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Abstract— The current trend to use Brain-Computer 

Interfaces (BCIs) with mobile devices mandates the 

development of efficient EEG data processing methods. In this 

paper, we demonstrate the performance of a Principal 

Component Analysis (PCA) ensemble classifier for P300-based 

spellers. We recorded EEG data from multiple subjects using 

the Emotiv neuroheadset in the context of a classical oddball 

P300 speller paradigm. We compare the performance of the 

proposed ensemble classifier to the performance of traditional 

feature extraction and classifier methods. Our results 

demonstrate the capability of the PCA ensemble classifier to 

classify P300 data recorded using the Emotiv neuroheadset with 

an average accuracy of 86.29% on cross-validation data. In 

addition, offline testing of the recorded data reveals an average 

classification accuracy of 73.3% that is significantly higher than 

that achieved using traditional methods. Finally, we 

demonstrate the effect of the parameters of the P300 speller 

paradigm on the performance of the method.   

I. INTRODUCTION 

Brain-computer interfaces (BCIs) serve as a 
communication channel between the brain and the computer 
to improve disabled people life [1]. For commercial 
applications, non-invasive BCIs are the most suitable 
because of their ease of use compared to invasive BCIs. Our 
study focuses on the P300-based speller BCI using the low 
cost Emotiv neuroheadset [1]. In this application, a non-
intentional signal termed P300 is evoked about 300 ms after 
the presentation of a rare stimulus. The common mechanism 
of P300 spellers is to use a grid of characters where its rows 
and columns are intensified randomly and mutually exclusive 
as illustrated in Fig. 1a. A P300 signal is evoked when the 
target character row/column is intensified as illustrated in 
Fig. 1b. From a machine learning perspective, this problem 
can be considered as a binary classification problem in which 
the classifier discriminates among two signal classes: P300 
versus non-P300. 

Recent advances in electroencephalogram (EEG) 
recording technology have enabled the production of 
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wireless and portable headsets that could be used for 
commercial applications [2]. Examples include emotion 
detection [3], brain-controlled dialing applications for 
mobile phones [4] and real-time reconstruction of 3D brain 
activity images [5]. In this paper, we examine the 
performance of a Principal Component Analysis (PCA) 
ensemble classifier for P300 speller applications. We have 
previously introduced this method in [6] where we applied it 
to the benchmark BCI competition III dataset. However, in 
this paper we apply this approach to EEG data we recorded 
using the Emotiv neuroheadset. In addition, we examine the 
performance of the method with changes in each of the grid 
row/column inter-intensification interval (ISI), post-stimulus 
time window used in the analysis and PCA significance 
threshold. In this approach, PCA is first used to identify the 
most significant principal components of each individual 
EEG channel. A classifier is then trained for the i

th
 principal 

component of all channels combined. Finally, we fuse the 
outputs of all classifiers where each classifier output is 
weighted based on the significance of its corresponding 
principal component. We demonstrate the efficacy of using 
such method on data recorded using the Emotiv 
neuroheadset. The results demonstrate an acceptable 
performance that requires minimal tuning. 

II. METHODS 

A. Datasets Description 

Using the wireless Emotiv EPOC neuroheadset - the 
research edition (Emotiv Systems Inc., San Francisco, USA), 
we recorded data from three healthy male subjects of 
different ages. Subjects signed an informed consent 
approving the use of their data in this study. The Emotiv 
neuroheadset has 14 electrodes located at positions AF3, F7, 
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 
according to the international 10-20 system. Recorded EEG 
was sampled at 128 Hz. Subjects were presented with the 6 
by 6 grid of characters shown in Fig. 1a where each 
row/column was intensified for 100 ms [7].  
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Figure 1.   (a) Our P300 speller interface showing one column intensified 

while the others are dimmed. (b) Mean response of channel AF3 of the 

Emotiv neuroheadset for P300 and non-P300 signals of one subject. 
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Given that the Emotiv neuroheadset has a limited number 
of channels and such channels are not the most relevant for 
P300 applications as reported in [8], it is therefore not 
expected to achieve good performance in such application. 
As a result, we examined the use of relatively long ISIs that 
are expected to enhance the performance as suggested in  [9, 
10]. We tested different ISI values of 75, 225, and 300 ms.  

