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Abstract— Neural information degeneracy in chronic im-
plants due to signal instabilities affects optimal performance
of brain-machine interfaces (BMIs). Spike-decoders are more
vulnerable compared to those using LFPs and ECoG signals.
In order for BMIs to perform reliably across years, decoders
should be able to use neural information contained in various
signal modalities. Hence, it is important to identify information
redundancy among signal types. In this work, spikes, LFPs
and ECoGs were recorded simultaneously from motor cortex
of a rhesus monkey, while the animal was learning to control
a multi-DOF robot with a spike-decoder. As the behavioral
performance increased, the linear association among the signal
types increased. Coherency of these signals increased in specific
frequency bands as learning occurred. These results suggest the
possibility of substituting the information lost in one modality
by another.

Index Terms— Electrocorticography (ECoG), non-human
primates, local field potentials (LFPs), coherence, β oscillations,
γ oscillations

I. INTRODUCTION

Cortically controlled BMIs use extracellular recordings
towards controlling devices. Decoders use temporal and spec-
tral features of spike trains [1][2][3], local field potentials
(LFPs) [4][5][6][7] or ECoG signals [8][9] and map these
measured neural activity to a kinetic or kinematic variable.
The longevity and stability of these signals, however, vary
largely. Clinically viable BMIs should be able to compensate
for information loss that might be incurred due to signal
instability, in order for them to function optimally for several
years. In the case of spike-decoding, following chronic
implantation of an array, the neural yield (spiking units)
typically increases for a few weeks and remains relatively
stable over a few months. Decoders are typically built
based on this stable set of spiking units. Subsequently, due
to several reactive factors in the region of implantation,
the number of available signal sources sometimes start to
diminish thereby affecting the BMI performance. Attempts
to compensate for the loss of spiking units include using
(i) multi-unit (MUA)-based decoders [10][11], which map
neural activity from a channel ignoring the source identity
or (ii) reconstructed signal from another modality [12]. MUA
decoders are relatively more stable than their single-unit
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counterparts. Furthermore, LFPs recorded from the same
electrodes tend to have higher longevity compared to spikes
[13]. Likewise, ECoGs have comparable stability to LFPs.

We show that as BMI motor learning occurs with a
behavioral task, different signal modalities increase in their
synchronized oscillations. Longitudinally, the coherence be-
tween signals emanating from the motor cortex is shown to
increase. Specific frequency bands were identified that shows
increase in their synchrony. Since the region of recording
was deafferented for years and was not involved in any
fine motor behavior, the changes observed can be attributed
primarily to the BMI learning. Together, the results point to
the possibility of substituting one signal modality with other
along the process of BMI learning.

II. EXPERIMENTAL METHODS

A. Neural Implants

The chosen Rhesus macaque (Macaca Mulatta) was a
chronic transradial amputee for over 7 years, and the implan-
tation was made on the side contralateral to the amputation.
A 100-channel multi-electrode array (MEA) (1.0 mm elec-
trode length; 400 m interelectrode separation from Blackrock
Microsystems, Inc., Salt Lake City, UT) was chronically
implanted on the primary motor cortex (M1) region. A micro-
ECoG grid with 32 recording sites (4×8) was also implanted
sub-durally lateral to the MEA. The surgical and behavioral
procedures involved in this study were approved by the
University of Chicago Institutional Animal Care and Use
Committee and conform to the principles outlined in the
Guide for the Care and Use of Laboratory Animals.

B. Brain-machine Interface

The animal was operantly conditioned to control a multiple
DOF robot, details of which can be found in [14]. Briefly,
the behavioral task involved generating (a) reach velocities,
to move the robotic arm towards and away from the target
object and (b) grasp velocities, to control the opening and
closing of the aperture formed by the three digits of the
robotic hand. Two distinct subset of neural units controlled
the reach and the grasp dimensions independently. Action
potential spikes recorded by the MEA were sorted and
binned into 50 ms bins. A 20-tap static Wiener-filter was
used to estimate the control velocity from the binned spikes.
Subsequently, the decoded output was translated into joint-
space velocities. The LFPs and ECoG signals were passively
sampled at 2 kS/S, as the animal performed the BMI task
(see Figure 1).
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Fig. 1. Schematic of the BMI setup. Single unit activity from the implanted
MEA was sorted, binned and decoded to control a multiple DOF robot. The
local field voltages from the MEA and the micro-ECoG grid were sampled
concurrently with the behavioral task execution.

III. NEURAL SIGNAL ANALYSIS

Periods of decoded output with 500ms of near-zero ve-
locity followed by transitions that were larger than 1.2σ
within a 50ms window and sustained for another 500ms
was considered an epoch. As the animal learned to control
the velocity of the robot effectively, the movements became
more volitional. The decoded reach velocity was used in
determining the epochs of transition regions from low to
higher velocities.

