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Abstract— Corneal nerves changes have been linked to dam-
age caused by surgical interventions or prolonged contact lens
wear. Furthermore nerve tortuosity has been shown to correlate
with the severity of diabetic neuropathy. For these reasons
there has been an increasing interest on the analysis of these
structures.

In this work we propose a novel, robust, and fast fully
automatic algorithm capable of tracing the sub-basal plexus
nerves from human corneal confocal images. We resort to log-
Gabor filters and support vector machines to trace the corneal
nerves.

The proposed algorithm traced most of the corneal nerves
correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of
0.08 ± 0.06). The displayed performance is comparable to a
human grader. We believe that the achieved processing time
(0.661 ± 0.07 s) and tracing quality are major advantages for
the daily clinical practice.

I. INTRODUCTION

The cornea is the most anterior structure of the vertebrate

eye and is approximately 500 µm thick in the center increas-

ing towards 700 µm in the periphery. It has a major role

in visual acuity as it is responsible for about two-thirds of

the eye’s refractive power [1]. It is composed of five layers:

the epithelium, the Bowman’s layer, the stroma, Descement’s

membrane and the endothelium. The cornea is known for

being one of the most sensitive tissues in the body and it

is densely innervated with sensory and autonomic nerves

located at the junction between the basal epithelium and the

Bowman’s layer [2].

Several pathologies and dystrophies that affect the cornea

may lead to visual impairment and even to blindness. Other

dystrophies may not cause loss of vision but instead repeated

pain episodes.

Recently, there has been a particular increasing interest on

the analysis of the corneal nerves. Not only because these

structures have been shown to provide information about

possible damage from surgical interventions (e.g., LASIK or

PRK) or from prolonged wear of contact lens [3], [4], [5], but

also because it has been shown that some nerve properties

are linked to systemic diseases [4], [5], e.g., nerve tortuosity

correlates with diabetic neuropathy severity [6], [7].

Confocal microscopy has offered the possibility of imag-

ing the corneal nerves in vivo in a fast and non-invasive

way. While of major interest, the quantitative analysis of
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Fig. 1. From left to right: original (Ior), corrected (I), and log-Gabor
filtered (IlG) confocal images, respectively.

corneal nerves from these images is impractical in the daily

clinical practice due to the high number of images, the time

consumed per image, and the burden of manual or semi-

automatic processes. Thus, there is the need for a fully

automatic approach capable of accurately and in due time

segment the corneal nerves.

A few approaches have been proposed over the years

to segment the corneal nerves. Scarpa et al.[8], applied a

fuzzy c-mean clustering technique to classify each pixel as

belonging or not to a nerve. In 2011, a new multi-scale dual-

model method to detect the corneal nerves was proposed by

Dabbah et al.[7]. More recently, Poletti and Ruggeri in [9],

proposed a method based on a sparse tracking scheme.

In this work we propose a novel, robust, and fast algorithm

capable of tracing the sub-basal plexus nerves from human

corneal confocal images.

II. DATA

A total of 246 confocal microscopy images of the sub-

basal corneal nerve plexus of healthy volunteer subjects were

acquired using the Heidelberg Retina Tomograph (HRT-II)

with the Rostock Cornea Module (Heidelberg Engineering

GmbH, Heidelberg, Germany) at the Ophthalmology De-

partment in the Linköping University, Sweden. The imaging

instrument was outfitted with a 363/0.95 NA immersion ob-

jective lens (Carl Zeiss SMT GmbH, Oberkochen, Germany)

to provide confocal images covering a field of 400×400 µm
(384 × 384 pixels) (Fig. 1a). The data was split randomly

into two different datasets, the training (N = 50) and testing

(N = 196) datasets.

All images were manually segmented by two indepen-

dent graders (G1 and G2), who traced the centerlines of

all visible nerves during several sessions over a 2-weeks

period. Both graders used the NeuronJ [10] tracing plugin

for ImageJ (publicly available at http://imagej.nih.gov/ij/,

19972014; version 1.45s, Rasband, W.S., ImageJ; National
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Fig. 2. From left to right: corneal confocal original image and nerves segmentation using an high, low, and hysteresis threshold, respectively.

Institutes of Health, Bethesda, Maryland, USA) over the raw

unprocessed images.

