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Abstract— To investigate the intraerythrocytic cycle of Plas-
modium falciparum, time-series gene expression data are mea-
sured of infected red blood cells. However, the observed data
is blurred due to cell asynchrony during experiments. In
this paper, the effects of cell asynchrony are investigated
by conducting numerical experiments. The simulation results
suggest that cell asynchrony has varying effects on different
intrinsic expression patterns. Specifically, the intrinsic patterns
with high expression around the late life stage are more likely
to be affected by cell asynchrony. It is also investigated how the
effects of cell asynchrony are influenced by the experimental
conditions. Certain parameters are identified that have a strong
effects on cell asynchrony, and these parameters should be
measured during biological experiments in order to deblur
time-series gene expression data.

I. INTRODUCTION

Approximately 207 million people are infected by malaria,
and in 2012, about 627,000 people died from this disease [1].
Plasmodium falciparum (P. falciparum) is the most fatal
Plasmodium species which cause human malaria. In many
efforts to understand the blood stages of P. falciparum
infection, time-series gene expression data are measured over
the 48-hour intraerythrocytic cycle (IDC) [2], [3]. Although
the experiment starts with synchronized parasites, the par-
asite cultures gradually lose synchrony. Consequently, the
intrinsic gene expression patterns are blurred in the observed
gene expression data. In our earlier work, we developed a
linear system to model the superposition across cells over
the IDC [4]. In particular, the decay of cell synchrony is
described as a cell age distribution which changes over the
course of the experiment. The cell asynchrony in other cells
has been studied earlier, such as yeast [5] and Caulobacter
crescentus [6]. However, so far a quantitative analysis of
the effects of cell asynchrony has not been conducted. In
this paper, we analyze the linear model proposed in [4] to
better understand the effects of cell asynchrony. There are
two questions that we are specifically interested in:

1) Are there specific shapes of intrinsic expression pat-
terns that are more likely to be affected by the effects
of cell asynchrony?

2) How does the effect of cell asynchrony depend on the
experimental conditions?

In Section II, we review our linear model of cell asyn-
chrony. In Section III, we analyze the effect of different
parameters in that model on the cell asynchrony, and in

Section IV, we discuss our results. Conclusions are drawn
at the end of paper.

II. MODEL
Here we briefly review the model for cell asynchrony

proposed in our earlier work [4]. Gene expression levels are
measured at discrete time points over 48-hour IDC in the
experiments of P. falciparum [2], [3]. The resulting observed
expression data ei(t) at time point t can be modeled as
an integral over one life span of infected red blood cells
(iRBCs); this integral can be approximated as the following
sum [4]:

ei(t) ≈
L∑

`re=1

N(t, `re)fi(`re)4`re, (1)

where {N(t, 1), N(t, 2), ..., N(t, L)}) denotes the cell
age distribution of iRBCs at the time point t, and
{fi(1), fi(2), ...fi(L)} denotes the intrinsic gene expression
pattern of specific protein i. Along this line, a linear system
can be derived to model the relationship between intrinsic
pattern fi(`re) and observed expression data ei(t):N(1, 1) . . . N(1, L)

N(2, 1) . . . N(2, L)
...

. . .
...


︸ ︷︷ ︸

A


fi(1)
fi(2)

...
fi(L)


︸ ︷︷ ︸

x

=

ei(1)ei(2)
...


︸ ︷︷ ︸

b

.
(2)

The constant vector b denotes the observed gene expres-
sion data ei(t). The unknown variable vector x stands for
the intrinsic expression pattern fi(`re). The element of the
observation matrix N(t, `re) denotes the relative number of
iRBC that stays at the rescaled cell age lre at time point t,
which is calculated as [4]:

N(t, `re) =

∫ +∞

t

S(t′)pL̃

(
t′ − t
L− `re

)
t′ − t

(L− `re)
2 dt
′

+

∫ t

−∞
R(t′)pL̃

(
t− t′

`re

)
t− t′

`re
2 dt′ (3)

+

∫ t

−∞
Rf (t

′)pL̃

(
t− t′

`re

)
t− t′

`re
2 dt′.

