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Abstract— A limitation to accurate automatic tracking of
knee motion is the noise and blurring present in low dose X-
ray fluoroscopy images. For more accurate tracking, this noise
should be reduced while preserving anatomical structures such
as bone. Noise in low dose X-ray images is generated from
different sources, however quantum noise is by far the most
dominant. In this paper we present an accurate multi-modal
image registration algorithm which successfully registers 3D
CT to 2D single plane low dose noisy and blurred fluoroscopy
images that are captured for healthy knees. The proposed
algorithm uses a new registration framework including a
filtering method to reduce the noise and blurring effect in
fluoroscopy images. Our experimental results show that the
extra pre-filtering step included in the proposed approach
maintains higher accuracy and repeatability for in vivo knee
joint motion analysis.

Index Terms— 3D-2D Registration, kinematic analysis, quan-
tum noise, blind deconvolution, Wiener filter.

I. INTRODUCTION

Fluoroscopy captures real-time X-ray images that are help-
ful for guiding a surgeon for diagnostic and interventional
processes. These processes include total knee arthroplasty
(TKA), and treatment for knee ligament rupture and injuries.
However, the high ionizing radiation exposure is a significant
factor in the image capturing process. Less X-ray exposure
is required to take a fluoroscopic image, however harmful
effects to the patient are possible during video fluoroscopy
due to a longer period of X-ray exposure in a particular part
of the body. This total radiation dose to the patient during the
capture process is significant and X-ray radiation should be
reduced if possible for a safer image capture process. Hence,
the fluoroscopy video is captured during dynamic motion
with very low dose X-ray radiation to avoid radiation related
injuries. The number of X-ray quanta per pixel reported in
various studies is about 35 on average [1], [2]. This low dose
X-ray leads to considerable degradation in image quality
through quantum noise due to an irregular number of quanta
arriving at the image intensifier. The captured images also
contain non-linear noise, pincushion distortion due to the
curved nature of the image intensifier and blurring effects
for a moving subject.

A number of studies on reducing noise in low dose X-
ray images have been reported. The most simple method
is the use of a linear filter composed of temporal or spatial
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low pass filters. Although this filtering helps to reduce noise,
this process also reduces image information such as edges.
Thus, these filters are not suitable for object localization
based on edge detection or cross correlation methods [3].
More complex digital processing methods and denoising
approaches can be employed to overcome the limitations
of linear filters. A number of different filters have been
developed for this purpose including: edge-preserving adap-
tive filters [3], [4], adaptive variational denoising [5], non
local-means filtering [6], image denoising based on wavelet-
domain hidden Markov models [7], sparse and redundant rep-
resentations over learned dictionaries [8], total least squares
approaches [9] or partial differential equation techniques
[10]. These filtering approaches provide a better trade-off be-
tween the amount of noise reduction and edge-preservation.
However no studies have been reported for the removal of
the motion blurring effect along with signal-dependent noise
in fluoroscopy images. In this work, both of these image
degradation effects are considered simultaneously.

There are a number of requirements to be considered for
any registration algorithm in medical applications for in-vivo
joint kinematics. These requirements include high accuracy,
low computational cost, non-invasiveness, invariance to mo-
tion blur in the dynamic image, less operator interaction with
the algorithm. For clinical applications such as diagnoses of
pathologies, pre-operative planning and post-operative moni-
toring of patients, higher accuracy for low-dose radiography
and non-invasiveness are the highest priority requirements
for the algorithm.

The contribution of this paper is to demonstrate a new
non-invasive 3D-2D registration framework which achieves
improved accuracy when using noisy fluoroscopy data of
dynamic movements acquired using a low dose of X-ray
exposure. A 3D-2D registration framework using CT to
single-plane fluoroscopy [11], [12], [13] is used to show
the effectiveness of the proposed approach. The proposed
registration approach contains two novel components 1) a
new filter implementation which reduces the effect of noise
and motion blurring using blind deconvolution and Wiener
filtering in the spectral domain 2) A hybrid optimization
approach which allows accurate measurement of out-of-plane
translation and rotation motions using cross correlation (CC)
in the frequency domain. To evaluate the performance of this
algorithm, repeatability experiments were conducted using
several in-vivo data sets where the subjects are performing
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a deep knee bend activity.

