
  

 

Abstract—We present and discuss a computerized 

system able to provide a wide-range mosaic of the sub-

basal nerve layer of central cornea, built from several 

images acquired in-vivo with confocal microscopy. The 

montage is performed by a fast, reliable and fully 

automatic computerized system that does not require any 

expedient or manual adjustment during the acquisition 

process. The resulting mosaic provides a large high 

quality image, which should significantly aid clinicians in 

evaluating and assessing in a more reliable way the 

pathologic signs of interest. 

I. INTRODUCTION 

In recent years, in vivo confocal microscopy (IVCM) has 
grown substantially as method for a rapid and non-invasive 
clinical assessment of the cornea. New researches are also 
revealing that the subbasal nerve plexus (SNP) can be used 
for assessing indirectly the severity of important non-ocular 
conditions, such as peripheral neuropathy in diabetes or 
rheumatoid arthritis [1]. As new clinical implications are 
being discovered, more sophisticated techniques for SNP 
image acquisition, visualization and quantification are also 
being reported [2]. 

In recent studies, IVCM was used to elucidate the 
architecture of the SNP for the first time on healthy [3] and 
keratokonus subjects [4]. Authors manually built several 
mosaics from an average of 500 acquired images. Manually 
creating a full montage of the cornea is a hugely time-
consuming process (taking from 10–20 hours depending on 
the number of images), because it requires a trial-and-error 
process of considering many hundreds of images 
combinations. Furthermore, some pairs of images might not 
be manually superimposable -only with rotations and 
translations- due to minor distortions related to the 
acquisition process. 

For that reasons, computerized automation of the 
montage process would be very attractive to relive the 
incredible burden of the manual work while enabling larger 
scale studies to be performed. In the work presented in [5], 
e.g., a semi-automatic system allows the operator to 
minimize the manual intervention in the montaging process, 
and obtain a 2D mosaic image in 1.5-3 hours. A recent work 
[6] introduced real-time montaging of the SNP with the key 
benefit of a significant reduction in the time required to 
produce the mosaic. However, mapping quality and 
acquisition time were dependent on subject compliance and 
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examiner experience. In [7], a recently reported alternative 
technique for using the sequence mode of the Rostock 
Corneal Module is reported. Images are captured while the 
subject tracks a moving target on a screen, while montaging 
is performed later with a custom software. This fast, semi-
automated method suffers the disadvantages of reduced 
montage quality with fewer subbasal nerve branching details. 

The purpose of this study was to develop a system for 
computerized montaging of IVCM images of the corneal 
SNP that is fully automatic, fast, and independent on any 
particular expedient during acquisition. 

II. MATERIAL 

A laser scanning confocal microscope (IVCM; 
Heidelberg Retinal Tomograph 3 with Rostock Corneal 
Module; Heidelberg Engineering, Germany) was used in-
vivo to acquire the images. Each image represented an en 
face view of a 400 × 400 μm corneal area. From 50 to 80 
images were acquired from each eye in 4 subjects. An 
example of manually composed montage is shown in Fig. 1. 

III. METHODS 

A. Outline of the algorithm 

The mosaicking process is composed of 4 main steps, 
described below. 

In order to build the final montage image, the system has 
to determine each image absolute position in the mosaic 
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Figure 1. A manual montage of 43 images, starting from 55 acquired 

images. Corresponding automatic montage is shown in Fig. 3a. 
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space. This is accomplished in the first step (sec. III-B), 
where an image absolute position is estimated by evaluating 
its position relative to the other images. In addition to the 
relative position, each pair of images is given a registration 
score, stored in the so-called registration matrix. 

It might happen that the same region of the cornea is 
redundantly represented by several images acquired at similar 
(x,y), but at different z. The algorithm was equipped with a 
module capable of selecting, in that cluster of images, the one 
that contains more nerves (sec. III-C). 

