
  

 

Abstract—Head and neck squamous cell carcinoma 

(HNSCC) that is detected at an advanced stage is 

associated with much worse patient outcomes than if 

detected at early stages. This study uses reverse phase 

protein array (RPPA) data to build predictive models 

that discriminate between early and advanced stage 

HNSCC. Individual and ensemble binary classifiers, 

using filter-based and wrapper-based feature selection, 

are used to build several models which achieve moderate 

MCC and AUC values. This study identifies informative 

protein feature sets which may contribute to an 

increased understanding of the molecular basis of 

HNSCC.  
 

I. INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) is the 

6
th

 most prevalent type of cancer worldwide [1]. The stage at 

which HNSCC is detected is important to therapeutic 

outcomes; patients with early stage (I and II) cancer have 

between 60-95% chance of successful local treatment, while 

those with advanced stage cancer are at high risk for 

recurrence or metastatic disease [2]. Increased understanding 

of the molecular characteristics of HNSCC stages may help 

to develop more effective detection and treatment strategies.   

In terms of identifying potential markers related to disease 

stage, recent research findings have varied. Some genetic 

studies have related selected genes and gene signatures to 

different HNSCC stages [3-5], while others have not found 

such discriminatory genes [6, 7]. Similarly, some proteomic 

or metabolomic studies have identified potential markers for 

discriminating between early and advanced stage HNSCC 

samples [8], while others have reported mixed or limited 

results [9, 10]. 

Further analytical proteomics studies may provide 

additional insight into the differences between early and 

advanced stage HNSCC. In particular, analysis of reverse 

phase protein array (RPPA) data is a promising avenue. 
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RPPA is an experimental technique for quantitative 

functional proteomics; in RPPA, a sample is probed with 

antibodies against specific proteins, and the antibody signals 

are used to quantify protein expression levels. With respect 

to HNSCC, RPPA data has been used to identify 

differentially expressed proteins between cancer and normal 

samples [11] and to identify proteins affected by the 

presence of an anti-invasion compound in nasopharyngeal 

carcinoma [12]. For several other cancer types, RPPA data 

has been applied to build predictive models: for prognosis 

[13] and drug response [14] in breast cancer; for treatment 

response in ovarian cancer [15]; and for drug sensitivity in 

non-small-cell lung cancer [16].  

In this study, RPPA data is used to investigate differences 

between early and advanced stage HNSCC. Alternative 

feature sets and alternative classification algorithms are 

tested to construct predictive models that can effectively 

discriminate between patient groups. The resulting models 

may help to provide insight into the protein-level 

characteristics associated with HNSCC stages.  

 

II. METHODS 

A. Data 

RPPA data for HNSCC was downloaded from The Cancer 

Proteome Atlas (TCPA)  [17] at 

http://bioinformatics.mdanderson.org/main/TCPA:Overview

. This dataset consists for 212 patient samples and measures 

the response to 187 antibodies. TCPA provides a proteomic 

complement to The Cancer Genome Atlas (TCGA) [18] at 

http://cancergenome.nih.gov/, where clinical, transcriptomic, 

and genomic data for the same patients are available. The 

downloaded RPPA data had been normalized and protein 

expression had been quantified using the “Supercurve 

Fitting” method. The details of these pre-processing steps 

are described in [17, 19]. In TCPA, antibodies are grouped 

into three classes: ‘validated’, ‘under evaluation’, and ‘use 

with caution.’ To perform a more conservative analysis, only 

those proteins with antibodies described as ‘validated’ in 

both [17, 19] were utilized in this study. 112 proteins were 

considered for further analysis.  

The HNSCC clinical data for the 212 patients was 

downloaded from TCGA. Pathological stage information 

was used to divide the RPPA dataset into two groups: 

patients with stage I and II cancer, and patients with stage III 

or IV cancer. Pathological state was unavailable for 12 

patients, so clinical stage was substituted. The early stage 

group contained 50 patients, and the advanced stage group 

contained 162 patients. 
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Figure 1.  The performances of two feature selection methods and five 

classification methods were compared for predicting head and neck cancer 

stage on the basis of reverse phase protein array (RPPA) data. 