II. PROPOSED 3D-2D REGISTRATION ALGORITHM

Herein the 3D rigid body transform parameters correspond
to directions in the the CT anatomical coordinate system
as follows. Translations are expressed in the Tx (anterior-
posterior), Ty (proximal-distal) and Tz (medial-lateral) di-
rections and rotation about the X , Y , and Z axis correspond
to Rx (abduction/adduction), Ry (internal/external rotation)
and Rz (flexion/extension) respectively. The XY plane is
considered to be the image plane and the Z axis is the X-
ray beam projection direction.

The general flow of the proposed 3D-2D registration
process is shown in Fig. 1. The real fluoroscopy image suffers
from pincushion distortion caused by the curved shape of
the image intensifier. This distortion is corrected using a
5th order polynomial function. Additionally, the fluoroscopy
images contain quantum noise and a motion blurring effect
explained in detail at the end of this section. These image
degradation effects are reduced by using a deconvolution
method in two steps. At first, a blind deconvolution method
is used to estimate the point spread function (PSF) and the
restored image corresponding to the PSF. Then the PSF and
partially restored fluoroscopy image are used as input to a
Wiener filtering stage.

The original CT images contain the bone and soft tissue
together. Segmentation is required to remove the soft tissue
from the images. The segmentation of the CT is performed in
a slice-by-slice way i.e. the soft tissue is removed manually
from each slice of the CT image. The spatial resolution of
the CT image is also different to that of the fluoroscopy, thus
resampling is also performed using the cubic interpolation
method before employing the registration process.

After generating the digitally reconstructed radiography
(DRR) from the segmented CT image, the images are
thresholded to remove noise and highlight the most dominant
edges and then filtered using a newly designed LoG filter
with a non-linear exponent denoted by n-LoG in a multi-
resolution framework (three stages). Before employing the
n-LoG filter, the DRR image is filtered using a circular
average filter with radius of 0.5 pixels to smooth the image
and to fill any empty pixels resulting from the interpolation
process. The fluoroscopy image is also filtered with a circular
averaging filter with radius of 2.50 pixels to remove the
high frequency noise in the images. By this circular filtering
process, both images (DRR and fluoroscopy) have similar
frequency content and similar edges are produced for the
optimization procedure and for the similarity measure. The
new n-LoG filter is employed to enhance the image edges
obtained using the conventional LoG filtering process.

In the next stage, estimates of Rx and Ry are found
using cross correlation (CC) in the frequency domain.
The final stage of the algorithm uses the gradient descent
(GD) approach from [13] to fine-tune the four parameters
(Tx, Ty, Tz, Rz) simultaneously.
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Fig. 1. The general flowchart of the proposed registration framework

A. Fluorosocopy noise modeling and filtering

Since X-ray radiation and attenuation in the bone and
tissue are random processes, quantum or poisson noise is
generated due to quantum fluctuation at the X-ray detector.
This is not the only source of noise in the fluoroscopic im-
age. Other noise sources are considered including scattered
radiation and system noise, hardware noise (such as thermal,
shot and quantisation noise). Due to this noise, the number of
quanta incident on the detector in the exposure time, tδ is not
the same. However, quantum noise is the most dominating
noise source, thus other noise can be neglected [2]. An
example of quantum noise affected and blurred images are
shown in Fig. 2.

1) Poisson Noise: A Poisson noise model can be formu-
lated for X-ray images. The model parameters are linked to
physical quantities and detector constants during the image
acquisition process. For this model, it is assumed that the
detected number Nd of X-ray quanta follow a Poisson
distribution. Hence, the probability of Nd detected photons
in an exposure time interval tδ is

Pλ(X = Nd) =
λNd

Nd!
e−λNd (1)

λ = E[Nd] = µ(Nd) = Is/dg (2)

where the noise free photon count is λ when do = 0, the
uncorrupted signal is Is and the detector mapping is Ir =
dgNd + do. E[] is the expected value of the noise Nd. In
an image intensifier, the detected number of photons Nd is
converted into an image pixel. In practice, the resulting raw
image Ir is modelled as linearly dependent on the number
of photons, i.e., with constant detector gain dg ∈ R+ and
offset do ∈ R+.