The segmentation performed by the G1 grader (SG1) and

the intersection between SG1 and SG2 (SGi) were used as

ground-truth references to evaluate the proposed algorithm.

III. METHODS

Throughout this section we describe the proposed nerve

segmentation algorithm. We resort to a bank of log-Gabor

filters to enhance the corneal nerves. The resulting image

is then thresholded to obtain candidate nerve segments that

are then classified using a support vector machines (SVM)

approach.

A. Image enhancement

Typically, confocal corneal images present uneven illumi-

nation and contrast. Particularly noticeable is the difference

between the center to the periphery (radially). Although

several factors play a role, the spherical-like shape of the

cornea has a major influence. As a preprocessing step, all

the images undergo top-hat filtering to correct for this issue.

This is a widely used method for image enhancement and

is computed as the difference between the image and its

morphological opening (morphological erosion followed by

dilation by a structuring element) [11]. The original and

corrected confocal images (respectively Ior and I) are shown

in Fig. 1a and 1b.

B. Nerve enhancement

Log-Gabor filters are herein applied to enhance the corneal

nerves. This filter class has been widely used to detect line-

like structures, such as blood vessels, characters for optical

character recognition or features for face recognition [12],

[13], [14]. Each log-Gabor filter results from the combination

of a radial and an angular component, witch limit the filter’s

frequency (scale) and orientation, respectively. Thus, a log-

Gabor filter has a unique orientation-scale combination. The

even and odd components of a log-Gabor filter can be

obtained as its real and imaginary parts, respectively.

The corrected images are filtered with a bank of log-Gabor

even and odd kernels. The used bank covers a wide enough

range of scales and orientations to fully describe the corneal

nerves. Each value in the final filtered image (I lG) is defined

as the difference between the even and odd maximal filter

responses, as

I lG = ⌊max
no

(Ievenno )−max
no

(
∣

∣Ioddno

∣

∣)⌋, (1)

where Ievenno and Ioddno denote the convolution between image

I and the even and odd component (respectively) of a log-

Gabor filter of orientation o and scale n. The ⌊.⌋ operator

assumes the enclosed quantity as zero when negative. Figure

1c shows an example of the filtered image.

C. Nerve segmentation

The usage of a simple threshold to segment line-like

structures is in some cases not enough. The resulting

nerve segmentation may result in either under-segmentation

(unconnected small nerve segments), or over-segmentation

(segmentation of noise or other image artefacts). As so,

we decided to use hysteresis thresholding instead. This is

a popular method for edge detection [15], [16]. It consist

in the subsequent usage of two thresholds: one high and

one low. Using the high threshold one can be sure that

only pixels with high probability of belonging to nerves are

selected. Then we apply the low threshold to grow the initial

segmentation. Figure 2 shows a corneal confocal image and

its segmentation with the high, low, and hysteresis threshold

for comparison.

From the thresholding step we obtain candidate nerve

segments. These correspond to line-like structures that can

be found in the image, but that may or may not be nerves.

To distinguish between these two classes, candidate nerve

segments are classified resorting to SVM.

SVM is a broadly used supervised-learning method for

pattern recognition. This algorithm has been extensively

described in the literature [17], [18].

A C-support vector classification with a radial-basis-

function kernel was used. The pool of features used in

the SVM was computed for each candidate corneal nerve

segment and included:

• The mean, standard deviation and range (difference

between the largest and smallest values) along the

segment path of Ior, I , I lG , Ievenno , and Ioddno ;

• The mean and standard deviation along the segment

path of the gradient magnitude and the Laplacian of

Gaussian of the image I;
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Fig. 3. From left to right: the original images Ior , the automatic segmentations SA, and the ground truths SG1 and SGi. The top row shows the case
with the highest sensitivity (Sen), while the bottom one the case with the lowest Sen (computed between SA and SG1).

• The length (cumulative distance along the segment’s

path) and the area (total number of pixels) of the

segment.

Feature selection was performed using a backward-

elimination approach, based on the accuracy of the seg-

mentation with respect to the ground truth. All algorithm

optimization steps, including backward-elimination and pa-

rameter optimization, were performed in the training set. The

SVM classifier was trained also in this set using the manual

segmentation as reference.