A. Neural Synchrony

Linear time invariant association of bivariate time series
(u(t) and v(t)) is often estimated using coherency. It deter-
mines the frequency domain correlations between the signals
such that change in synchrony at specific bands can be
assessed. Mathematically, coherence (γuv) is defined as,

γuv(f) =
Suv√

Suu

√
Svv

(1)

where, Suv is the cross-spectral density of the two time series
and Suu and Svv are individual power spectral densities of
the signals. Coherence measures were estimated longitudi-
nally under two categories, (a) spikes vs LFP and (b) LFP
vs ECoG. Both binned spikes and the field voltages were
sampled with ∆T=0.5ms, to keep the sampling consistent.
A multi-taper Fourier transform was used to determine the
coherency with a bandwidth of 10Hz and a 300ms window.
The number of tapers was set as 5. The Chronux toolbox
was used to estimate the coherencies [15].

IV. RESULTS

Neural recordings from early and late sessions of behav-
ioral learning (three of each) were analyzed. The selected
sessions were separated by 30 days (with 15 days of actual
training). Coherence between single unit activity from ten
neural channels used for decoding the reach velocity and
the corresponding LFP on the same electrodes is shown in
Figure 2 (top). Similarly, the change in coherence between
LFPs and ECoGs is shown in Figure 2 (middle). It shows a
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Fig. 2. Comparison of coherence between earlier (blue) and later (red)
training sessions. Changes in coherency between spikes and field potentials
(top) occurred at two bands (0-50Hz and 100-150Hz). The shaded region
shows the 95% confidence interval. In the case of LFP and ECoG signals
(middle), the synchrony increased and shifted in frequency as learning pro-
gressed (inset in middle panel). Synchrony between LFPs become distinctive
in two frequency bands peaking at ∼20 and 38Hz (bottom)

shift in the peak coherent frequency as behavioral learning
progresses. Synchrony within a single modality i.e., LFP also
increased as shown in Figure 2 (bottom).

In the case of LFPs, the coherency in the β range appeared
to be bi-modal. The temporal relation between these modes
as a function of the behavioral task is plotted as a coherogram
(see Figure 3). Mean coherence of different frequency bands
between LFPs from MEA and ECoG grid from early and
late sessions of training is shown in Figure 4.

V. DISCUSSIONS

Spike-based decoders were predominantly used in BMIs
in motor control applications until recently [16][17][18][19].
Experiments using LFPs [13][20][21] and decoders compar-
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Fig. 3. Coherogram between LFPs in the later session showing the
temporal distribution of various frequency bands w.r.t. the task execution.
Bands in 30-40Hz was active before the movement onset and bands in 12-
25Hz shows higher coherence after the movement onset
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Fig. 4. Coherogram between field potentials of a selected channel in
the MEA and the ECoG grid in the early(top) and late(bottom) sessions
showing the temporal distribution of various frequency bands w.r.t. the task
execution. In the early sessions, synchrony occurred after movement onset,
while in the late sessions, there is a shift in the band of synchrony towards
15-25Hz and is persistent through the entirety of the task

ing both LFPs and spiking activities [22][23] have shown
successful decoding using multiple frequency bands ranging
between 0 and 150 Hz. Combined decoding of β frequency
and power has been used in a reaching task [24]. ECoG
signals have been used in reaching kinematics decoding for
ALS patients [25] and in grasp related classification tasks
[26]. However, there was not much literature on how neural
correlates of learning in BMI context had changed over
the course of BMI learning. Our results show that increase
in coherency occur among three signal modalities used in
the study, unit spiking activities, LFPs, and ECoG over β
and low and high γ bands. Coherence changes between
spikes and LFPs are relatively small, perhaps, as the task
was quite complex and learning may still not have consol-
idated. Analyzing these changes over a larger longitudinal
window might establish a stronger association between these
modalities. Nevertheless, the coherencies were significant in
several frequency bands. Thus, there is a potential to use this
frequency redundancy to design a hybrid decoder that would
be stable for a much longer duration. Coherence among
LFPs and between LFPs and ECoG showed clear peaks over
a β range, the prominent β frequency peaks decreased in
LFPs, ECoG, and their coherence. Kilavik et. al. [24] showed
that even when monkeys were well trained, depending on
behavioral context, β frequency peaks changed. Therefore,
during our learning task, the monkey may have organized
behavioral contexts in relation to the decoded speed onset.
Furthermore, a low gamma band coherence only among
LFPs and between LFPs and unit spiking used to decode the
robot kinematics increased as the monkey had been operantly
conditioned as seen in a recent study using the same type
of an intracortical array [27]. However, there was no γ
peaks present in ECoG signals, which may indicate that this
operant conditioning induced γ oscillation may be specific
to deeper layers as opposed to aggregate signals from more
superficial signals such as ECoG signals. Our future work
includes offline hybrid adaptive decoder designs to include
unit spiking activities as well as multiple frequency bands
in LFPs and ECoG so that decoding performance would
remain high over a sustained duration of learning. Such a
novel decoder will bring us a step closer to realizing a robust
and clinically viable BMI.
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