2) Gaussian Approximation: The Poisson model is not
practically feasible for noise reduction methods. Thus, the
quantum noise in low-dose X-ray images is approximated by
zero-mean Gaussian noise with signal-dependent variance.
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(a)

(b)

Fig. 2. An example of quantum noise and the effect of motion blurring
in the fluoroscopy image during the image capturing process. (a) Blurred
image. (b) Noisy image.

For large λ >> 1 the Poisson distribution of a discrete
random variable X can be approximated by the sampled
probability density function of a Gaussian distribution with
the same mean and variance µ = σ2 = λ. The approximation
improves with increasing λ.

3) Filter Process: The Wiener filter is given by

G(u, v) =
1

H(u, v)

|H(u, v)|2

|H(u, v)|2 + Sn(u, v)/SI(u, v)
(3)

where SI(u, v) and Sn(u, v) are the signal and noise
power spectra respectively. H(u, v) is the point spread
function (PSF) that is generated using a blind deconvolution
method. SI(u, v) is the restored fluoroscopy image from the
blind deconvolution method. If the variance at each pixel is
σ2
u = 10PSNR/20, then the noise power spectrum is given

as in (4) for an MxN image. This noise variance may be
known using knowledge of the image acquisition process or
may be estimated from the local variance of a smooth region
of the image.

Su(k, l) =MNσ2
u (4)

III. EXPERIMENTAL EVALUATION

A. Experimental data
For the dataset used in the experiments, healthy subjects

were asked to freely move their knee to maximum bending

TABLE I
DATA SET SPECIFICATION OF CT AND X-RAY IMAGES

CT image X-ray image

Manufacturer Toshiba Siemens

model Aquilion AXIOM-Artis

specimen-A
512× 512× 452
0.445× 0.445×

0.5 mm3

1024× 1024

0.244× 0.244 mm2

specimen-B
512× 512× 175
0.625× 0.625×

0.5 mm3

512× 512

0.682× 0.682 mm2

specimen-C
512× 512× 496
0.520× 0.520×

0.5 mm3

512× 512

0.682× 0.682 mm2

digit 16 bits/pixel 12 bits/pixel

position and back to the initial position to complete one
cycle. Three sets of in-vivo data (specimen-A, specimen-B
and specimen-C) for the dynamic deep knee bend activity
of a healthy knee joint were used in the experiment. The
image capture specifications for the raw data are shown in
Table I. In this study, the in-vivo healthy knee images were
taken using a curved panel detector at The Canberra Hospital,
Australia.

B. Evaluation scheme

To determine the effectiveness of the designed filtering
method, filtered and raw fluoroscopy images were employed
in the proposed registration framework explained in section-
II. The images used in this experiment were of in-vivo
healthy knees and no beads/markers were implanted, thus it
is not possible to employ a standard ground truth for accuracy
measurement. Recently, an automatic 3D-2D image matching
method was developed and validated for its application to
investigate human knee joint kinematics using fluoroscopic
images [11]. In their study, repeatability measurements were
used to estimate the performance of the registration frame-
work [12]. Hence, in this study, we adopt a similar approach
to determine the repeatability of the registration algorithm for
the dynamic knee flexion motion in three healthy specimens
(5 flexion positions). The 3D-2D registration framework
measured repeatability over 20 optimisations per pose. The
registration algorithm was performed individually for femur
and tibia.

