
  

 

Abstract— Mitogen activated protein kinase (MAPK) 

signaling pathways are frequently deregulated in human cancers 

with potential involvement in most if not all cellular processes 

leading to tumorigenesis.  Mathematical/computational models 

of MAPK signaling are indispensable to the study of pathway 

deregulation dynamics and their nonlinear effects on cell fate 

and carcinogenesis. A finite state machine model of MAPK 

cellular signaling is explored as an alternative to differential 

equations-based models of kinetics.  The proposed approach is 

applied to the Ras-Extracellular signal-regulated kinase (Ras-

ERK) pathway which includes the frequently mutated Ras and 

RAF proteins in many types of carcinomas.      

I. INTRODUCTION 

The mechanisms underlying the functions of multicellular 
organisms rely on the transduction and processing of extra-
cellular stimuli by a cellular signaling circuitry controlling the 
regulation of gene expression and ultimately cell fate. 
Deregulated cellular signaling pathways have been implicated 
in a variety of pathologies including cancer, cardiovascular 
diseases and asthma. Mathematical/computational models of 
cellular signaling are instrumental to the study of pathway 
deregulation dynamics and their effects on cell fate and 
carcinogenesis. In theory, they can be used for a variety of 
ends, including the rational design of therapies, the assessment 
of pharmaceutical drugs’ efficacy in altering a disease course 
and the estimation of their side effects. Ordinary differential 
equations (ODEs) are often used to represent the kinetics of 
the relevant biochemical processes, including the ubiquitous 
phosphorylation-dephosphorylation reactions underlying the 
mitogen activated protein kinase (MAPK) signal transduction 
[1], [2], [3-5] [6]. These kinetics models can yield insights 
about the dynamic behaviour of signaling pathways such as the 
role of feedback in the amplification of signals [7], the 
emergence of bistable and oscillatory behaviours in signaling 
networks [8], and the realization of ultrasensitivity and 
amplification of mitogen signals under enzyme saturation [9]. 
ODE based models can also shed light on the relationship 
between signal amplification and speed of signal propagation 
as well as enable insight as to how both transient and sustained 
signaling can be achieved through the same pathways under 
different stimuli [1]. On the other hand, the reaction rates 
associated with these ODE-based models are often estimated 
from sparse experimental data, if at all available, or curated 
from various literature sources which undoubtedly made use 
of different measurement protocols. In this paper, we explore 
an alternative modeling approach built around an information 
processing abstraction of cellular mechanisms, which has been 
recently discussed vis-à-vis the computational modeling of 
living organisms [10].  As such the resulting models are 
intrinsically free from the need to replicate the mechanistic 
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details of reaction kinetics, avoiding hence the shortcoming 
highlighted above for ODE based signaling models. 

II. MAPK SIGNALING AND CANCER 

MAPK pathways include a three-tier cascade of protein 

kinases activated by growth and stress signals as well as 

cytokines via cell receptors such as tyrosine kinase receptors 

(RTKs) and G-protein coupled receptors (GCPR). These 

pathways mediate the regulation of various cellular processes, 

such as cell growth, proliferation, differentiation and cell 

death. The known major MAPK cascades are distinguished 

by their respective end effector kinases, namely: ERK, p38, 

JNK, and ERK 5.  These pathways are frequently deregulated 

in human cancers [11, 12], with potential involvement in most 

if not all cellular processes leading to tumorigenesis, 

including independence from growth stimuli, 

unresponsiveness to anti-growth signals, circumvention of 

apoptosis, boundless replicative potential, maintained 

angiogenesis, and capacity for tissue invasion and metastasis 

[13]. In this paper we focus on the Ras-ERK pathway as an 

application example for the proposed modeling approach (see 

figure 1).  This pathway has a particular importance to cancer 

research because of the frequently mutated Ras and RAF 

proteins in many types of carcinomas that affect the skin, 

breasts, pancreas, liver and the thyroid respectively. The 

deregulated activation of the Ras-ERK pathway, underlying 

these pathologies, is driven by multiple sources acting 

independently or in coalescence. These includes: 

overexpression of cell membrane receptors and ligands, 

mutations of receptors and signaling proteins, and the 

sustained ligand-receptor stimuli mediated by autocrine or 

paracrine means.  This understanding of the Ras-ERK 

signaling pathway inspired various therapeutic approaches 

focused on drug mediated inhibition of the mutant Ras-RAF 

axis, considered to be the key driver of the deregulated 

activation of ERK. Unfortunately, this target inhibition is 

circumvented by cancerous cells through the activation of the 

PI3K-mTOR pathway whose deregulated control of cell 

growth and survival co-exist with that of the Ras-ERK 

signaling pathway for many of the above listed cancers [11] 

