
Detection of K-Complexes based on the Wavelet Transform

Laerke K. Krohne1, Rie B. Hansen1, Julie A.E. Christensen1,2, Helge B.D. Sorensen1 and Poul Jennum1,2

Abstract— Sleep scoring needs computational assistance to
reduce execution time and to assure high quality. In this pilot
study a semi-automatic K-Complex detection algorithm was
developed using wavelet transformation to identify pseudo-
K-Complexes and various feature thresholds to reject false
positives. The algorithm was trained and tested on sleep EEG
from two databases to enhance its general applicability. When
testing on data from subjects from the DREAMS© database,
a mean true positive rate of 74 % and a positive predictive
value of 65 % were achieved. After adjusting a few thresholds
to adapt to the second database, the Danish Center for Sleep
Medicine, a similar performance was achieved. The algorithm
performs at the level of the State of the Art and surpasses the
inter-rater agreement rate.

I. INTRODUCTION

Analysis of biomedical signals for monitoring and diag-
nosis requires identification of both macro- and microstruc-
tural signal components. In sleep medicine several hours of
polysomnographic (PSG) data are analyzed to perform sleep
stage scoring and to track micro-sleep-events as a diagnostic
aid for sleep disorders and certain diseases.

Visual analysis of all-night PSG electroencephalogram
(EEG) is a time-consuming and non-consistent task. Fur-
thermore, subjective results lead to a very low agreement
rate between different sleep scorers [1]. This calls for ad-
vanced signal processing techniques to perform reliable and
automatic segmentation and detection of micro-events.

The K-Complex (KC) is a micro-sleep-event that normally
occurs during non-REM sleep stage 2 (N2) and assists the
scoring of this stage [2]. According to the newest standard
for scoring sleep, the American Standard for Sleep Scor-
ing (AASM), a KC is a negative sharp wave immediately
followed by a positive component standing out from the
background EEG, with total duration ≥ 0.5 sec [2]. KCs
are ideally observed clearly delineated, but in practice they
are often difficult to distinguish from delta and vertex sharp
waves [1].

Different KC detection algorithms have been proposed
to enable functional and more reliable methods for KC
detection [1][3-7]. They suggest different methods and ap-
proaches such as wavelets, thresholding techniques, and
machine learning, but due to the wide diversity in EEG and
KC appearances in between subjects, it is very challenging
to obtain satisfactory performance and reliability.

In this pilot study a semi-automatic detection algorithm
was developed (KCWavelet) with the aim to determine KC
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density in N2-sleep. The algorithm is a two-fold process
as it uses wavelet transformation to identify possible KCs
(pseudo-KCs) in N2-sleep, and various feature thresholds to
reject the false-positive pseudo-KCs.

II. DATA
The algorithm is trained and tested on data from both the

DREAMS© database [8] and data obtained from the Danish
Center for Sleep Medicine at Glostrup Hospital [9] (DCSM
database). All in all, the data contain a total of around three
hours of sleep EEG from 8 healthy subjects.

A. The DREAMS© K-Complex database
The DREAMS© K-Complex database contains 30 minutes

of data from ten subjects [8]. Five of these subjects were
scored independently by two sleep experts (V1 and V2), and
therefore the EEG CZ-A1 channel in N2-sleep from these
subjects was used in this study. The data were extracted
from all-night PSG recordings with a sampling frequency
of 200 Hz. Manually scored hypnograms with sleep stage
representations were used to extract N2-sleep. Table I sum-
marizes demographics and sleep facts, and the number of
KCs annotated by V1, V2 and both, respectively.

B. Data from the Danish Center for Sleep Medicine
To test the consistency of the approach, 30 minutes of

EEG from three subjects collected at DCSM were included
in this study. The data include all sleep stages, and not only
N2-sleep. The PSGs were recorded and scored manually
according to the AASM standard [2], and the channel C3-A1
was extracted with a sampling frequency of 256 Hz [10]. The
KC annotations were made by the main and second author
of this paper after training session on sleep scoring.

III. METHODS
This study took its starting point from the ”Wavelet

and Teager energy operator” algorithm presented by Er-
damar et al. [1]. However, the final algorithm differs sig-
nificantly from its source of inspiration. By optimizing the

TABLE I
DEMOGRAPHICS AND SLEEP FACTS.