In the third step the actual registration between pairs of 
images is carried out (sec. III-D): the N pairs with the highest 
score are registered between themselves by applying 
translation, rotation, affinity transformations, and a custom 
blending procedure. After the registration of these N pairs, 
the previous steps are repeated until a final, single, large 
image is obtained. 

For each registered pair of images, after roto-translation 
and affine transformation, a custom blending procedure, 
based on pixel intensity weighting, provides the final merged 
image with homogeneous luminosity and contrast and 
smooth transition between the two original images (sec. III-
E). 

B. Computation of the score matrix  

The registration of two images generally involves 
moderate translations and rotations (due to tilting of the eye) 
while the need for scaling is negligible. A broad range of 
image registration methods have been proposed in literature 
[8]. 

The best results in our set of images were obtained with 
an extension of the phase correlation method, previously 
proposed in [9], which uses the Fourier Transforms of the 
two images to estimate the translation and rotation needed to 
register one image to the other. The method is characterized 
by an outstanding robustness against noise and disturbances, 
such as those related to non-uniform illumination. In 
addition, two crucial benefits of the phase correlation 
approach are the following: it is very fast; it automatically 
provides, in the process of evaluating translational and 
rotational data, the actual value of the correlation coefficient 
between the to-be registered images. 

A pair of images that share a large overlap area will have 
a high correlation, while a low correlation will correspond to 
pairs of images with little or no overlap, hence impossible to 
register. We can then consider the phase correlation between 
two images as a score measuring their 
similarity/registrability. 

The phase correlations between all pairs of images are 
computed and stored in the score matrix, which is 
symmetrical and has a unitary diagonal (hereafter, this 
operation will be called hard update). It is worth noting that 
at this stage the actual registration between pairs of images is 
not carried out yet, and that the parameter values of the phase 
correlation are set so as to provide a very fast and 
conservative evaluation of the score. This allows keeping the 
total running time of the procedure considerably low, despite 

the algorithm computational complexity of      , with   
the number of images. 

C. Nerveness evaluation  

During the acquisition process, the operator cannot assure 
that the focal plan stays always constant, so the same region 
of the cornea (same x, y) might be acquired at different layer 
depths (different values of z). There may be sets of images 
that share large overlapping areas, with only some images in 
the set that actually contain nerves (see Fig. 2). Since this 
study focuses only in the subbasal nerve layer, the algorithm 
has been provided with a module capable of detecting the 
presence of nerves in an image, in order to select the most 
appropriate for the mosaicking composition. 

For those clusters of images that share an overlapping 
area      of their total, the algorithm evaluates the total 
nerveness of each image, and keeps only the image that 
shows more nerves (Fig. 2). A nerveness measure expresses 
the likelihood of an elongated structure in an image to be a 
nerve; in this work we employed as a nerveness function a 
formulation proposed in [10].  

D. Building the Mosaic 

The  th
 column of the score matrix    is the vector 

containing the scores of registration between the image   and 
all the other images. The sum of all the elements in the 
column can hence be viewed as a grade of connectivity   
between the corresponding image   and all the others: 

      ∑         
    

Higher values of   correspond to images that can be 
successfully registered with a higher number of other images, 
i.e., are surrounded by more overlapping images. The 
mosaicking algorithm starts by selecting the image with the 
highest  . 

The mosaicking process is an iterative one: the 
registration is performed between the current image and the 
one in the score matrix that exhibits the highest value of score 
with the current image – let them be   and  . Only scores that 

 

 
 

Figure 2. Two examples of clusters of three images (one in the upper row 

and one in the lower) highly overlapping in (x,y) but acquired at different 
z. The two rightmost images have been selected by the selection module 

because they provided the highest nerveness measure.  
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exceed an empirically set threshold are selected. The image 
obtained from the merging of   and   becomes the current 
image, and a new iteration starts until all images are merged. 
The process is highly efficient since it involves only      
registrations. 