For each subject and ISI, we recorded two labeled 
datasets: One that was used as training dataset and the other 
was used for offline testing. The training dataset consisted of 
42 characters and the test dataset consisted of 40 characters. 
The training and testing sentences were chosen based on 
English pangrams with digits 1-9 added to span the whole 
speller grid. Each dataset was recorded in 4 sessions where, 
in each session, epochs corresponding to 10-12 characters 
were recorded. For each target character, the user was 
instructed to focus on the character as the rows/columns 
were intensified. Each character epoch (i.e. trial) consisted of 
a sequence of 12 intensifications representing 6 rows and 6 
columns repeated 15 times resulting in a total of 180 (i.e. 
12*15) intensifications per character epoch [11]. To record 
the data, we developed our own P300 speller interface using 
Qt C++ and used the core of the open source smartphone 
brain scanner  project to read the data from the neuroheadset 
[5]. We adopted such implementation as we intend to use the 
approach presented here on smartphone devices. 

B. Data Preprocessing 

Recorded signals were filtered using the common 
average reference spatial filter to reduce the noise [12]. This 
was done by subtracting the mean of all channels samples 
within the same time from each channel sample 
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where )( jsi
 represents the raw signal recorded on electrode 

i at time j, )( jri
 represents the filtered signal and N is the 

total number of channels.  A moving-average filter was then 
applied with a window of 13 samples to reduce the noise [6]. 
As an additional preprocessing step, decimation was done on 
the recorded signals. Given that the sampling rate of the 
Emotiv neuroheadset is 128Hz, we used a decimation factor 
of 6 which is half the decimation factor used for the 240Hz 
dataset reported in [7] . 

C. Feature Extraction 

In our analysis, we used data recorded from all 14 
channels available in the Emotiv neuroheadset. In our 
proposed feature extraction method, PCA is done on each 
channel samples separately using the training dataset to 
obtain the principal components [6]. In the testing phase, 
data channels are projected onto their corresponding 
principal components. The projected data from all channels 
are then grouped on principal component significance bases 
as shown in Fig. 2. Each feature vector is formed by 
grouping similar principal components from all channels. 
The final feature vectors are then fed to an ensemble 
classifier. The final score is obtained as the weighted sum of 
each individual classifier score as illustrated in Fig. 2. 

 

Figure 2.   Proposed feature extraction and ensemble classifier. Each 

channel is projected using its principal components. The corresponding 

projections are concatenated to constitute a feature vector. A classifier is 

then trained for each principal component. The final score is a weighted 

sum of individual classifiers scores. 

We compare the performance of the ensemble PCA 
classifier to that achieved using a concatenated feature vector 
[6]. In the concatenated feature vector, training data from all  
channels are concatenated into one vector, then PCA is 
performed on the concatenated vectors. The obtained 
principal components are then used in the testing phase to 
project the testing data to get the final feature vector [6]. 

D.  Classification Methods 

Classifying a signal as P300 or not is a binary 
classification problem. In our analysis, we used linear 
classifiers whose decision boundary takes the form 

 0bxwT  (2) 

where w is the weight vector, b is the bias term, and x is the 
feature vector. The linear classifiers we examined in this 
study are Linear Discriminant Analysis (LDA) and Fisher 
Linear Discriminant (FLD), where the two methods are not 
the same when the bias term is dropped and this is the case 
with P300 classification [13].  