No. of subjects Age (µ± σ) Total duration
(♂,♀) in N2

DCSM 3 (3,0) 58.7± 12.9 1h 30 mina

DREAMS© 5 (4,1) 27.4± 11.1 1h 26 min
No. of KCs pr. min (Visual annotation) (µ± σ)

V1 V2 V1∩V2
1.7± 0.70 0.41± 0.28 0.34± 0.19

a. All sleep stages, not only N2.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 5450



wavelet transformation step, the Teager Energy Operator
used by Erdamar et al. [1] became unnecessary, and thus
the detection efficiency of the algorithm was improved by
omitting this step. Furthermore a ”rejection step”, including
four new features, was added to improve the positive pre-
dictive value. The overall methodology of the KCWavelet
algorithm is provided in Fig. 1.

The final KCWavelet algorithm thus consists of two main
steps: the Extraction step and the Rejection step. In the
Extraction step pseudo-KCs are identified by use of wavelet
transformation with a KC-similar mother wavelet. In the
Rejection step, pseudo-KCs are rejected, if they do not
meet certain feature thresholds. The algorithm was trained
and tested using cross-validation, and the best feature and
threshold combination was found based on performance mea-
sures weighting both True Positive Rate (TPR) and Positive
Predictive Value (PPV). The following sections provide more
detailed explanations of the methodologies used.

A. Algorithm Structure

The KCWavelet algorithm is a semi-automatic KC detec-
tion algorithm implemented using MATLAB (R2013a, 64-
bit, MathWorks, Natick, MA, USA). The required inputs are
a single-channel EEG signal and a hypnogram. The hypno-
gram is scored by a sleep expert and used to extract N2-sleep.
Future work includes automation of N2-sleep estimations to
make the algorithm fully automatic. The output is a binary
array where 1 indicates a KC and 0 indicates background
activity for each sample of data.

B. Extraction Step

Wavelet transformation is a local time-frequency analysis
that breaks a signal into shifted and scaled versions of a
mother wavelet [11]. In wavelet terms, a function f(t) can
be described by

f(t) =
∑
j,k

bjkwjk(t) (1)

where wjk(t) are the wavelet basis functions constructed
from the mother wavelet w(t), bjk are the coefficients, and j
and k denotes the translation and scaling factors, respectively
[11]. In this study the discrete wavelet transform (DWT)
was used to decompose the EEG signal into multi-resolution
subsets of coefficients. The aim of this step is to approx-
imate a signal only containing the KCs, and therefore the
approximation coefficient is used for reconstruction. Various
combinations of mother wavelets (Daubechies 4 and 5, and
Symlets 4 and 7) and levels of decomposition (levels 4 and
5) were investigated. The best combination was found to be

Fig. 1. Overall structure of the KCWavelet algorithm.

the Daubechies 4 mother wavelet at a 5 level decomposition
(approximation frequency sub-band 0-3.12 Hz).

The Extraction step finds all possible pseudo-KCs in the
N2 epochs, and thereby aims for a high TPR. Initially, KC-
similar waveforms are enhanced by means of the wavelet
transformation, and then the duration, amplitude, and slope
of the waveforms are examined in comparison to certain
thresholds. The feature, Slope, was implemented as one of
the main features of the KC, and its threshold is determined
from the training process of the algorithm. All pseudo-KCs
found in this step are stored in a logical KC array, KW Total,
which is given as input for the Rejection step.

C. Rejection Step

The Rejection step tests all pseudo-KCs identified in
the Extraction step in regard to specific control-features. If
a pseudo-KC obeys certain thresholds of all the control-
features, it is accepted as a true KC, if not, it is rejected as
background activity. This step thus aims for a high PPV. The
control features ensure a background amplitude check, a peak
amplitude check and a relative power check, respectively:

1) Background Amp: Tests if the peak-to-peak amplitude
(pp amplitude) of the pseudo-KC is minimum twice as
large (as suggested in [6]) as that of its background
amplitude. The background amplitude is calculated
in two ranges (Background 1 and Background 2) to
ensure that two consecutive KCs can still be detected.
Furthermore a threshold MeanTHR removes the influ-
ence of small fluctuations at baseline-level.

2) Range: Defines the KC background by determining the
duration (in seconds) of the two ranges Background 1
and Background 2.

3) PeakAmp: Ensures that KCs with too low positive
amplitude are rejected, while ensuring that the negative
peak has at least half the amplitude of the positive
peak.

