
  

 

Abstract— Two tri-axial accelerometers were placed on the 

wrists (one on each hand) of the patients with Parkinson’s 

disease (PD) and a non-PD control group. Subjects were asked 

to perform three of the upper extremity motor function tasks 

from the Unified Parkinson’s Disease Rating Scale (UPDRS) 

test. The tasks were: 1) finger tapping, 2) opening and closing of 

palms, and 3) pronation-supination movements of the forearms. 

The inertia signals were wirelessly received and stored on a 

computer for further off-line analysis. Various features such as 

range, standard deviation, entropy, time to accomplish the task, 

and maximum frequency present in the signal were extracted 

and compared. The results showed that among the studied 

population, “standard deviation”, “range”, “entropy”, “time” 

and “max frequency” are the best to worst features, 

respectively, to distinguish between the non-PD and PD 

subjects. Furthermore, using the mentioned features, it is more 

probable to distinguish between the non-PD and PD subjects 

from tasks 2 and 3 as opposed to task 1.  

 

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 

neurodegenerative movement disorder in the United States 

[1].
  
The prevalence of PD is rising and the disease currently 

has no cure [2].  The disorder is complex and progressive with 

diverse clinical features, typically characterized by tremor, 

rigidity (limb and muscle), akinesia/bradykinesia and postural 

imbalance [1, 3].
 
Treatment of those suffering with PD has 

mostly been focused on medication and surgery. Medication, 

the standard mode of treatment, tends to lose its efficacy over 

time, has side effects, and is not effective in treating all PD 

symptoms [4]. Surgery, such as deep brain stimulation, may 
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be an option for a few selected patients, but has strict 

eligibility criteria and is also not effective in treating all PD 

symptoms [5].
 

The availability of tools for monitoring the functional 

status of PD patients is limited. The Unified Parkinson’s 

Disease Rating Scale (UPDRS) is the most widely used scale 

for assessing functionality of PD in clinical research studies 

[6]. The UPDRS tool consists of of four parts with a total 

summed score: I) Non-motor Experiences of Daily Living, II) 

Motor Experiences of Daily Living, III) Motor Examination, 

and IV) Motor Complications. Each part includes several 

items. The response to each item can be divided into five 

levels with uniform anchors of 0_normal, 1_slight, 2_mild, 

3_moderate, and 4_severe. The tool relies on a combination of 

patient self-report and the visual assessment of the patient 

performed by an individual trained in administering the 

UPDRS [7]. Although the UPDRS is a validated scale, the 

scoring, particuarly during the motor examination component, 

is inherently subjective due to its reliance on the rater’s visual  

judgment of impairments in PD patients.  

With recent advances in miniaturized sensor technologies, 

researchers have investigated inertial sensors (such as 

accelerometers and gyroscopes) to objectively asses the PD 

motor symptoms. Initial reports suggest that such assessments 

for tremor and other types of motor impairment may be 

positively correlated with UPDRS rater assessment [8-10]. 

Until recently, however, the technology was not adequate to 

clinically study these methods. Most existing studies have 

been conducted on limited numbers of PD patients and have 

tried to utilize machine learning algorithms to assess the 

feasibility of using accelerometer data to estimate the severity 

of the motor complications in patients [11, 12]. Studies 

conducted on larger sample sizes have focused exclusively on 

PD patients with no comparisons with healthy individuals 

[13]. In addition, a clinically deployable hardware and 

software system (KinesiaTM, CleveMed) has also been 

developed. However, this system is relatively bulky which 

may limit its utility [8]. 

In this study, we conducted a subset of Part III of the 

UPDRS, the Motor Examination portion, for the upper 

extremity using two tri-axial accelerometers embedded in 

wristwatches and worn on the subjects’ wrists. We collected 

data from both PD and non-PD subjects. Data were analyzed 

and features were extracted to investigate statistical 

differences between the performances of the two groups.  

