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Abstract— In this work, we describe a new method, an exten-
sion of the Large Deformation Diffeomorphic Metric Mapping
to estimate three-dimensional deformation of tagged Magnetic
Resonance Imaging Data. Our approach relies on performing
non-rigid registration of tag planes that were constructed from
set of initial reference short axis tag grids to a set of deformed
tag curves. We validated our algorithm using in-vivo tagged
images of normal mice. The mapping allows us to compute
root mean square distance error between simulated tag curves
in a set of long axis image planes and the acquired tag curves in
the same plane. Average RMS error was 0.31±0.36(SD) mm,
which is approximately 2.5 voxels, indicating good matching
accuracy.

I. INTRODUCTION

Tagged magnetic resonance imaging (MRI) is a well
established technique to characterize the regional motion of
the myocardium [1], [2]. In tagging, a selective magnetic
presaturation plane is generated that is perpendicular to the
image acquisition plane creating dark bands that move along
with the tissue during myocardial contraction and relaxation
phases. Typically, two sets of perpendicular tag planes are
used to create two sets of parallel bands (tag grid) that are
perpendicular to each other at an initial undeformed time
point in the cardiac phase. Characterizing regional myocar-
dial contractility using tagged MRI relies on tracking adja-
cent tag intersection points to identify a relative increase or
decrease in their distance from one cardiac phase to another.
Several post-processing techniques have been developed to
facilitate extracting tag displacements over different cardiac
phases [3], [4]. These techniques have used a variety of
approaches including but not limited to active contour models
[5], [6], [7], optical flow [8], [9], harmonic phase [10],
and non-rigid registration [11], [12]. While each of these
methods presents with its own advantages and disadvantages
[3], a recent study has indicated that non-rigid registration
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algorithms outperform other methods in tracking tag curves,
particularly when dealing with lower-quality image data [13].

Given that the tag data are usually collected using a few
planes, the challenge is to construct a dense 3D deformation
field from tag planes to enable an accurate estimation of
myocardial contractility. Several groups have used non-rigid
registration techniques based on splines and information-
theoretic similarity measures to perform volumetric analysis
of tagged MRI data [11], [12], [14]. In this work we use
Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) to perform non-rigid transformation of tag planes
reconstructed from non-deformed tag lines at end diastole
(ED) to a set of tag curves at a later time point in the
cardiac cycle. Representing a stack of contiguous tag lines
with tag planes reflects the physical reality of MRI tagging.
Tag lines (at an initial cardiac phase) and curves (at a later
cardiac phase) are representations of the intersection of non-
deformed and deformed tag planes with the fixed image
planes (Ex. short axis planes) in the 3D space, respectively.
LDDMM generates diffeomorphic (smooth and invertible)
dense 3D transformations that map tag planes to tag curves
avoiding any fusion or tear when deforming the planes.
Additionally, LDDMM, by design, is able to accommodate
large non-linear motion which is suitable for myocardial
motion analysis. We used our algorithm to estimate dense 3D
cardiac motion using in-vivo short axis tag images collected
from normal mice and validated our results against the tag
data collected along the long axis planes in the same animal.

II. METHODS
A. Imaging Protocol

In-vivo heart images of 4 adult male wild type sham
mice were acquired using Bruker NMR/MRI spectrometer
equipped with a 11.7T magnet and a gradient set capa-
ble of developing gradient strengths of 740mT/m (Bruker
Biospin, Germany). The mice were positioned on the MRI
detector coil and an MRI gating trigger was established
via ECG leads and respirator pillow was used. SPAMM
tagged MRI was collected (15 frames, echo time (TE) =
1.4 ms, repetition time (TR) = 8 ms, slice thickness =
1 mm, In plane resolution was 0.130 x 0.130 mm2 , flip
angle = 10 �, NEX = 7, tag spacing = 0.2 mm, tag distance
= 0.75 mm) at both short (6-8 slices) and long axis (3
slices) which resulted in short axis (SAX) and long axis
(LAX) images that contained orthogonally oriented tags. The
animal protocol was approved by the Institutional Animal
Care and Use Committee of the Johns Hopkins University.
Epicardial and endocardial contours were isolated using
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a semi-automatic freely available software called Segment
[15](http://medviso.com/products/segment/).