4) RelDelta: Rejects pseudo-KCs if the relative power in
the surrounding signal is mostly delta activity (0.75-
4 Hz), and thereby minimizes the number of false-
positives originating from delta waves.

Fig. 2 is an illustration of some parameters of the features
described above. The implementation of the features and
their thresholds can be seen in the pseudo-algorithm in Fig. 3.

Fig. 2. K-Complex and features used in Rejection step.
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Input: 1) KW Total from the Extraction step, 2) the raw EEG data,
and 3) feature thresholds

Output: A logical KC array K Total

Set duration of Background 1 and Background 2 to Range
foreach pseudo-KC do

if pp amplitude < 2 · pp amplitude of Background 1 and
pp amplitude < 2 · pp amplitude of Background 2 then

reject;
end
if xmax < PeakAmp or xmin < PeakAmp/2 then

reject;
end
if relative power of delta band in the DeltaRange > RelDelta
then

reject;
end

end
K Total ← KC array with ones at samples corresponding to
non-rejected KC instances and zeros else;

Fig. 3. Pseudo-Algorithm for the Rejection step.

D. Optimization and Cross-validation

To find the best feature combination, all combinations
were investigated for the DREAMS© dataset in given feature
ranges indicated in Fig. 2. To reduce the risk of overfitting
a leave-one-subject-out cross-validation procedure was used.
Because the duration of N2-sleep in each subject was not
fixed, the amount of data held out in each fold differed.

The overall estimated performance P̂ for the model trained
using all the data was given as the average performance
across all the K folds [12]:

P̂ =
1

K

K∑
i=1

P̂ (i) (2)

The model was optimized using the Matthews Correlation
Coefficient (MCC) as the performance measure. The MCC
was chosen, as it is a single value performance measure
including all four confusion matrix instances (True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN)). Furthermore, MCC was chosen because it
is regarded as a balanced measure, which can be used even
if classes are of unequal sizes. The MCC is expressed as,

MCC =
TP · TN − FP · FN

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(3)

and returns a value between -1 (worst) and 1 (best), where
0 indicates a result no better than a random prediction [12].

This study also considered a case where the True Positive
Rate (TPR = TP/(TP+FN)) is weighted slightly higher than
the Positive Predictive Value (PPV = TP/(TP+ FP)), using
the F2 measure to optimize the model. The F2 is given as,

F2 = (1 + 22) · PPV · TPR
(22 · PPV) + TPR

(4)

and returns a value between 1 (best) and 0 (worst).

IV. RESULTS AND DISCUSSION

The KCWavelet method proposed in this study was ap-
plied on data from two databases, DREAMS© and DCSM.
Furthermore, the inter-rater agreement in DREAMS© was

evaluated to compare the performance of the algorithm with
the agreement rate between different sleep scorers.

A. Inter-rater agreement

Visual recognition of KCs presents large viability in terms
of definition and classification [1][3-7]. The annotations
made by the visual scorers V1 and V2 in DREAMS©,
showed to have an agreement rate of only 33 % [6]. Similarly,
the three scorers of the data presented by Erdamar et al.
had an agreement rate of 59 % [1]. These results show that
it is very difficult to develop and evaluate a KC detection
algorithm based on the Gold Standard.

V1 was chosen as the Gold Standard in this study after
clinical judgment made by a sleep-scoring expert from
DCSM and an evaluation of the KC density estimated by
each scorer (the mean number of KCs per minute during
N2-sleep is 1− 3 [6], which is fulfilled by V1, see Table I).

B. KCWavelet (data from DREAMS© and DCSM)

Fig. 4 shows an example of detection from the KCWavelet
algorithm applied on data from DREAMS©. The top graph
shows the raw EEG together with green markings indicating
KC annotations made by V1. The middle graph shows
pseudo-KCs found in the Extraction step, while the bottom
graph shows the final output. In this case the Rejection step
sufficiently rejects the two FPs found in the first step.

Table II shows the performance values achieved by train-
ing and testing on the five subjects from DREAMS© with
respect to MCC and F2 separately. The training yielded a
mean of 0.618 for MCC, and a mean of 0.716 for F2. The
performance values presented are the TPRs and PPVs for the
subjects individually together with the overall mean.