Objective Quantification of Upper Extremity Motor Functions in 

Unified Parkinson’s Disease Rating Scale Test 

Xiaoqing Jia, Nathalie Duroseau, Vivian Chan, Christina Ciraco, Rui Wang, Sarah Mostafa Nia,  Kayla 

Ho, John P. Govindavari, Farshid Delgosha, Member, IEEE, Thomas Chan, Kathleen Mangunay 

Pergament, Bhuma Krishnamachari, and Aydin Farajidavar, Member, IEEE 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 5345



  

II. METHODOLOGY AND EXPERIMENTAL PROCEDURES 

A. Hardware and System 

Two ez430-Chronos wristwatches (Texas Instruments), 
which feature a 96-segment LCD display, an integrated 
pressure sensor, and a three-axis accelerometer, were used in 
this study. The BMA250 (Bosch Sensortec) [14] sensors that 
are designed for measuring low-g acceleration are used in 
ez430-Chronos. The BMA250 has a programmable 
measurement range of ±2g, ±4g, ±8g, and ±16g. We 
programmed the watches to have the range of ±2g; hence the 
resolution was obtained as 3.9 mg. Each axis of the 
accelerometer was sampled at 20 Hz, and data was wirelessly 
transmitted to a computer. In order to avoid communication 
interference, one of the watches transmitted at 915 MHz 
(Channel 1) and the other one at 433 MHz ISM bands 
(Channel 2). A custom-made program was developed in 
LabVIEW (National Instrument) that could simultaneously 
and in real-time obtain, display and restore the transmitted 
signals from both watches (Fig. 1).  

B. UPDRS and Experimental Procedure  

Two groups of subjects participated in this study: non-PD 

(control group) subjects and PD subjects (experimental group. 

All subjects were asked to wear the wristwatches on their left 

and right hands while performing a subset of Part III of the 

UPDRS that involved performing the upper extremity tasks. 

Namely, the following tasks were performed by all subjects: 

1) finger tapping, 2) opening and closing of palms, and 3) 

pronation-supination movements of the forearms. Each task 

was performed with two UPDRS trained raters, who 

independently provided ratings based on their visual 

assessment. This study was approved by the Institutional 

Review Board (IRB) Committee at the New York Institute of 

Technology. 

C. Signal Processing, Feature Selection, and Statistical 

Analysis 

The restored signals were retrieved for off-line analysis.  

The signals were visually truncated to only include the 

performed tasks, and detrended by subtracting the mean to 

remove the dc component. The range, standard deviation, 

entropy, the time period for performing each task and the 

frequency with the largest power were calculated and selected 

as the features. The first four features were directly extracted 

from the processed signals and the last feature was calculated 

from the power spectrum plots for each signal. Therefore, 

thirty features from X, Y, and Z axes of the left and right 

hands, were extracted and compared between the PD and 

non-PD subjects. One-way Analysis of Variance (ANOVA) 

was used to compare the features between the two groups 

(P-value < 0.05 was considered significant). The histograms 

of the “range”, “standard deviation”, and “entropy” features 

were calculated with ten equal-width bins and plotted as 

continuous graphs by connecting the centers of the bins.   
 

III. RESULTS 

12 subjects with PD and 12 non-PD subjects participated 
in this study. The average and standard deviation of the 
subjects’ age was obtained as 58.3±7.3 and 72.0±8.6 for 
non-PD and PD subjects, respectively.  

 

Fig. 1. The block diagram of the system used for data collection is shown. 

Dashed- and dotted-lines represent wireless communications between the 

wristwatches and the computer in 915 MHz and 433 MHz frequencies.  

Fig. 2. (a) Shows the signals recorded from the Z axis of the accelerometer 
when subjects were performing task 1 with their right hand. (b) and (c) show 

the signals from the left hands of the subjects from Y axis and Z axis while 

performing tasks 2 and 3, respectively. The range of the signal variation was 
significantly larger for the non-PD subject in (a) and some of the peaks 

matched with the activity were distinguishable (arrows). It took a longer time 

for the PD subject to accomplish task 2 in (b). In (c), the PD subject finished 
the task later than the non-PD subjects, while the range of the signal was 

larger for the non-PD subject. The peaks of the signals in (c) matches with 

the number of times the subjects performed task 3. The first three peaks from 
the activity of the non-PD subject are indicated. 

(a)

(b)

(c)

X 
Y 

 X 

Z 

X 

Z 
 X 

Y 

433 MHz 

(Channel 2) 

915 MHz 

(Channel 1) 

5346



  

A.  Extracting and Plotting the Activities Segments 

Accelerometer signals from all (X, Y, and Z) coordinates 

for both left and right hands of all the subjects were plotted. 

