
  

  

Abstract— Problems can be solved in a variety of ways.  One 
might systematically evaluate a known space of possible 
solutions until the right one is found.  Alternatively, it may 
prove necessary to enlarge or restructure the expected problem 
space – so called “thinking outside the box.”  This approach 
can yield an experience of unexpected insight or feeling of 
Aha!. Current challenges to understanding this phenomenon 
from a neurocognitive perspective include the vast diversity of 
problem domains and time scales for solutions.  Whereas the 
subjective suddenness of an “Aha!” moment may lead to the 
impression that insight must be precipitated by a set of 
discrete, short-lived neural events, this report outlines research 
revealing that even before a problem is presented, scalp-
recorded measures of resting or baseline brain states are linked 
with future performance and likelihood of experiencing insight 
during the search for a solution.  Additionally, this study also 
shows that compared to more systematic problem solving 
approaches, insight is accompanied by differences in cortical 
and likely cognitive engagement that are detectable throughout 
much of the problem solving phase, rather than being confined 
to a distinct interval immediately preceding the dawn of a 
solution.  These findings are important for the development of 
therapies targeting problem solving and reasoning skills, such 
as those used in cognitive training interventions to mitigate the 
effects of cognitive decline. 

I. INTRODUCTION 

Insight involves enlarging or restructuring an expected 
problem space such that a previously inaccessible solution 
can emerge, often resulting in an “Aha!” experience [1].  
Recent studies have revealed that brain activities during 
baseline rest or before problem presentation are linked to the 
occurrence of insight and other aspects of problem solving 
performance. For instance, Kounios et al [2] demonstrate that 
individuals who tend to experience insight more versus less 
frequently exhibit different patterns of EEG spectral activity 
during rest – particularly in the alpha and beta ranges – when 
solving anagrams.  In a related vein, it has been shown that 
that solution times [3] and insight processes [4] are predicted 
by the magnitude of spectral power during the pre-stimulus 
baseline period, as well as during the solution-search phase.  
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These findings are of particular relevance to the 
burgeoning field of cognitive training, which involves 
behavioral interventions targeting basic functions, such as 
attention, memory, and reasoning.  In clinical settings, these 
interventions are administered with the overall objective of 
reducing or reversing the negative effects of cognitive 
decline (typically associated with aging) or other forms of 
impairment [5].  However, cognitive-training therapies are 
rapidly gaining traction among mainstream healthy 
populations as a means of maintaining mental acuity 
(http://www.lumosity.com/).  It is possible that resting-state 
brain activity may impact the long- or short-term effects of 
cognitive training on outcome measures.   

While this question remains to date unexplored, the 
present study centers on the relationship between resting-
state EEG brain activities, on the one hand, and task 
performance, on the other, in healthy adults engaging in 
popular, challenging math puzzles analogous to those found 
in some “brain fitness” packages.  We recorded high-density 
EEG during both rest and a subsequent one-hour period of 
work on puzzles. After completing each problem, participants 
rated on a five-point scale whether their solution was 
achieved through an Aha! experience.  We then tested for 
correlations between individual participants’ baseline spectral 
power and likelihood of experiencing insight.  We also 
compared mean event-related spectral power derived from 
early portions of the solution search on trials yielding either 
strong or weak insight outcomes. 

II. METHODS 

A. Participants 
The Institutional Review Board of UCSD approved this 

experiment protocol.  Fifteen volunteers were recompensed 
for their participation at a rate of $15.00 per hour.  All were 
neurologically healthy university students who gave 
informed consent.  Data from two individuals were excluded 
because ratings were limited to one end of the insight scale. 