For each character, a total of 12 feature vectors that 
correspond to the intensification of 6 rows and 6 columns are 
classified. Since the goal is to determine one target row and 
one target column, we determine the target row and column 

as those that maximize bxwT  . The bias term b is dropped 

since it is constant among all rows/columns, thus, the 
classifier score takes the form 

 xwscore T  (3) 

The target character predicted row r is then determined 
by 

  row
T

row
xwr maxarg

 
(4) 

and the target character predicted column c is determined by 

  col
T

col
xwc maxarg                      (5) 
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The final score is the weighted sum of principal 
component-based individual classifiers  
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where M is the number of classifiers, and the score of each 
classifier is 

 
i

T
ii xwscore   (7) 

and the weights are based on the eigenvalues of the principal 
components as we proposed in [6]. 

Similarly, the predicted row for the target character is the 
row with maximum final score across all rows 

  i
row

scorefinalr _maxarg  
(8) 

and the predicted column for the target character is the 
column with maximum final score across all columns 

  i
col

scorefinalc _maxarg  (9) 

III. RESULTS 

A.  Cross-validation 

We examined the performance of LDA and FLD 
classifiers on the training datasets of each subject using four 
feature extraction approaches: PCA ensemble classifier with 
and without decimation compared to the concatenated 
feature vector-based classifier with and without decimation. 
We used a decimation factor of 6. First, we performed 6-fold 
cross-validation with non-overlapped datasets. This was 
done by dividing the 42 characters training dataset into 6 sets 
of 7 characters, where 5 sets were used for training (i.e. 35 
characters) and 1 set for testing (i.e. 7 characters). We 
examined the performance for different post-stimulus time 
windows (i.e. the length of the feature vector of each 
individual channel) in the range of 625 ms to 1s. We also 
examined the performance for different thresholds to select 
the number of principal components from PCA analysis with 
values 0.99999, 0.9999, 0.999, 0.995, and 0.99. The window 
with maximum accuracy averaged across the thresholds was 
selected. We then selected the best threshold for the selected 
window as the threshold that maximizes the average 
accuracy across thresholds of the selected window using a 
moving average window of length 3. 

For the accuracy of statistical significance tests to 
compare the methods, we redid the cross-validation using 
only the selected window and threshold parameters. We 
formed 9 overlapped datasets with 32 characters used to train 
the classifiers and the other remaining 10 characters were 
used for validation with an overlap of 6 characters. Each of 
the four feature extraction methods (EnPCA: PCA ensemble, 
EnDecPCA: PCA ensemble with decimation, ConPCA: 
concatenated PCA and ConDecPCA: concatenated PCA with 
decimation) was tested on the data recorded from all 14 
channels and using ISI interval of 300 ms. Fig. 3 illustrates 
the classification accuracy obtained for the 3 subjects 
averaged across the 9 overlapped datasets (mean ± SD) for 
ISI of 300 ms for each feature extraction and classification 
method. In this figure, maximum classification accuracy 
obtained for cross-validation datasets across different post- 
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Figure 3.  (a) Subject 1, (b) Subject 2 and (c) Subject 3 classification 

accuracy for different approaches using an ISI of 300 ms.  

stimulus time windows and different PCA thresholds is 
reported. As can be seen, all classifiers and feature extraction 
methods performed equally well with an across-subjects 
classification accuracy of 86.5±5.9% for the PCA ensemble 
classifier using LDA and 86.1±4.9% for the PCA ensemble 
classifier using FLD. The average classification accuracy 
across all ensemble classifier methods was 86.29±5.4%. This 
indicates the utility of the PCA ensemble classifier when 
applied to data recorded using the Emotiv neuroheadset. 

B. Performance Analysis 

We investigated the impact of varying different 
parameters on the performance of the PCA ensemble 
classifier. In this analysis, we used our PCA ensemble 
classifier with FLD without decimation which was the best 
method on average across all subjects and ISIs. First, we 
investigated the influence of changing the ISI on the 
classification accuracy where three different ISIs of 75, 225, 
and 300 ms were examined. As can be seen in Fig. 4, the 
average classification accuracy at ISIs of 225 and 300 ms is 
significantly higher than that of 75 ms (P < 0.01, Wilcoxon 
rank-sum test). This is expected as the overlap between P300 
signals corresponding to successive intensified target 
rows/columns is reduced as the ISI increases [9, 10]. 