We refer to our earlier paper for more details [4].
Three generations of iRBCs appear in the experiment over

the 48-hour IDC. The first generation stands for the late-stage
iRBCs which are used to infect fresh RBCs and initialize

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 5224



the experiment. These fresh RBCs infected at the beginning
of experiment constitute the second generation. Due to the
diversity of growth rate, few fast-growing iRBCs of second
generation will burst and infect additional RBCs. As a
results, the third generation of iRBCs appear at the end of
experiment. As shown in (3), the three integrals respectively
stands for the iRBCs from three generations. To be specific,
S(t) denotes the number of first generation iRBCs burst at
time t; R(t) stands for the number of second generation
iRBCs infected at time t; Rf (t) means the number of third
generation iRBCs infected at time t. These three functions
are essential to calculate the element of the observation
matrix N(t, `re). In the rest of this section, we review the
key parameters used to describe S(t), R(t), and Rf (t).

A. Burst rate in infection period

The number of first generation iRBCs which burst at time
t is denoted as S(t). We derive the expression of S(t)
based on the percentage of first generation iRBCs which
burst in the two-hour infection period. According to the
experimental specifications [4], r% of the first generation
iRBCs burst in the two-hour infection period prior to the
experiment. The remaining 1− r% iRBCs remain alive and
continually infect fresh RBCs till around h hours after the
two-hour infection period. Therefore, S(t) is approximated
as a piecewise function:

S(t) =


c, if− 1 ≤ t < 1,

at+ b, if 1 ≤ t ≤ h,
0, otherwise.

(4)

which satisfies the equations:
S(1) = c,

S(h) = 0,∫ 1
�1

S(t)dt∫ h
1
S(t)dt

= r
100−r .

(5)

Hence, (4) can be written as a function of r:

S(t) =


c, if− 1 ≤ t < 1,

rc
4(r−100) t+

3r−400
4(r−100)c, if 1 ≤ t ≤ 400

r − 3,

0, otherwise.

(6)

where c stands for an arbitrary positive value.

B. Infection factors

The number of second generation iRBCs infected at time
t is denoted as R(t). Since the second generation iRBCs are
infected by the first generation iRBCs, R(t) is proportional
to the number of first generation iRBCs bursting at time t:

R(t) =

{
ainS(t), if t ∈ [infection period],
aafS(t), if t ∈ [after infection period].

(7)

where the average number of RBCs infected by one iRBC
during and after the infection period are respectively denoted
as the parameters ain and aaf.

C. Distribution of normalized life span

Individual iRBCs grow at different growth rates. The
normalized life span of iRBCs L̃ is assumed a Gaussian
random variable: L̃ ∼ N(1, σ2). Given the probability
density function pL̃(l) of normalized life span L̃, the number
of third generation iRBCs infected at time t can be derived
from R(t) as [4]:

Rf (t) =
aaf

L

∫ +∞

−∞
R(t′)pL̃

(
t− t′

L

)
dt′. (8)

III. ANALYSIS

In this section, we conduct simulations on synthetic intrin-
sic gene expression patterns. The observed expression pattern
b is obtained by substituting the intrinsic pattern fi(`re) into
the linear system described in (2). The difference between
observed pattern b and intrinsic pattern fi(`re) is calculated
to investigate the effect of cell asynchrony. As discussed in
the previous section, the linear system is dominated by three
groups of parameters: the burst rate in infection period r%,
the infection factors {ain, aaf}, and the standard deviation of
growth rate σ. Consequently, the parameters of the linear
system {r%, ain, aaf, σ} are also changed to model different
experimental conditions.

A. Synthetic gene expression patterns

The gene expression level of P. falciparum is expected to
peak just before the encoded protein is needed [2]. Therefore,
synthetic gene expression patterns fi(`re) are generated by
utilizing the bell curve of normal distribution. Each of them
simulates a synthetic gene with high expression level at
different stages in the life span. The mean and standard
deviation of normal distribution {µ̂, σ̂} respectively indicates
the position of the peak and width of the bell curve.

The gene expression patterns fi(`re) present the change
of gene expression level over one life span. Once the iRBCs
reach the end of its life span, they will burst and start the next
life cycle. Hence the expression level at the first data point
fi(1) is highly correlated to the expression level at the last
data point fi(L). Therefore, we simply assume that fi(`re)
has the same value at `re = 1 and `re = L. The synthetic
gene expression patterns are generated as follows:

fi(`re)|µ̂,σ̂ =
1

σ̂
√
2π

[
e

�(`re�µ̂)2

2σ̂2 + e
�(`re+L�µ̂)2

2σ̂2 + e
�(`re�L�µ̂)2

2σ̂2

]
,

`re = 1, 2, 3, . . . , L. (9)

B. Effects of cell asynchrony

We assess the difference between synthetic intrinsic pat-
tern fi(`re)|µ̂,σ̂ and observed expression data ei(t) by a
measure D(µ̂, σ̂) defined as follows:

D(µ̂, σ̂) =

∫ L

0

∣∣∣∣∣ ei(t)∫ L
0
ei(t)dt

− fi(t)|µ̂,σ̂∫ L
0
fi(t)|µ̂,σ̂dt

∣∣∣∣∣dt. (10)

Since only the trend of the expression data is of interest here,
the values of fi(`re)|µ̂,σ̂ and ei(t) are normalized across the
cell life span. The observed expression data ei(t) is measured
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Fig. 1. (a) Synthetic intrinsic patterns fi(`re) with fixed shape and different position of the bell curve. (b) The row vector of the D(µ̂, σ̂) with σ̂ = 1.
(c) Synthetic intrinsic patterns fi(`re) with different shape and fixed position of the bell curve. (d) The column vector of the D(µ̂, σ̂) with µ̂ = 30. (e)
The 2-D plot of D(µ̂, σ̂) which is calculated with parameters {r = 36, ain = 7.11, aaf = 1.82, σ = 0.1}.

at discrete data points. By substituting (2) into (10), the
expression of D(µ̂, σ̂) can be written in discrete form as:

D(µ̂, σ̂) = Sum
(∣∣∣∣ Ax

Sum (Ax)
− x

Sum (x)

∣∣∣∣) , (11)

where x denotes the intrinsic expression pattern
{fi(1), fi(2), ...fi(L)}|µ̂,σ̂ , and A stands for the observation
matrix consisting of the cell age distribution N(t, `re) (2).

As described in Algorithm 1, there are three steps in
our numerical experiments. First, the value of the param-
eters {r%, ain, aaf, σ} are chosen to model the experimental
condition. Then the linear system is built based on these
parameters. Specifically, the elements of the observation
matrix A of the linear system are calculated according to (3).
Second, the bell-curved synthetic intrinsic patterns fi(`re)|µ̂,σ̂
are generated with values {µ̂, σ̂}, which respectively denote
the position and the shape of the bell curve. Third, the
observed patterns are obtained by substituting the intrinsic
pattern fi(`re)|µ̂,σ̂ into the linear system. The effect of cell
asynchrony are measured as the difference between the
observed pattern and intrinsic pattern according to (11). The
experimental results will be discussed in next section.

IV. RESULTS

In this section, we investigate the effects of cell asyn-
chrony on different expression profiles, and also how these
effects depend on the model parameters (and hence experi-
mental conditions).

Algorithm 1 is executed to calculated the D(µ̂, σ̂)
on different synthetic intrinsic patterns fi(`re)|µ̂,σ̂ . The
value of the parameters {r%, ain, aaf, σ} are fixed as
{36%, 7.11, 1.82, 0.1}, the values estimated from experimen-
tal specifications in our earlier study [4]. The synthetic
intrinsic patterns fi(`re)|µ̂,σ̂ are generated with values of
{µ̂, σ̂} in the range of {µ̂, σ̂|0.5 < µ̂ < 5, 4 < σ̂ < 44}. The
difference D(µ̂, σ̂) is respectively calculated between each

Algorithm 1 Calculate the D(µ̂, σ̂) with given parameters
{r%, ain, aaf, σ}.

Initialize the value of {r%, ain, aaf, σ} and substitute them
into the expressions of S(t), R(t), and Rf (t), given by
(6), (7), and (8) respectively.
Calculate N(t, `re) by substituting the expressions of S(t),
R(t), and Rf (t) into (3), and next compute the observation
matrix A (2).
for all reasonable value of {µ̂, σ̂} do

Generate the synthetic gene expression pattern with
{µ̂, σ̂} according to equation (9):

x = {fi(1), fi(2), ...fi(L)}|µ̂,σ̂
Calculate the observed expression data b by substituting
x in the linear system (2):

b = Ax.

Calculate the difference between intrinsic pattern x and
observed data Ax according to equation (11)

end for
Return D(µ̂, σ̂).

synthetic intrinsic pattern x and its corresponding observed
pattern b according to equation (11).

To have a better understanding, we separately interpret the
row vector and column vector of the 2-D plot of D(µ̂, σ̂) as
shown in the Figure 1. The parameters {µ̂, σ̂} respectively
denote the position and the shape of the bell curve which is
used to generate the synthetic intrinsic pattern fi(`re)|µ̂,σ̂ , as
demonstrated in the Figure 1(a)(c).