Once each single registration is accomplished, the matrix 
score needs to be updated, since two previous images have 
become a single one. However, for a certain number of 
iterations, only a greedy update is carried out. For each 
element   of the row of  , the maximum score between   and 
  is kept: 

                                     

After that operation, the score column relative to   is deleted: 

                      

This operation can be thought as follow: for all the images 
not involved in the current registration, their updated 
correlation score with the newly composed image is equal to 
the best correlation score they had with one of the two 
composing images. 

Even though the greedy update allows to increase time 
efficiency (it is      as opposed to       of a hard update), 
it could provide unstable results if employed for a high 
number of consecutive iterations (>  ). This is why a hard 
update is carried out every     iterations, a value 
empirically chosen as a compromise between time efficiency 
and registration accuracy. It is worth noting that after each 
iteration the number of images to process decreases as well as 
the size of   , reducing gradually the complexity of the 
problem. 

 
 (a) (b) 

 
 (c) (d) 

Figure 3. Four examples of obtained mosaics. 
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The single registration between two images is 
accomplished by using phase correlation for translation and 
rotation (with a different parameterization than in Sec. III-B, 
slower but more accurate), and affine projection for a better 
fine-grained matching. The parameters for the projection 
model are estimated by finding the correspondences between 
a grid of points and their matching counterpart in the 
overlapping area of both images. 

E. Custom Blending 

The registration of the images    and    will compose the 

new image     , which contains the region of intersection 
between the two original images        {      }      . 

Since pixels in       have different values in    and   , a 

function   to determine these value in           is needed. 
A naïve method would be to assign pixel values in the 
overlap region would be to computing the average of the 

original pixels:              
               

 
 (see Fig. 4a). We 

designed the following weighting function: 

                                             

         
  

      

  
          

      
                  

where         denotes the minimum Euclidian distance 
between the point       and the region         . This 
weighting function combines the values of pixels in the 
overlap region in order to obtain a smooth transition between 
image borders and overlap region, like as shown in Fig. 4b. 

IV. RESULTS 

Evaluating the performance of a mosaicking system is a 
difficult task. The lack of a standard methodology to compare 
automatic and manual montage incapacitates any attempt to 
compute a quantitative measure of the registration accuracy 
and of the montage quality. 

A visual inspection of the resulting images can confirm 
the capability of the proposed system to provide high quality 
wide-range images. Fig. 3 shows four examples of final 
mosaic images. Mosaic areas varies from ~1000×1200μm

2
 to 

~1800×1600μm
2
, and each is reconstructed from sets of 50 to 

80 single 400×400 μm images. 

Computational efficiency has been optimized in every 
stage of the algorithm. First score matrix computation and its 
successive hard update have a complexity of      : in order 

to reduce their time requirement, phase correlation evaluation 
has been parameterized toward speed and conservativeness. 
Each pair of images takes ~0.08 seconds. The actual 
registration is accomplished by means of a second phase 
correlation step and affine projection. Since it involves only 
  images (complexity of     ), in parameterization we 
favored accuracy over speed. Each pair of images takes from 
2.5 to 4 seconds. Greedy update and blending procedure are 
almost real time (<1 ms). The whole mosaicking operation 
was carried out in from 400 to 700 seconds. 

As far as the nerveness evaluation module is concerned, 
for each mosaic an average of 5 images have been discarded. 
Visual inspection of each set of candidate images showed 
that in all cases the one with more nerves had been selected. 
If forcing the selection also of the discarded images, the 
algorithm would have provided a correctly built mosaic but 
with fewer visible nerves. 

V. CONCLUSION  

The proposed system allowed in this dataset the 
successful montaging of several sub-basal corneal nerve 
images. The resulting mosaic provides a larger, high quality 
image than the single original ones, which should 
significantly aid clinicians in evaluating and assessing in a 
more reliable way the pathologic signs of interest. 
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(a) (b) 

Figure 4. Two example of registered images: (a) standard averaging 

technique; (b) with our custom blending procedure. 
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