B. Predictive Modeling 

Fig. 1 shows an overview of the modeling framework 

used in this study. Four individual binary classification 

methods were utilized: SVM, KNN, naïve Bayes, and 

decision tree. For SVM, three alternative kernels were 

considered: linear, Gaussian radial basis function (GRBF), 

and multi-layer perceptron (MLP). For naïve Bayes, the 

normal and kernel distributions were examined. For KNN, 

the number of neighbors ranged from 1 to 10, i.e.,   
      . For the decision tree, the alternative splitting criteria 

of the Gini diversity index (GDI), the twoing rule, and 

maximum deviance reduction (MDR) were tested. The 

ensemble classifier Adaboost was also examined.  

Two different analyses were performed, one using a filter 

approach for feature selection, and the other using a wrapper 

approach. In both cases, 10-fold stratified cross-validation 

was performed. Model performance was evaluated in terms 

of Matthews correlation coefficient (MCC). The cross-

validation standard deviation and the area under the ROC 

curve (AUC) were also reported for the model having the 

maximum mean MCC.  

In the filtering approach, the Wilcoxon rank-sum test was 

applied to identify proteins with significantly different 

expression between the early and advanced stage groups. 

Multiple testing corrections were applied by calculating the 

FDR for each protein, using the method of Benjamini and 

Hochberg through the R package p.adjust. To obtain a less 

conservative initial feature set, clinical stage was used to 

obtain a differentially expression protein list. This yielded 11 

proteins with FDR values ≤ 0.05, including the five proteins 

found when pathological stage was used. A comprehensive 

examination of this feature space was performed by 

considering alternative classification models for every 

combination of the 11 features, i.e., ∑ (  
 
)        

    

feature sets were considered.  

In the wrapper approach, the same classifiers were 

investigated using sequential forward feature selection 

(SFS). The top-performing feature set with up to 10 features 

was identified for each classifier.  

Analyses were performed using MATLAB 2013b 

(MathWorks, Natick MA). Unless otherwise specified, 

default classification algorithm parameters were utilized. 

III. RESULTS 

Table I describes the performance of alternative predictive 

models across the rank-sum filter feature sets and from SFS. 

The best model for each classification method, in terms of  

TABLE I.  PERFORMANCE EVALUATION OF ALTERNATIVE PREDICTIVE 

MODELS ACROSS FEATURE SELECTION METHODS 

Classification 

Method 

Rank-sum Filter SFS 

MCC AUC MCC AUC 

S
V

M
 Linear 0.41±0.22 0.74 0.39±0.13 0.72 

GRBF 0.44±0.20 0.78 0.41±0.23 0.73 

MLP 0.43±0.16 0.76 0.43±0.18 0.71 

N
aï

v
e 

B
ay

es
 

Normal 0.42±0.23 0.74 0.46±0.27 0.71 

Kernel 0.44±0.27 0.74 0.42±0.14 0.68 

D
ec

is
io

n
 

T
re

e 

GDI 0.39±0.22 0.67 0.35±0.28 0.71 

Twoing 0.39±0.22 0.69 0.36±0.25 0.69 

MDR 0.37±0.20 0.71 0.37±0.21 0.67 

K
N

N
 

K = 1 0.39±0.22 0.68 0.48±0.22 0.73 

K = 2 0.40±0.23 0.73 0.37±0.14 0.73 

K = 3 0.47±0.21 0.71 0.41±0.11 0.61 

K = 4 0.45±0.22 0.70 0.42±0.23 0.75 

K = 5 0.47±0.18 0.75 0.45±0.21 0.61 

K = 6 0.45±0.27 0.74 0.47±0.23 0.68 

K = 7 0.43±0.20 0.73 0.36±0.25 0.68 

K = 8 0.46±0.23 0.77 0.44±0.20 0.70 

K = 9 0.48±0.23 0.76 0.42±0.26 0.67 

K = 10 0.49±0.25 0.77 0.37±0.24 0.69 

A
d

ab
o
o

st
 25 Trees 0.36±0.12 0.71 0.36±0.26 0.60 

50 Trees 0.37±0.16 0.65 0.36±0.22 0.65 

100 Trees 0.35±0.23 0.65 0.42±0.36 0.74 

 