IV. RESULTS

To evaluate the algorithm’s performance, the nerve trac-

ings obtained by the proposed automatic approach were

compared with the reference ground-truths for the testing

dataset. Sensitivity (Sen) and false discovery rate (FDR)

were computed as

Sen =
#
(

S2 ∩mdil(S1)
)

#(S2)
(2)

and

FDR = 1−
#
(

S1 ∩mdil(S2)
)

#(S1)
, (3)

respectively. The # operator gives the cardinality, i.e., the

number of true pixels (binary 1), and mdil is a morphological

dilation operator using a disk with 3 pixels of radius. S1 and

S2 are two segmentations (binary images) to be compared

(S1 against S2). Please note that the graders only traced the

centerlines of the nerves (see Section II). It is difficult that

different specialists chose the same path to trace a given

nerve. The morphological dilation (mdil operator) of the

binary structures (the corneal nerves segmentations) provides

the mandatory tolerance to grader ambiguity.

As stated above, the automatic segmentation achieved by

the proposed algorithm (SA) was compared to SG1 (chosen

over SG2 because it presents the highest density of segmented

nerves) and the intersection SGi. The segmentation SG2 was

also compared to SG1 to establish the inter-grader variability.

Table I shows the obtained results. Sen gives the proportion

of correctly identified nerves, while FDR the proportion of

nerves wrongly identified as such.

TABLE I

SENSITIVITY (Sen) AND FALSE DISCOVERY RATE (FDR) RESULTS

(AVERAGE ± STANDARD DEVIATION, N = 196). S1 AND S2 ARE THE

TWO BINARY IMAGES TO BE COMPARED. SG1 , SG2 , SGI , AND SA , ARE

THE SEGMENTATIONS OBTAINED BY: GRADER 1, GRADER 2, THE

INTERSECTION BETWEEN THE TWO GRADERS, AND THE PROPOSED

AUTOMATIC APPROACH, RESPECTIVELY.

S1 S2 Sen FDR

SG2 SG1 0.92± 0.05 0.08± 0.05

SA SG1 0.86± 0.07 0.08± 0.07

SA SGi 0.88± 0.06 0.08± 0.06

Overall the proposed algorithm performs well. A higher

sensitivity is achieved when SA is compared to the intersec-

tion, however the same FDR value is observed. When com-

pared to the inter-grader variability, the algorithm achieves

the same FDR. Nevertheless the sensitivity is still slightly

lower.
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For the visual inspection of the results, Fig. 3 shows the

original image Ior, the automatic segmentation SA, and the

ground truths SG1 and SGi for the best and worst cases

(concerning the sensitivity metric).

The time required to analyse a single image, using a

single core MATLAB (The MathWorks Inc., Natick, MA)

implementation, was 0.61 ± 0.07 s (average ± standard

deviation) on an Intel Core i7-4770 CPU (Intel Corporation,

Santa Clara, CA) at 3.4 GHz.

V. DISCUSSION AND CONCLUSIONS

A fully automatic robust algorithm is of major importance

as it can lead to more robust corneal nerve descriptors, such

as nerve tortuosity, computed in due time, and consequently

the possibility of an improved diagnosis.

The proposed algorithm proved capable to correctly trace

most of the corneal nerves. Only a small percentage of the

detected nerves are wrongly identified as such. Furthermore

the performance level displayed by the proposed approach is

comparable to a human grader.

The achieved quality and processing time appear adequate

for the possible application of this technique to clinical

practice.

Improvements to the algorithm performance are plausible

as the achieved segmentations can still benefit from a post-

processing stage or a more diverse training set. Time-wise the

algorithm performed well. The usage of multicore processing

could reduce the time required for the segmentation even

further. This might be important especially when considering

mosaicing. These issues will be the subject of our research

in the future.

Because of its simplicity, the application of the proposed

algorithm to different confocal systems should be almost

straightforward. However, this will require parameter opti-

mization and SVM training.

The algorithm was not yet tested in pathological cases.

Although one might anticipate slightly worst results, please

note that the main goal of our research area is to achieve

an early diagnosis, and as so, eyes within the early stages

of disease progression (close to normal) are the main focus

of this technique. Furthermore, we plan to evaluate the

proposed approach against already available corneal nerves

segmentation algorithms [7], [8], [9].
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