Second, we examined the effect of the post-stimulus time 
window size on the performance with ISI fixed at 300 ms. 
Fig. 5a illustrates the accuracy averaged across all subjects 
showing no significant effect on the accuracy (P < 0.01, 
Wilcoxon rank-sum test). As a result, our approach is 
independent of the choice of the post-stimulus time window 
size which simplifies its tuning for different subjects. 

Finally, we examined the effect of the PCA significance 
threshold on the performance with the ISI fixed at 300 ms. 
As can be seen in Fig. 5b, a significant increase in the 
accuracy occurs as the threshold is set to a value above 0.999 
(P < 0.01, Wilcoxon rank-sum test). This indicates that a 
fixed high threshold could be used for all subjects without 
the need for significant tuning. 
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Figure 4.   Average classification accuracy across subjects for the PCA 

ensemble classifier (FLD) for each ISI. *P < 0.01, Wilcoxon rank-sum test. 
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Figure 5.  Average classification accuracy across subjects for the PCA 

ensemble classifier (FLD) for (a) different post-stimulus time windows for 

the best threshold and (b) different thresholds for the best post-stimulus 

window. *P < 0.01, Wilcoxon rank-sum test. 

C.  Offline Testing 

Finally, the 40 character testing data were tested for an 
ISI of 300 ms using all methods for the three subjects. The 
results are summarized in Table I. Each classification 
method was examined using the same feature extraction 
methods investigated in the cross-validation above. We used 
the number of correct characters as a measure of 
classification accuracy as opposed to the number of correct 
classifications of the feature vectors.  

Although the cross-validation results reported in Fig. 3 
do not show a significant improvement for the ensemble 
PCA classifier compared to the other approach, the results 
shown in Table I indicate that using FLD for the ensemble 
PCA classifier without decimation achieves best 
performance compared to other approaches. In addition, the 
results demonstrate less across-subjects variability compared 
to the concatenated feature vector-based methods which is 
consistent with our previous results obtained using the 
benchmark BCI competition III dataset [6]. 

IV. CONCLUSION 

We examined the performance of the PCA ensemble 
classifier on data recorded using the Emotiv neuroheadset. 
We compared the performance of the method to that 
obtained using a concatenated feature vector-based classifier. 
Our results indicated that Emotiv neuroheadset can have 
acceptable results for P300 speller applications using the 
PCA ensemble classifier. Our approach has the advantage of 
having lower computational complexity compared to the 
concatenated feature vector method where the size of the 
training covariance matrix in the concatenated feature vector 
method is N.M × N.M where N is number of channels and M 
is the number of  samples/channel, while for our ensemble 
classifier, the training covariance matrix size for each 
principal component is N × N. In addition, the concatenated 
feature vector size is N.M while for our ensemble classifier is 
N. This makes the PCA ensemble classifier more suitable for 
low power devices such as tablets and smartphones. Our  

TABLE I.   OFFLINE TEST USING ISI OF 300 MS 

Classifier 
Feature 

Extraction 
S1 S2 S3 Accuracy 

LDA EnPCA 92.5 40 57.5 63.3±26.7% 

EnDecPCA 92.5 42.5 65 66.7±25% 

ConPCA 90 30 67.5 62.5±30.3% 

ConDecPCA 90 22.5 72.5 61.7±35% 

FLD EnPCA 92.5 47.5 80 73.3±23.2% 

EnDecPCA 90 47.5 80 72.5±22.2% 

ConPCA 92.5 37.5 72.5 67.5±27.8% 

ConDecPCA 82.5 17.5 72.5 57.5±35% 

 
analysis revealed that increasing the inter-intensification 
interval of rows/columns results in an increase in the overall 
accuracy on the expense of the data transfer rate. Our 
analysis also indicated that the performance is independent 
of the post-stimulus window size and the PCA significance 
threshold. Therefore, these two parameters can be 
determined without any subject-dependent tuning which 
simplifies the use of the presented approach. 
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