C. Results and discussion

1) Registration Results: Table II shows the average errors
for three sets of sample images of femur and tibia bones
(5 flexion positions from each samples) of specimen-A,
specimen-B, and specimen-C. The maximum registration
error expressed as mean ± repeatability for the case of
out-of-plane translation for the femur and tibia was −0.13±
1.08 mm and −0.23 ± 1.09 mm respectively, when the
proposed filter was employed on the noisy fluoroscopy
images. Whereas, the accuracy of the same sample without
employing the filter was −0.80± 3.14 mm and −5.2± 6.11
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TABLE II
MEAN±REPEATABILITY OF THE REGISTRATION ERRORS FOR FILTERED IMAGES AND NON-FILTERED IMAGES AS THE AVERAGE ERRORS FOR FIVE

FLUOROSCOPY IMAGES OF THE FEMUR AND THE TIBIA BONES OF SPECIMEN-A, SPECIMEN-B, AND SPECIMEN-C. THE TRANSLATION AND ROTATIONS

ARE MEASURED IN (mm) AND (◦) RESPECTIVELY.

sample filter bone Tx Ty Tz Rx Ry Rz

femur 0.57±0.11 -0.03±0.50 0.20±1.06 -0.06±0.32 0.01±0.27 -0.19±0.13

specimen-A
yes

tibia -0.61±0.27 0.04±0.01 -0.18±1.07 0.80±0.79 0.38±0.14 0.14±0.50

femur -0.89±0.19 0.83±0.70 -0.07±3.12 0.03±3.34 -0.05±3.06 -0.01±0.11no
tibia -1.48±1.69 1.77±2.21 1.18±3.77 0.20±2.48 0.04±1.16 -0.67±1.27

femur 0.58±0.12 -0.81±0.10 0.18±1.06 -0.18±0.69 0.24±0.53 -0.11±0.23

specimen-B
yes

tibia -0.78±0.18 0.79±0.21 -0.14±1.08 0.35±0.51 0.38±0.20 -0.20±0.28

femur -1.20±0.19 2.21±0.70 1.58±3.13 -4.91±1.34 -4.85±1.30 1.64±0.33no
tibia -0.13±0.33 -1.7±0.41 0.20±3.12 -0.04±1.71 -0.48±1.33 -0.28±0.33

femur 0.06±0.08 -0.39±0.12 0.22±1.06 -0.41±0.32 0.29±0.38 -0.19±0.12

specimen-C
yes

tibia -0.07±0.21 0.08±0.15 -0.19±1.05 0.26±0.27 0.12±0.16 0.05±0.21

femur -0.45±0.49 0.14±0.29 0.41±3.24 0.01±1.57 -0.63±1.53 0.33±0.51no
tibia 0.25±1.28 0.11±0.51 0.37±3.24 1.22±1.78 0.91±2.99 0.89±0.43

mm respectively. The maximum errors for Rx and Ry were
−0.33± 0.46 and 0.38± 0.47 for the femur and 0.31± 0.42
and 0.59 ± 0.77 for the tibia when the filter is used on
the fluoroscopy image, while the corresponding values for
the case of not employing the filter were 0.38 ± 4.47 and
0.18± 4.01 for the femur and 0.35± 4.77 and 0.36± 4.51
for the tibia. All the translations and rotations are measured
in mm and degrees respectively.

In comparison, the precision for out-of-plane translation
reported in [13] was 1.22 mm for in-vitro studies of a cadaver
knee bone using much higher doses of radiation exposure.
The repeatability reported in [12] for Tz was of 3.12 mm,
and 2.01 and 2.37 degrees for Rx and Ry respectively. The
reported precision in [11] was 8.23 for Tz , 4.13 for Rx
and 2.58 for Ry . From these results, it is clear that sub-
millimeter and sub-degree accuracy can be achieved using
the proposed registration framework for low dose noisy
fluoroscopy images of a healthy knee joint. The registration
accuracy for the real fluoroscopy data is affected by the
accuracy for the distortion correction of the fluoroscopy and
errors in the gold standard reference value used to evaluate
the exact position of the fluoroscopy and DRR image. The
precision of the proposed approach also compares favorably
to other similar approaches.

IV. CONCLUSION

In this paper, we have presented an accurate non-invasive
approach for in vivo healthy knee joints using a new 3D-
2D image registration technique in which a quantum noise
and motion blur reduction method is implemented. The
experimental results show the accuracy of the proposed reg-
istration framework, especially for medial-lateral translation,
abduction-adduction rotation and internal-external rotation.
In future work we will investigate the use of our approach
for tracking the movement of a native knee during regular
human activities.
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