mean MCC, is highlighted. The top-performing model 

overall was KNN with K = 9 neighbors, using features found 

through rank-sum filter-based feature selection. For both 

feature selection methods, KNN gave better results, followed 

by Naïve Bayes and SVM. Adaboost did not show improved 

performance over the individual classifiers on this dataset. 

Overall, predictive model performance is moderate, yielding 

several MCC values above 0.4 and AUC values above 0.75. 

These results indicate that predictive models using protein 

measurements from RPPA data as features can discriminate 

between patients with early or advanced stage HNSCC, and 

have potential for further investigation.  

The identification of effective predictive models suggests 

that the proteins comprising the top feature sets may be 

functionally important in HNSCC progression. The 11 

proteins selected using the Wilcoxon rank-sum test were: (1) 

Cyclin_B1, (2) FASN, (3) FoxM1, (4) JNK_pT183_Y185, 

(5) MAPK_pT202_Y204, (6) MEK1_pS217_S221, (7) 

p38_pT180_Y182, (8) S6_pS235_S236, (9) 

S6_pS240_S244, (10) Src_pY527, and (11) Syk. All of these 

proteins have been associated with HNSCC in the literature. 

In particular, we examine those features that are associated 

with many well-performing models. Fig. 2 shows the 

number of times each of these 11 features is utilized in the 

21 top-performing models listed in Table 1. The first protein, 

Cyclin_B1, is present in 17/21 of these feature sets. Cyclin 

B1 controls the cell cycle checkpoint leading to mitosis, and 

has been shown to be over-expressed in HNSCC [20]. 

Src_pY527 is also present in 17/21 of these feature sets; 

Src_pY527 is the phosphorylated form of Src, a tyrosine 

kinase. In HNSCC, Src is a mediator of EGFR signaling 

[21]. Other frequently-selected proteins include FoxM1,  

5217



  

 
Figure 2.  Number of times each rank-sum filter-selected feature appeared 

among the 21 top-performing models. 

MAPK_pT202_Y204, and S6_pS235_S236. FoxM1 has 

been implicated as an early marker of HNSCC [22]. 

MAPK_pT202_Y204 is the phosphorylated, activated form 

of ERK1/2, a mitogen-activated protein kinase that is part of 

the MAPK/ERK signal transduction pathway, and that is 

frequently linked to HNSCC [23]. S6 is a ribosomal protein, 

and its phosphorylated form S6_pS235_S236 has been 

shown to be part of the response to the drug NVP-AUY92 in 

oral squamous cell carcinoma cells [24]. 

Additionally, eight of these 11 proteins, including Cyclin 

B1, Src_pY527, FoxM1, and MAPK_pT202_Y204, were 

among the features selected by SFS for the 21 top-

performing predictive models. In total, the 21 maximum 

mean MCC feature sets from SFS included 79 out of the 112 

proteins investigated. Of these, 46 proteins appeared in the 

SFS feature set in at least two models. These are shown in 

Table II, which also lists the frequencies with which 

different proteins appeared in the SFS feature sets. 

MEK1_pS217_S221 is the most frequently selected feature 

by SFS; it is a component of the MAPK/ERK signal 

transduction pathway, and has been shown to be involved in 

radiotherapy response in HNSCC cell lines [25]. 