B. Preprocessing

Tag lines in short and long axis planes were tracked
using an approach that was described previously in [16].
Briefly, tag lines were manually traced at a baseline, non-
deformed cardiac phase (ED) for each short and long axis
image planes separately. Tag lines were then traced over
different cardiac phases by performing a 2D based non-rigid
intensity matching using LDDMM [17]. Locations of tag
lines at any particular slice and cardiac phase were manually
corrected, if necessary, using ImageJ software tool [18].
The coordinates of points that constitutes each tag curve
were transformed from the image coordinate system to the
scanner coordinate system using Matlab R� (Mathworks Inc.),
exploiting the information that has been stored in the header
of original DICOM tagged image files. This ensures that the
spatial correlation between short and long axis image planes
is maintained, which enables us to perform a validation study
of 3D motion estimation. Once in the scanner coordinate
system, the short and long axis tag lines were rotated to align
the long axis of left ventricle with the z-axis. Next a set of
parallel tag planes were fitted to the contiguous stack of tag
lines that was collected at ED (Fig. 1 left). Each plane was
then mapped to the separate stack of tag curves (Fig. 1 right)
that was collected at end-systole (ES) using the method that
is described in section II-C. The energy function for mapping
the tag planes was optimized using the information from all
tag planes generated from SAX images.

Fig. 1. Left: An example of fitted tag planes to several stacks of left
ventricular tag lines (colored circles) at ED. Right: An example of stack of
tag curves at ES. Colors are assigned arbitrarily to highlight different stacks
of tag lines/curves. For clarity, we have only shown part of the tag grid.

C. Matching Planes to Curves

In this section, we describe the non rigid deformation used
to match the tag planes to the tag curves. More generally,
given a surface S and a collection of planar curves G =
g1, . . . ,gn, we would like to find an optimum transformation
that maps the template surface S to the curves.

As mentioned in the introduction, we use LDDMM [17]
(chap. 11) for the matching, which enables large deforma-
tions while avoiding tears and fusions of the tag planes. In

this setting a deformation f

v is obtained via integration of a
time varying vector field v,

∂tf
v
t = vt �f

v
t

and minimizing the following cost functional over v in an
appropriate Hilbert Space V ,

E(v) =
Z 1

0
||vt ||2V dt +D(f v

1 (S),G) (1)

The first term in the functional controls the norm of the
vector field v, which, in turn, controls the smoothness of the
diffeomorphism f

v, and the second penalizes the mismatch
between the mapped surface and the curves. The Hilbert
space V is chosen to be a Reproducing Kernel Hilbert Space
(RKHS) [17] (chap. 9), with kernel K(x,y) = g(||x�y||)IdR3 ,
where g(t) = exp(�t2

2s

2 ), for a parameter s . The details of the
algorithm as it applies to surface matching can be found in
[19]. The surface evolution for our work follows [19], but
now the mismatch must be defined between a surface and a
set of curves rather than between two surfaces. We describe
this mismatch term next.

Without loss of generality, let us assume that all curves
are in parallel planes, and that these planes are horizontal,
with respective equations z = lk for l1, . . . ,ln 2 R. We
assume that the curves are oriented and represented as vector
measures [20]. To simplify the discussion, let us also assume
that there is only one curve per plane. Denoting the unit
normal to the curve gk in the plane z = lk by nk, we define
the vector measure associated to gk by

(gk|w) =
Z

gk

w ·nk

where w is a 3D vector field, and
R

gk
denotes the line integral

over gk.
Let S

l

= S\ [z = l ]. This set is, in general, either empty,
or a collection of curves, that can be oriented based on the
orientation on S. More precisely, letting N denote the normal
to S, we orient the normal, n

l

, to S
l

so that n

l

·N > 0. The
only situation in which this is not defined is when n

l

is
perpendicular to N, in which case z = l is tangent to S and
the intersection is degenerate.