B. Materials  
Math24 is a popular commercial game used in many 

schools to increase arithmetic problem-solving skills.  
Problems involve combining, as quickly as possible, four 
single-digit numbers (using each only once) with basic 
arithmetic operators (addition, subtraction, division, 
multiplication, grouping) to form an arithmetic expression 
whose value is 24.  For example, the puzzle in Figure 1 could 
be correctly resolved through the following steps: 2 + 2 = 4; 
7 * 4 = 28; 28 – 4 = 24.  Problems vary along three levels of 
difficulty, with harder items characterized by longer solution 
latencies [3, 6] and fewer possible and less typical solutions. 
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In this study, all three difficulty levels were presented in a 
randomized, interleaved manner.  After each trial, 
participants rated how they reached their solution on a scale 
of 1 (no insight whatsoever) to 5 (distinct feeling of Aha!), so 
that it was possible to differentiate solutions that individuals 
simply happened upon given their initial estimations of the 
problem space from those that required restructuring.  Care 
was taken during the instruction phase of each experimental 
session to ensure that participants understood the definition 
of insight and how to use the five-point scale.   

C. Procedure 
Participants received oral and written instructions 

regarding the Math24 task and insight scale.  They were 
given the opportunity to ask questions and completed a 
practice set.  Data acquisition began with a five-minute 
recording of EEG at rest with eyes open, followed by a one-
hour session of Math24.  The opportunity was given to go on 
to the next trial if a particular problem was proving difficult 
after two minutes.  Trials “timed out” after three minutes, and 
a new puzzle was presented when the participant signaled 
readiness with a mouse click. 

Immediately upon arriving at a solution, participants 
clicked the mouse and shared their answer via intercom with 
an experimenter in the adjacent control room.  The 
experimenter evaluated responses online and registered their 
accuracy with a mouse click.  The Math24 portion of the 
experimental session lasted one hour. Afterwards, 
participants completed a basic addition task.  Either the same 
or similar puzzles were presented over again with the 
requirement that participants simply sum the four numbers.  
Importantly, this task involved perceptual and arithmetic 
features that closely resembled the experimental task for 
baseline subtraction purposes. 

D. Data Acquisition  
High-density EEG data were recorded over 128 scalp 

locations and amplified using a BioSemi ActiveTwo EEG 
system with a CMS-DRL ground.  The sampling rate was 
512 Hz.  The onset of Math24 puzzles, as well as 
participants’ and experimenters’ behavioral responses were 
recorded and synchronized using Lab Streaming Layer 
(https://code.google.com/p/labstreaminglayer/). 
 

E. Behavioral Data Analysis 
Only trials involving correctly solved puzzles were 

analyzed.  Solution latencies (SLs) were determined by 
measuring the time between the stimulus onset and the 
mouse click indicating solution readiness.  SL values were 
sorted into three categories, depending on the insight rating 
of their associated trial: low insight (rated as one or two), 

medium insight (three), or high insight (four or five). SLs 
were then averaged within each category for each 
participant, and then averaged again across participants.  
Reliability of differences in response times between levels 
of insight was tested with repeated-measures ANOVA.  Pre-
planned post hoc contrasts were conducted with t-tests. 

F. EEG Analysis 
1) Preprocessing: EEG time series was inspected to remove 
poor-quality channels and segments of data heavily 
contaminated by movement and other non-brain artifacts. 
The remaining signals underwent Independent Component 
Analysis (ICA, [7, 8]) for the purpose of artifact correction. 
ICA is now a widely-used statistical technique to find linear 
projections of the EEG data that maximize the mutual 
independences of estimated components, and has been 
proven as an effective technique to remove EEG artifacts 
arising from eye blinks, eye movement and muscle activities 
[9]. EEG signals were analyzed using MATLAB (The 
Mathworks, Inc.) and the open source toolbox, EEGLAB 
(Swartz Center for Computational Neuroscience, University 
of California San Diego, La Jolla, CA; 
http://www.sccn.ucsd.edu/eeglab). 
 
2) Baseline Rest: For each participant, an insight index was 
derived according to (1). 

Here, X(i, H) denotes the quantity of trials receiving high 
insight ratings (4 or higher), and X(i, L), the quantity of low 
insight ones (2 or lower).   