[14].  In addition to the cross-talk between Ras-ERK and 

PI3K-mTOR signaling pathways and their co-regulation of 

differentiation, cell growth and proliferation, both pathways 

are under the inhibitory control of the energy sensing AMPK 

(see figure 1). This later modulates the Ras-ERK pathway 

through the inhibition of wild type BRAF, a member of the 

RAF family of proteins [15], and controls mTORC1 through 

the phosphorylation of TSC2 and Raptor [16]. The interaction 
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between the Ras-ERK and PI3K-mTOR pathways as co-

regulators of survival, growth proliferation and their 

modulation by AMPK lead to complex signaling dynamics. 

This solidifies the importance of mathematical/computational 

modeling as an indispensable tool in any effort to tease out an 

actionable insight about these coupled nonlinear dynamics 

and to prognosticate about cancer response to therapeutic 

interventions.  

 
Figure 1. Cell growth and survival co-regulation by the Ras-ERK 

and PI3K-mTOR signaling pathways 

III. FINITE STATE MACHINE MODEL OF THE RAS-ERK 

PATHWAY 

Each stage of the Ras-ERK cascade corresponds to a 

phosphorylation-dephosphorylation cycle (PdPC) governed 

by the following reactions (see figure 2): 

𝑋 +𝐸1 

𝑎1
→
𝑑1 
← 

𝑋𝐸1
𝑘1
→𝑋∗ + 𝐸1                      (1.1) 

𝑋∗ +𝐸2  

 𝑎2
→ 
 𝑑2
← 

 𝑋∗𝐸2
𝑘2
→𝑋 + 𝐸2                  (1.2) 

X and X* represent a signaling protein and its phosphorylated 

form respectively. X* acts as the phosphorylating enzyme of 

the next stage in the MAPK cascade. Taking the second tier 

as an example, X and X* represent MEK and MEK* 

respectively. In this case E1 represents RAF*, while E2 is a 

phosphatase that dephosphorylates MEK*. In the proposed 

model, each tier of the MAPK cascade includes a finite state 

machine (FSM) used to model the temporal dynamics of 

signal propagation resulting from the physicochemical 

transformation applied to the involved signaling proteins. The 

sates of the FSM are (see figures 3 and 4): DP 

(dephosphorylating), TP (transitioning towards 

phosphorylation), P (phosphorylating), TDP (transitioning 

towards dephosphorylation). In this model the rates of 

enzyme association, catalysis and dissociation are indirectly 

accounted for by the average time 𝑇𝑆 spent by the cascade 

stage in the corresponding state 𝑠 ∈ {0,1,2,3}. The average is 

understood to be over the ensemble of the relevant proteins 

being covalently modified in the cascade tier under 

consideration. The corresponding average time 𝑇𝐶  needed for 

a complete PdPC can therefore be written as the sum of the 

average times spent in each of the four states of the cycle. 

Normalizing the sum over 𝑇𝐶  leads to 𝜏0 + 𝜏1+𝜏2 + 𝜏3 = 1, 

where 𝜏𝑠 = 𝑇𝑆/𝑇𝑐 is the proportion of the average time spent 

in state 𝑠 relative to the average phosphorylation-

dephosphorylation cycle time. These time proportions depend 

on the kinetic rates associated with the transitions to and from 

the states in question. In particular, based on the kinase and 

phosphate reactions given in (1), we can write the following 

estimates: 𝜏0 =
𝑘2+𝑑1

𝑎1
, 𝜏1 ≈

𝑎1

𝑑1+𝑘1
, 𝜏2 ≈

𝑘1+𝑑2

𝑎2
  , 𝜏3 ≈

𝑎2

𝑘2+𝑑2
 . 

Assuming the dissociation rates 𝑑1 and 𝑑2 to be comparable, 

these approximations can be rewritten as: 𝜏0 ≈ 𝛼𝑘𝑚2,  𝜏1 ≈
1

𝑘𝑚1
  , 𝜏2 ≈

1

𝛼
𝑘𝑚1 , 𝜏3 ≈

1

𝑘𝑚2
,  𝑘𝑚1 =

𝑘1+𝑑1

𝑎1
  , and 𝑘𝑚2 =

𝑘2+𝑑2 

𝑎2
 , where 𝑘𝑚1 and 𝑘𝑚2 are the Michealis constants. The 

signaling proteins spend the majority of the PdPC time in the 

unmodified or phosphorylated states respectively. We can 

therefore assume that 𝜏1+ 𝜏3 ≪  𝜏0 +  𝜏2 . With the 

assumption that the Michealis constants 𝑘𝑚1and 𝑘𝑚2 are 

comparable, we have: 𝜏𝑜 =
𝛼2

1+𝛼2
  , and 𝜏2 =

1

1+𝛼2
 . The 

parameter 𝛼 = 𝑎2/𝑎1 represents the phosphatase to kinase 

relative ratio of affinity vis-à-vis their respective substrates.  