Since S
l

can also be considered as a vector measure, we
can define the cost function

D(S,G) =
n

Â
k=1

kS
lk
� gkk2

W (2)

where | · |W is the kernel-based norm between vector mea-
sures representing plane curves [20].

Written as such, this cost function is not tractable, since
it will be minimized with respect to S and its evaluation
requires computing intersections between the surface and the
planes of interest (which are fixed). We may however obtain
something feasible if we represent the set S

l

using Dirac-d
functions.

For this purpose, let H
e

be a smooth approximation of the
Heaviside function, such that lim

e!0 H
e

= H0 = 1[0,+•). Let
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d

e

= H 0
e

. Then, we can make the approximation

(S
l

|w)'
Z

S
d

e

(z(m)�l )w(m) ·nz(m)r(m)ds(m) (3)

where s is the area form on S, z(m) is the z-coordinate of
the point m on the surface, and r(m) is the cosine of the
angle between N and the horizontal plane (i.e.,

p
1�N2

z ).
This choice is justified since the integral in (3) converges to
the line integral over S

l

, as e goes to 0 (see Appendix).
Note that rnz is the same as the horizontal projection of

the normal to S on the horizontal plane. Letting Ñ denote
this projection, we can rewrite (3) as

(S
l

|w)'
Z

S
d

e

(z(m)�l )w(m) · Ñ(m)ds(m) (4)

When S is triangulated, with FS denoting the set of faces,
the resulting vector measure is discretized as

(S
l

|w) = Â
f2FS

d

e

(z(c( f ))�l )w(c( f )) · Ña( f )

where Ña( f ) is the projection of the normal to the face f
weighted by its area onto the horizontal plane, and c( f ) is
the center of f . The norm between vector measures in (2)
associated to a kernel x is then computed using the following
formula for the inner product between S

l

and gk,

< S
l

,gk >= Â
f , j

x (c( f ),gk, j)de

(z(c( f ))�l )Ña( f ) · ñk, j

where gk is discretized as (gk,1, . . . ,gk,q) and ñk, j is the
length-weighted normal.

The generalization of this approximation to planes other
than the horizontal plane is straightforward. If h is a unit
vector, and the plane under consideration has equation
h ·m = l , replace z(m) by h ·m and Ña by the projection of
Na, on the plane perpendicular to h , i.e., Ña =Na�(Na ·h)h .

D. Validation

We evaluated the accuracy of our algorithm to estimate 3D
tag deformation by first mapping ED tag planes that were
perpendicular to the SAX image planes to the corresponding
stack of SAX tag curves extracted at ES. This process
generated a dense 3D deformation field that could be applied
to any arbitrary tag plane. Along with SAX image planes,
we also acquired 3 LAX image planes that were angled at
60 � relative to each other. Each LAX image plane contained
2 sets of horizontal (8-10) and vertical (8-10) tag curves
constructed from the set of tag planes that were perpendicular
to each LAX image plane. We applied the deformation map
from ED to ES, which was estimated from SAX tag curves,
to the LAX tag planes. This generated a set of deformed
LAX tag surfaces. The intersection of these deformed LAX
tag planes with the original LAX image plane generates a
new set of tag curves that should ideally coincide with the
acquired LAX tag curves (Fig. 2). Any deviation between
original and estimated LAX tag curves represents inaccuracy

of 3D tag deformation estimation. We characterized this de-
viation by calculating the root mean square (RMS) distance
error between the acquired and estimated LAX tag curves.

