than 90% for other test
subjects. Further, in our previous spindle detection algorithm
[16] we reported sensitivity and specificity as 80.3% and
97.6% respectively. Overall the results using the algorithm
based on line length in this work shows a higher sensitivity
but a slightly reduced specificity. This reduction is because
the average duration of detected spindles is higher in this
work. Compared to our previous algorithm where the average
duration was approximately 1 s it is now 2.7 s. This reduces
the number of estimated true negatives (TN) in equation
(4) and consequently specificity. However, using only one
feature with a simple algorithm without any artefact rejection
still demonstrates line length as a very useful feature for
spindle detection. Future work involving a better classifier
or coupling line length with other low complexity features
can lead to further improvement in results.

TABLE III: Comparison of this work with other algorithms

Method Sens. (%) Spec. (%)

[10] 70.2 98.6
[13] 75.1 96.7
[16] 80.3 97.6

This work 83.6 87.9

We also implemented the line length based algorithm on a
MSP430 microcontroller to measure its power consumption
and determine its computational load. To the best of our
knowledge, this is the very first hardware implementation of
an automated spindle detection method. The overall system
power consumption was 56.7 µW with only 10% of micro-
controller active time operating at clock frequency of 1 MHz.
This shows that line length is not only useful for getting a
good spindle detection performance but also a very efficient
feature for use in resource-constrained wearable systems.

V. CONCLUSION

This paper presents an introductory evaluation of using
line length as a discriminatory feature for automatic detection
of sleep spindles. It is incorporated in a simple algorithm
as a proof of concept to detect spindles in a test database
with 538 spindles. It results in sensitivity and specificity
of 84% and 88% respectively. This paper also presents the
very first implementation of a spindle detection algorithm on
a microcontroller where overall power consumption of the
algorithm is only 57 µW. Based on these results, line length

appears to be valuable feature with very low computational
complexity for the detection of spindles and can also be used
with other features for improved performance in existing
methods.
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