 

 
Figure 2. The Ras-ERK cascade. 

The Ras-ERK simulation model consists of three FSMs, each 

representing one tier of the MAPK cascade. The 

phosphorylated state of one stage triggers the life cycle of the 

FSM in the next stage, which can be affected by inhibitory 

signals from other protein kinases, such as AMPK. The 

proposed model of phosphorylation and dephosphorylation 

dynamics is given for the j-th MAPK cascade stage as 

follows:  

 

𝑢𝑗(𝑡𝑛) = ∑ 𝑁(𝑠(𝑡𝑖), 𝑢𝑗−1(𝑡𝑖))
𝑛
𝑖=1 ,    𝑗 = 1,2,3               (2.1)   

 

𝑁(𝑠(𝑡𝑖), 𝑢(𝑡𝑖)) =  

{
 

 
−𝛽                       𝑖𝑓   𝑠(𝑡𝑖) = 0 

𝜆 ∗ 𝑢(𝑡𝑖)

1 + 𝛾 ∗ 𝑦(𝑡𝑖)
   𝑖𝑓  𝑠(𝑡𝑖) = 2 

0     𝑖𝑓 𝑠(𝑡𝑖) = 1 𝑜𝑟  𝑠(𝑡𝑖) = 3 

      (2.2)  
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𝑡𝑛 and  𝑡𝑖 are the n-th and i-th discrete simulation times 

respectively. 𝑢𝑗(𝑡𝑛) is the number of phospohorylated 

molecules at time  𝑡𝑛. This signal constitutes the output of the 

j-th MAPK cascade and the driving input of the cascade stage 

j+1 (see figures 3 and 4). The proposed model of 

phosphorylation dynamics uses a linear approximation of the 

cooperative ultrasensitivity that ensues when the kinase and 

phosphatase enzymes operate under saturating conditions [9]. 

The parameter 𝜆 quantifies the signal amplification gain 

associated with such ultrasensitivity. The model includes the 

factor 
1

1+𝛾∗𝑦(𝑡𝑖)
 to integrate the contribution of an inhibitory 

signal 𝑦(𝑡𝑖) such as that of the feedback from ERK to RAF in 

the MAPK example at hand.  The parameter 𝛾 represents the 

inhibition strength. The dephosphorylation process is on the 

other hand assumed to take place with the same constant rate 

𝛽 for all MAPK tiers. For M phosphorylating signals and Q 

inhibitory signals, the proposed model can be generalized as 

follows: 

 

𝑁(𝑠(𝑡𝑖)) =  

{
 
 

 
 
−𝛽                                       𝑖𝑓   𝑠(𝑡𝑖) = 0 

∑ 𝜆𝑞𝑥𝑞
𝑄
𝑞=1

1 + ∑ 𝛾𝑚 ∗ 𝑦𝑚(𝑡𝑖)
𝑀
𝑚=1

    𝑖𝑓  𝑠(𝑡𝑖) = 2 

0                     𝑖𝑓 𝑠(𝑡𝑖) = 1 𝑜𝑟 𝑠(𝑡𝑖) = 3 

      (3) 

 

  Where 𝑥𝑞  and 𝜆𝑞 , 𝑞 = 1, . . , 𝑄 are the phosphorylating 

signals and their associated cooperative amplification gains.  

𝑦𝑚 and 𝛾𝑚, 𝑚 = 1, . . , 𝑀 are the inhibitory signals and their 

respective inhibition strengths.   

 

 
Figure 3. MATLAB ® model of the Ras-ERK pathway. 

The times spent in the states of the FSM model were estimated 

using averages over the population of involved signaling 

proteins. Consequently, such in-state times are simulated as 

normally distributed random variables 𝑇(𝑠), 𝑠 = 0,1,2,3 with 

means equal to  𝜏𝑠 and standard deviations of 0.1 𝜏𝑠 
respectively. The simulation of the proposed model is 

illustrated in figures 5 and 6 for 𝛾 = 0 (no inhibitory signals), 

and 𝛾 = 1  respectively. The simulation results are obtained 

using 𝑇𝐶 = 15 seconds, 𝛼 = 1.5, and 𝑘𝑚1 = 𝑘𝑚2 = 0.01𝑊𝑇, 

where 𝑊𝑇 = 2.5 × 103 is the total number of RAF molecules 

involved in the corresponding phosphorylation-

dephosphorylation cycle of the first MAPK cascade stage.  