Fig. 2. Schematic diagram of a sample LAX tag plane (green) at ED.
As a result of myocardial contraction this plane deforms (not shown)
and intersection of the deformed plane with the LAX image plane (black
asterisks) will generate a new tag curve (red circles). Endo and epicardial
contours extracted from SAX image planes are illustrated by cyan asterisks.

III. RESULTS

The performance of our matching algorithm in mappping
ED tag planes to the corresponding stack of contiguous SAX
tag curves at ES is illustrated in Fig. 3. Visual inspection of
the mapping indicates good performance of our algorithm to
accommodate large deformation of tag curves. Note that the
pattern of deformation is heterogeneous across myocardium,
therefore, non-rigid matching appears to be an appropriate
approach to characterize myocardial contractility.

Fig. 3. Example of tag plane-to-curve matching. Left: ED tag planes
(purple) super-imposed on stack of tag curves (green circles) that was
extracted at ES. Right: Deformed tag surfaces (red) after matching tag planes
to the corresponding tag curve stacks (green circles). Note matching was
conducted simultaneously for all planes.

Results of quantitative assessment of our algorithm have
been summarized in table I. These initial results indicate
that our algorithm is able to estimate large deformation
with average error of approximately 2.5 voxels (in plane
resolution was 0.130 x 0.130 mm). Note that we have
estimated myocardial deformation solely from the short axis
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images, and used the long axis images to validate the results.
Furthermore, note that we have applied our algorithm on a
small size animal model. Due to small scale of mouse heart,
the number and length of tag curves are typically few and
short, respectively. Therefore accurate estimation of dense
3D myocardial deformation become extremely challenging,
but our algorithm is still able to perform well.

TABLE I
RMS DISTANCE ERROR (MM)

Animal 1 2 3 4
Mean(SD) 0.26(±0.30) 0.26(±0.26) 0.35(±0.31) 0.35(±0.53)

IV. CONCLUSIONS
We presented and validated an estimation of 3D dense

deformation of left ventricular myocardium using LDDMM
algorithm. In this method we employed information en-
coded in SAX tagged MRI to construct detailed spatial
displacement of tag planes during ventricular contraction
which was validated by the information from LAX tagged
MRI. However, both SAX and LAX tagged MRI can be
combined to derive the registration process. This method
can be readily applied to all cardiac phases to construct
Lagrangian strain tensors. While we used tag planes as
an initial reference point, our method would allow using
non-planar surfaces as a reference point, which would be
suitable for the circumstances when initial tag data have been
collected after ventricular contraction has already started.

APPENDIX
To justify (3), assume a local chart (u,v) 7!m(u,v) around

the altitude l such that
(i) m(u,0) coincides with S

l

(ii) m(u,v)�m(u,0) is perpendicular to ṁu(u,0) and v =
z(m)�l (taking v 7! m(u,v) to be the curve given by
the intersection between S and the plane passing by
m(u,0) and perpendicular to ṁu(u,0)). This implies, in
particular, that ṁu(u,0) · ṁv(u,0) = 0.

Then, if w is a function on S which is supported by the chart,
and letting z(m) denote the altitude (third coordinate),

Z

S
w(m)d

e

(z(m)�l )w(m) ·n
l

(m)r(m)ds(m) =
Z Z

d

e

(v)w(m(u,v))r(m(u,v))w(m(u,v))

·nv+l

(m(u,v))|ṁu ⇥ ṁv|dudv

which converges, when e ! 0, to
Z

r(m(u,0))w(m(u,0)) ·n
l

(m(u,0))|ṁu(u,0)||ṁv(u,0)|du

Now, since z(m(u,v)) = v � l , we have —z(m) · ṁv = 1
and letting b(m) be a unit tangent to S perpendicular to
the tangent to S

l

, we find |ṁv| = 1/|—z(m) · b(m)|. But
|—z(m) · b(m)| = r(m), which therefore simplifies in the
integral, and what remains is just the line integral along S

l

.
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