The row vector {D(µ̂, σ̂)|4 < µ̂ < 44, σ̂ = 1} indicates
the change of the difference D(µ̂, σ̂) on the intrinsic patterns
fi(`re)|µ̂,σ̂ with different positions of peak (4 < µ̂ < 44) but
with a fixed shape (σ̂ = 1). As shown in the Figure 1(b),
the row vector {D(µ̂, σ̂)|4 < µ̂ < 44, σ̂ = 1} decreases
when the value of µ̂ changes from 4 to 10. Then the trend
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reverses after µ̂ further moves towards 44. The highest value
of the row vector {D(µ̂, σ̂)|4 < µ̂ < 44, σ̂ = 1} is obtained
around µ̂ = 40. The pattern of this row vector implies
that the cell asynchrony has stronger effect on the intrinsic
patterns fi(`re)|µ̂,σ̂ with high expression level around late life
stage rather than around early life stage. This is a common
observation for all row vectors in the 2-D plot of D(µ̂, σ̂).

Similarly, the column vector {D(µ̂, σ̂)|µ̂ = 30, 0.5 < σ̂ <
5} stands for the change of D(µ̂, σ̂) on intrinsic patterns
fi(`re)|µ̂,σ̂ with a fixed position of the peak µ̂ = 30 but
variant shapes (0.5 < σ̂ < 5). As shown in the Figure 1(d),
the value in the column vector {D(µ̂, σ̂)|µ̂ = 30, 0.5 <
σ̂ < 5} continuously decreases when σ̂ changes from 0.5
to 5. This suggests that the cell asynchrony has continuously
decreasing effects on intrinsic patterns fi(`re)|µ̂,σ̂ if its bell-
shaped expression curve become more disperse. This is also
the common conclusion can be drawn from all column
vectors of the D(µ̂, σ̂).

Summarizing, the 2-D plot of D(µ̂, σ̂) presented in Fig-
ure 1(e) suggests that the intrinsic patterns with high ex-
pression (smaller value of σ̂) around late life stages (larger
value of µ̂) are more likely to be affected by the cell
asynchrony [4]. In the rest of this section, we will further
investigate how the effects of cell asynchrony depend on
the parameters {r%, ain, aaf, σ} and hence the experimental
conditions.

As depicted in Figure 2, we calculate D(µ̂, σ̂) with dif-
ferent parameters {r%, ain, aaf, σ}. The parameters are first
initialized as {36, 7.11, 1.82, 0.1}. In each plot, one of the
four parameter is selected and changed to either half or twice
of its initial value. For example, Figure 2(a) and 2(b) show
D(µ̂, σ̂) with parameter r changed to 18 and 72 respectively.
By comparing these two figures, we can observe how the
D(µ̂, σ̂) is influenced by the value of r. When the parameter
r decreases from 72 to 18, D(µ̂, σ̂) increases considerably
on all intrinsic patterns fi(`re)|µ̂,σ̂ . The same phenomenon
is also observed when the parameter σ increases from 0.05
to 0.2, as shown in Figure 2(g) and 2(h) respectively. By
contrast, as presented in Figure 2(c) and 2(d), D(µ̂, σ̂) only
slightly increases when ain decreases from 14.22 to 3.56
respectively. Similarly, from Figure 2(e) and 2(h), it can be
seen that D(µ̂, σ̂) does not vary much when aaf increases
from 0.91 to 3.64 except for small values of µ̂.

From this analysis, it becomes clear that the parameters r
and σ have a strong effect on cell asynchrony, whereas
the parameters ain and aaf have far less influence on cell
asynchrony. Therefore, when measuring expression levels
experimentally, it is crucial to properly measure the param-
eters r and σ, either directly or indirectly.

V. CONCLUSIONS

In this paper, we investigated the effects of cell asynchrony
on time-series gene expression data of P. falciparum. By
analyzing a linear model of cell asynchrony, we demonstrated
how the cell asynchrony has varying effects on different
intrinsic expression patterns, and how these effects are in-
fluenced by the experimental conditions (model parameters).
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Fig. 2. The 2-D plots of D(µ̂, σ̂) calculated with different parameters
{r, ain, aaf, σ}. The value of r is 18 in (a) and 72 in (b). Similarly, ain is
equal to 3.56 in (c) and 14.22 in (d); aaf is equal to 0.91 in (e) and 3.64
in (f); σ is modified as 0.05 (g) and 0.2 (h).

The presented analysis may help to gain better understanding
of the effect of cell asynchrony on expression data, and
underlines the importance of measuring certain variables
during experimental measurement of expression levels.
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