The signals were truncated to only include the task period; 

hence, the total time of each signal was extracted. Typical 

signals from non-PD and PD patients while performing tasks 

1-3 are shown in Figs. 2 (a)-(c), respectively. Fig. 2 (a) shows 

the signals recorded from the Z-axis of the accelerometer, 

from the right hand of a non-PD and a PD subject. The non-PD 

subject in this case finished the task in a longer period of time 

than the PD subject (7.0 s vs. 5.5 s), however, the range of the 

signals were larger for the non-PD subject (109 vs. 31). Fig. 2 

(b) depicts the Y-axis signals from the left hand of the non-PD 

and PD subjects. The PD subject finished the task in 6.1 s and 

the non-PD subject in 4.7 s. Furthermore, the range of the 

signals was measured as 199 and 36 for non-PD and PD 

subjects, respectively. Fig. 2 (c) illustrates the Z-axis signals 

recorded from the left hands of the subjects. In this case, the 

non-PD subject finished the task in less time than the PD 

subject (5.4s vs. 7.8s) and the range of the signals were 

measured as 211 and 138 for the non-PD and PD subjects, 

respectively.  

B. Features Showed Significant Difference 

The five selected features were labeled as range, standard 

deviation, entropy, time and max frequency. The features 

extracted from the PD and non-PD subjects were compared 

and the mean ± standard error of mean (SEM) for the features 

with significant differences were inserted into Tables I and II. 

Table I shows the mean ± SEM for the first 3 features and 

Table II shows for the latter two features. Each cell in the 

tables shows the axis that the feature extracted from and 

whether it was from the right hand (R) or left hand (L) of the 

PD (P) or non-PD (H) subjects. For instance, “RZH” and 

“LYP” mean that the feature was extracted from the “right 

hand, Z-axis, and non-PD subjects”, and “left hand, Y-axis, 

and PD subjects”, respectively.  

Furthermore, all the features in both tables are paired for 

non-PD and PD subjects. For example, the range of the 

signals recorded from the Z-axis from the right hand of the 

non-PD subjects was significantly higher than the same 

signals from PD subjects (52.83 ± 8.94 vs. 29.58 ± 4.55). 

Empty cells in Table II mean that no significant differences 

were observed in any of the axes between the signals from the 

non-PD and PD subjects.  

C. Histograms of the Selected Features  

The distribution of the “range”, “standard deviation”, and 

“entropy” were plotted for all the significant axes shown in 

Table I. Three examples of these plots for tasks 1-3 for the 

“standard deviation” feature extracted from the right hand are 

shown in Fig. (3); (a) and (b) are from the Z-axis and (c) is 

from the X-axis. According to Fig. 3 (a), if we choose the 

standard deviation of “10” as the border between the non-PD 

and PD subjects, we can accurately classify 11 (out of 12) PD 

subjects (91.6% true positive). However, half of the non-PD 

subjects (6 out of 12) will also be classified as PD subjects 

(50% false positive).  In Fig. 3 (b), if we choose “15” as the 

border, the PD subjects will be classified with the accuracy of 

83.3% and only one non-PD subject will be classified as PD. 

Similarly in Fig. 3 (c), if we choose a number slightly smaller 

than 40 (e.g., 39) as the border, 2 of the PD patients will be 

classified in the non-PD category and all the non-PD subjects 

will be classified accurately. 

 

IV. DISCUSSION AND CONCLUSION 

In this study, we used two wireless wearable devices with 
tri-axial accelerometers in the form of wristwatches and asked 
PD and non-PD subjects to perform three of the upper 
extremity tasks from the UPDRS tool while wearing the 
wristwatches. Fig. 2 (a) showed that although the PD subject 
could finish task 1 faster than the non-PD subject, he did not 
perform the task as completely or as accurately as the non-PD 
subject. Features of range, standard deviation, and entropy 

TABLE II.  MEAN ± SEM FOR RANGE, STANDARD DEVIATION AND 

ENTROPY FEATURES  

Tasks 

Features 

Range Standard deviation Entropy 

1 RZH:52.83 ± 8.94 
RZP: 29.58 ± 4.55 

RZH: 9.97 ± 1.65 
RZP: 5.71 ± 0.85 

RZH: 1.23 ± 0.02 
RZP: 1.34 ± 0.04 

2 

RYH: 102.25 ± 15.61* 
RYP: 40.58 ± 8.77* 
RZH: 93.42± 6.87 
RZP: 67.92 ± 8.00 

RYH: 16.36 ± 3.17* 
RYP: 6.61 ± 1.32* 
RZH: 26.60 ± 3.73* 
RZP: 10.60 ± 1.29* 
LYH: 17.58 ± 2.20  
LYP: 10.63 ± 2.11 
LZH: 27.51 ± 2.44 
LZP: 18.50 ± 3.33 