Furthermore, 𝜆 is set to 0.0025, 0.0035, and 0.0007 for the 

cascade stages 1, 2, and 3 respectively. The 

dephosphorylation rate 𝛽 is set to 100 for all the cascade tiers.  

 
Figure 4. The FSM for the second stage of the Ras-ERK cascade. 

 

Figure 5. The temporal profiles of signaling protein numbers 

for 𝛾 = 0. 

 

Figure 6. The temporal profiles of the signaling protein numbers 

for 𝛾 = 1. 

A unity gain low pass filter with a cut-off frequency of 0.0016 
Hz is applied to the discrete summation in (2.1), which is 
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computed with a sampling period of 0.01 seconds. This 
smoothing operation may be needed for the integration of the 
model with continuous-time simulation of processes such as 
the cell cycle, the transcription regulatory network, and 
metabolic reactions. The simulation results illustrate the 
model’s ability to recapitulate some key signal transduction 
properties of MAPK signaling cascades, including the 
amplification of extracellular stimuli and the effect of 
inhibitory feedback on the relayed signal strength (figure 6). 
However, since the proposed approach is not reliant on 
detailed reaction kinetics, the model is not intended to yield 
high resolution predictions of physiochemical variables such 
as protein concentrations. Instead, the objective is to achieve 
an approximation of the temporal complexity of signal 
transduction dynamics that can yield a physiologically 
plausible model of the cell communication circuitry.  In the 
next section, a short discussion is provided about the potential 
contribution of the proposed model to the representation of the 
cause-effect dynamics linking deregulated signaling pathways 
and cancer.   

IV.  MODELING CELLULAR SIGNALING AND CANCER 

The cellular signaling circuitry plays a central role in 
mediating the complex coupling between the various cellular 
processes determining cell fate, which is a decisive factor in 
tumorigenesis. A model of this circuitry must therefore be 
amenable to integration with the physiological processes that 
are key determinants of the cellular context, including the cell 
cycle and the transcription regulatory network.  It has been 
argued that information and energy make up the fundamental 
forces underlying space-time biological complexity  [10]. On 
this account, the proposed information processing abstraction 
of cellular signaling may lead to a physiologically plausible 
model of the relevant cellular context.  As a catalyst of this 
desirable objective, the proposed model focuses on: (1) 
recapitulating the logic integrating various extracellular and 
cytoplasmic signals to control the gene expression program 
behind the determination of cell fate, (2) reflect the structural 
motifs of the cellular signaling circuitry so as to provide 
physiologically plausible effector points in the cell 
communication system. These effector points would serve as 
the means to induce simulated genetic/epigenetic 
perturbations and analyse their impact on cell physiology. 
They may also be used to study the impact of drug inhibitory 
interventions intended to abrogate the pathological 
implications of deregulated signaling pathways. In this 
respect, the proposed approach may be used to study the 
signaling circuitry underlying cell fate co-regulation by the 
Ras-ERK and PI3K-mTOR pathways and the modulation of 
their dynamics by the energy sensing AMPK (figure 1). 
Despite the high level coupling between the signaling 
pathways illustrated in figure 1, the proposed FSM-based 
modeling approach can be applied in a straightforward fashion 
to yield an integrated model of the entire signaling circuitry at 
hand. The drastically reduced number of parameters compared 
to an ODE based kinetics model is a clear advantage in 
enabling the consideration of a wider scope of interactions 
with the involvement of multiple signaling pathways. This 
may provide a deeper insight about the dynamics underlying 
the regulation of various aspects of cell physiology. Another 
attractive aspect of the modeling approach being proposed is 
the model’s faithful representation of the signaling protein 

interaction network and its structural motifs.  This may be 
instrumental in translating model generated insights into 
actionable therapeutic strategies targeting specific pathway 
proteins.  Further research is however needed to achieve such 
goal. In particular, a systematic method is needed to estimate 
the model parameters using experimental data. This would 
provide a solid anchor for the biological plausibility of the 
proposed modeling approach.   

V. CONCLUSION 

The proposed state machine model of Ras-ERK signaling 

pathway has been illustrated to reflect some key signal 

transduction properties of MAPK signaling pathways. These 

include the amplification of extracellular stimuli and 

sensitivity to inhibitory feedback. The reliance on a relatively 

small number of model parameters may enable the analysis of 

large systems of coupled signaling pathways that otherwise 

may not be possible using detailed kinetics-based models.  
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