IV. DISCUSSION 

This study builds and evaluates alternative predictive 

models for discriminating between early and advanced stage 

HNSCC using proteomic data. In comparison to previous 

HNSCC studies on RPPA data, which performed 

unsupervised and statistical analyses [11, 12], this study uses 

supervised analysis to identify discriminatory feature sets. In 

comparison to other studies which performed supervised 

analysis on RPPA data [13, 14], this study assesses the 

performances of several different combinations of feature 

selection methods and classification algorithms in order to 

identify potentially relevant protein feature sets. One 

ensemble and four individual binary classifiers, using filter-

based and wrapper feature selection, were used to construct 

several models which can discriminate between early and 

advanced stage HNSCC with an MCC greater than 0.4 and 

an AUC above 0.75.  

TABLE II.  COMMONLY SELECTED FEATURES BY SFS AMONG THE 21 

TOP-PERFORMING MODELS  

Times 

Selected 

Number of 

Features  

Proteins 

2 22 

Annexin_VII, c-Jun_pS73, c-Kit, Claudin-7, 

Cyclin_E1, EGFR, GATA3, GSK3-alpha-
beta_pS21_S9, GSK3_pS9, IRS1, mTOR, N-

Ras, NDRG1_pT346, PDK1, PDK1_pS241, 

Raptor, S6_pS240_S244, SCD1, Smad3, 
Src_pY527, TAZ, YB-1 

3 15 

14-3-3_beta, C-Raf, Dvl3, ER-alpha_pS118, 

FoxM1, HER3, MAPK_pT202_Y204, MIG-6, 
p27, p70S6K_pT389, RBM15, Smad1, 

STAT5-alpha, Transglutaminase, YB-

1_pS102 

4 3 Cyclin_D1, FASN, p38_pT180_Y182 

5 5 
AR, Collagen_VI, Cyclin_B1, PKC-

delta_pS664, Src 

9 1 MEK1_pS217_S221 

 

Future research will focus on improving predictive model 

performance. One important limitation of the current study, 

which will be addressed in future work, is classifier 

parameter optimization. Another issue is the limited breadth 

of feature selection and classification methods currently 

investigated. Implementing feature selection methods that 

have been evaluated on other types of proteomic data, as in 

[26], may help to improve model performance. Additionally, 

integrating the decisions of different classifiers may also be 

useful. In this study, Adaboost was tested. The performance 

of other state-of-the-art ensemble methods, such as random 

forests, will also be investigated in future work. A related 

concern is comparison of the execution times for alternative 

methods. 

A notable challenge with this HNSCC RPPA dataset is 

the imbalance in the class sizes; the advanced stage group 

contained more than three times the number of patients than 

the early stage group. This problem is likely to arise for 

many cancer datasets, because most cancers are detected 

only at later stages. Thus, future work will also investigate 

methods for addressing this class imbalance issue [27]. Two 

related questions of interest are performing multi-class 

classification to study protein expression differences among 

all four stages, and studying the differences between healthy 

and early stage HNSCC samples.  

The current results are encouraging with respect to using 

proteomic data to build predictive models for HNSCC. 

However, one inherent limitation of RPPA data is that only a 

selected set of proteins is measured. A larger set of proteins 

could enable discovery, in the sense that proteins which 

were previously not associated with HNSCC or cancer may 

be identified as informative features. TCPA is in the process 

of extending their antibody set to cover 500 proteins [17], 

which will help to address this limitation to an extent. A 

related promising avenue is to analyze mass spectrometry 

data. Similar to TCPA, The Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) is currently building a 

library of LC-MS/MS data from tumor samples that are also 

in TCGA. Currently, data from colon adenocarcinoma and 

rectum adenocarcinoma have been released. Future 

availability of such data for HNSCC would be valuable to 

researchers. Expanding upon the current results with 
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additional RPPA datasets or with mass spectrometry data is 

an important goal.  

Lastly, an important direction for HNSCC research is to 

integrate proteomic data with genomic, transcriptomic, and 

metabolomic data. Appropriate comparison and integration 

of multiple data types, as investigated by [14], may improve 

the performance of predictive models, and may provide 

greater insight into the mechanisms of disease development 

and progression. By harnessing the diverse data from 

initiatives like TCPA, TCGA, and CPTAC, bioinformatics 

studies can lead to better understanding of the molecular 

bases of HNSCC and other cancers.  
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