RXH: 1.13 ± 0.04  
RXP: 1.27 ± 0.04 
RYH: 1.15 ± 0.06 
RYP: 1.34 ± 0.05 
RZH: 1.08 ± 0.05* 
RZP: 1.27 ± 0.02* 
LZH: 1.10 ± 0.02* 
LZP: 1.20 ± 0.02* 

3 

RXH: 218.92 ± 9.88* 
RXP: 124.33 ± 14.17* 
RZH: 158.67 ± 9.47 
RZP: 129.83 ± 9.26 
LXH: 237.75 ± 9.69* 
LXP: 155.67 ± 16.75* 
LZH: 195.17 ± 10.93 
LZP: 150.00 ± 13.91 

RXH: 64.02 ± 4.73* 
RXP: 28.32 ± 3.61* 
RYH: 12.11 ± 1.81 
RYP: 7.18 ± 0.97 
RZH: 46.91 ± 2.70* 
RZP: 35.17 ± 2.98* 
LXH: 71.19 ± 5.34* 
LXP: 38.37 ± 4.49* 
LYH: 17.73 ± 2.65* 
LYP: 9.16 ± 1.38* 
LZH: 59.26 ± 4.85* 
LZP: 39.06 ± 3.64* 

LYH: 1.10 ± 0.03 
LYP: 1.22 ± 0.04 
LZH: 1.00 ± 0.01 
LZP: 1.04 ± 0.01 

 

TABLE I.  MEAN ± SEM FOR TIME AND MAXIMUM FREQUENCY 

FEATURES  

Tasks 
Features 

Time Max frequency 
1 ---- ---- 

2 

LXH: 88.92 ± 2.67 
LXP: 127.83 ± 17.89 
LYH: 88.92 ± 2.67 
LYP: 127.83 ± 17.89 
LZH: 88.92 ± 2.67 
LZP: 127.83 ± 17.89 

LYH: 6.86 ± 0.93 
LYP: 2.50 ± 0.81 

3 

LXH: 108.75 ± 7.93 
LXP: 188.67 ± 32.81 
LYH: 108.75 ± 7.93 
LYP: 188.67 ± 32.81 
LZH: 108.75 ± 7.93 
LZP: 188.67 ± 32.81 

RXH: 1.78 ± 0.14 
RXP: 1.17 ± 0.19 
LXH: 1.93 ± 0.17 
LXP: 1.34 ± 0.19 
LZH: 2.13 ± 0.29 
LZP: 1.36 ± 0.20 

 

* P-value < 0.01 
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extracted from the Z-axis of the right hands showed significant 
difference in performing task 1 between the non-PD and PD 
subjects, however, the time and maximum frequency did not 
show any significant difference between the two groups. This 
can be partially due to the incomplete performance of the PD 
subjects or not opening their fingers as widely as the non-PD 
subjects.  

Tables I and II showed tasks 2 and 3 could better 
distinguish between the non-PD and PD subjects compared to 
task 1. This could be due to the longer distance of the 
accelerometer sensor to the fingers (in tasks 1) compared to 
the palms (in task 2) and wrists (in task 3). In other words, task 
1 and to some extent task 2 are indirectly measured by the 
accelerometer, while task 3 is directly measured. Fig. 2 (c) 
lends additional proof to this statement, since each peak in the 
signal matches with one iteration of the pronation-supination 
of the forearms and one can easily count the number of 
iterations performed by the subjects from the obtained signals. 
Tables I and II also demonstrated that among the studied 
population, “standard deviation”, “range”, “entropy”, “time” 
and “max frequency” features are ranked the best to worst, 
respectively, to distinguish between the PD and non-PD 
subjects.  

The histograms showed that the “standard deviation” 
feature can be used to set acceptable borders between the 
performance of the non-PD and PD subjects in tasks 2 and 3. 
However, none of the borders can provide 100% classification 
accuracy. Conducting more studies in the future, and 
separating out the subjects with various motor symptoms (e.g., 
subjects with tremor, stiffness, or rigidity) can potentially 
enhance the classification accuracy.  
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Fig. 3. The histogram of the standard deviation feature is plotted for tasks 1-3 

in (a)-(c), respectively. All the plots are from the right hand. (a) and (b)  are 

from the Z-axis and (c) is from the X-axis. The vertical dashed arrows in all 
the plots show possible borders between the non-PD and PD categories. The 

arrow in (a) shows there are 2 non-PD subjects that their standard deviation 

features lay in the bin centered at 12.5. 
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