The combination of feature thresholds used to achieve
the results in Table II was: Slope = 250, Range = 4,
MeanTHR = 25, PeakAmp = 87.5 and RelDelta = 0.95.

It can be argued that a high TPR is more important than
a high PPV for an unbalanced detection scenario, which is
why F2 also was used for optimization in the training. If an
algorithm provides a high TPR but low PPV, sleep experts

Fig. 4. KCWavelet detection example applied on data from DREAMS©.
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TABLE II
DREAMS© PERFORMANCE EVALUATION.

No. KCs KCWavelet (MCC) KCWavelet (F2)
(V1) TPR PPV TPR PPV

Subject 1 34 58.8 % 62.5 % 82.4 % 50.0 %
Subject 2 31 41.9 % 72.2 % 67.7 % 67.7 %
Subject 3 12 25.0 % 100 % 50.0 % 85.7 %
Subject 4 45 71.1 % 64.0 % 75.6 % 65.4 %
Subject 5 38 83.8 % 66.0 % 91.9 % 56.7 %

Mean 32 56.1 % 72.9 % 73.5 % 65.0 %

have to double-check all positives to eliminate the FPs. If
it, on the other hand, provides a low TPR, the sleep experts
would have to look through the entire dataset to find the
FNs. How to balance the TPR/PPV is, however, completely
dependent on what the detector should be used for, but high
values of both PPV and TPR are always desired.

When evaluating the performance of this algorithm it is
important to be aware of the on-going discussion of sleep
experts’ tendency to score too few KCs [3]. Thus, if the
algorithm is trained to aim at a high PPV, one might risk
that the algorithm discards KCs that are actually true but not
marked by the scorer – and thus one prevents the possibility
of the algorithm to outperform the human eye.

To evaluate the general applicability of the proposed
procedure, the algorithm was also trained and tested on
data from DCSM. Here a rough training procedure and
visual inspection yielded an optimal combination of feature
thresholds at Slope = 200, Range = 4, MeanTHR = 32
and RelDel = 0.7. In Table III is provided the performance
measures obtained when using the KCWavelet algorithm
with the new combination of parameters. As seen from the
performance measures, the mean TPR reached an acceptable
value, whereas the PPV is somewhat low.

A visual false-detection analysis showed that some of
the detection errors were due to steep fluctuations coursing
inconvenient baseline crossings for the algorithm, while not
changing the overall KC morphology. But by far, most errors
were due to great inter-subject differences seen in the EEG.
This weak point of the algorithm is also seen clearly by com-
paring the performance level for Subject 1 and 3 in Table II.
From further investigation of the EEG from Subject 3, it was
seen that the morphology of the KCs differed significantly
from those from the other subjects, which might be due to the
subject’s age, 47, 18 years older than the mean. Many studies
have showed that EEG frequency characteristics and signal

TABLE III
DCSM PERFORMANCE EVALUATION.

No. KCs KCWavelet
TPR PPV

Subject 1 64 93.6 % 28.6 %
Subject 2 40 52.5 % 80.8 %
Subject 3 35 71.4 % 44.6 %

Mean 46 72.6 % 51.3 %

strength change significantly with age [6]. This is a clear
indicator of the necessity of implementing better relative
features for a better general applicability.

When comparing the feature thresholds’ efficiency, the
features PeakAmp and MeanTHR showed to be most effective
in the rejection of FPs. The RelDelta did not have as large an
influence as expected in data from DREAMS©, however, this
might be because the data only contained N2-sleep. When the
algorithm was tested on data from DSCM containing all sleep
stages, this feature threshold was much more influential.

The data from DCSM and DREAMS© differ in terms
of data collection, the EEG channel used, and the age
of the subjects, which induced the necessity of manually
adjusting the feature thresholds for the DCSM database.
Still the performances achieved on these completely different
datasets are indeed comparable. This indicates a good general
applicability of the procedure.

V. CONCLUSION

The KCWavelet algorithm yielded a mean TPR of 74 %
and a mean PPV of 65 % (see Table II), which is comparable
to those presented in other studies [1][3-7], and significantly
higher than the agreement rate between visual scorers.

This study needs first and foremost to be seen as a precur-
sor for the further development of an automatic KC detection
algorithm with high reliability and general applicability. In
specific, future research should focus on automatic setting
of subject-specific feature thresholds. Furthermore, future
studies should aim for larger datasets, while persisting critical
approach towards the Gold Standard.
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