Twelve representative channels distributed over the right, 
left, and midline axes along four evenly spaced points 
extending from the front to the back of the were selected for 
further analysis scalp  (F3, F4, C3, C4, P3, P4, O3, O4, Fz, 
Cz, Pz, Oz).  (Exploratory tests conducted over nearby sites 
yielded similar results.)  Estimates of power spectral density 
were computed from ICA-corrected baseline rest EEG (3 to 
50 Hz) using wavelet-based discrete Fourier transforms (3 
cycles with linearly tapered windows).  Correlation tests were 
conducted between insight indices and power estimates 
across a range of frequencies implicated in cognitive 
processing, including theta (θ: 5-8 Hz), alpha (α: 8-13 Hz), 
beta (β:  14-30 Hz), and gamma (γ: 30-50 Hz). 

3) Solution Search: Twelve regions of interest (ROIs) were 
defined along left, right, and central axes encompassing 
frontal, central, parietal, and occipital recording cites (Figure 
2). Because solution times varied considerably, we analyzed 
high- and low-insight single trial data epochs within these 7 s 
time windows: 1) extending forward from puzzle onset, 2) 
centered on the mid-point of each trial, and 3) extending back 
from the button press to signal readiness.  Data epochs 
associated with recording sites within each ROI were first 
averaged, then transformed into spectrographic images by 
computing power spectral density estimates (3 to 50 Hz) 
across 200 equally spaced time points. Mean Event-related 
Spectral Perturbation (ERSP, [10]) plots were derived from 

 

 
 

Figure 1.  Sample Math24 problem. 

∑X(i, H) - ∑X(i, L) 
                 (1) 

∑X(i, H) + ∑X(i, L) 
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single-trial spectrographic images by converting to log 
power, averaging across trials, and subtracting the mean log 
power derived from the baseline addition task (Fig. 5A).  
Mean power spectra for each interval were computed by 
averaging across the time window within theta, alpha, beta, 
and gamma frequency ranges.  Reliability of spectral power 
differences between high and low insight trials was tested 
with repeated-measures ANOVA. 

III. RESULTS 

A. Solution Times 
Mean solution times to puzzles involving low, medium, 

and high insight ratings are plotted in Figure 3.  A main 
effect of insight rating (F(2,12) = 4.14, p < 0.05) motivated 
follow-up contrasts between the three levels.  Low insight 
problems were solved substantially faster than medium 
insight ones (t(12) = -2.27, p < 0.05).  However, medium 
versus high insight solutions did not reliably differ in the 
amount of time that they elicited (t(12) = -1.6, n.s.).  

B. Resting-state Dynamics 

Figure 4 plots mean spectral power derived from left 
occipital EEG (measured over O3) during rest from the four 
participants with the highest versus lowest insight index 
scores.  Scores ranged from -0.94 to +0.92, with negative 
numbers indicating less frequent occurrence of insight, and 
positive numbers, the opposite). Reliable correlations 
between all participants’ power estimates and insight scores 
(r = 0.54 to 0.77) were found in the high alpha (11.5 to 13 
Hz) and beta ranges (14 to 24 Hz) (demarcated within the 
grey box).  Increased activities in these ranges were 
associated with increased occurrence of insight. 

C. Solution Search 
During the middle portions of solution searches, trials 

involving high versus low insight were reliably differentiated 
in the theta range (Figure 5) over the central midline ROI. 
High insight trials were characterized by substantially greater 
theta activities throughout the entire seven-second period 
(F(1,13) = 8.05, p < 0.05).  No other consistent insight effects 
were detected in other frequency bands or time windows.  
Figure 6 plots the topographic distribution of spectral 
fluctuations for the full seven seconds. 

IV. DISCUSSION AND CONCLUSIONS 
This study yielded two noteworthy findings.  First, we 

uncovered a link between occurrence of insight and resting-
state EEG power between 11 and 24 Hz centered over the 
left occipital region of the scalp.  Higher spectral power 
within this bandwidth was positively correlated with 
individual insight index scores, which are a measure of the 
relative frequency of high to low insight solutions.  This 
outcome is consistent with [2], who also reported that 
individuals who experienced insight more (HI group) versus 
less frequently (LI group) exhibit differences in high alpha 
and beta EEG activities over the back of the head.  
However, in [2], the HI group was associated with lower 
resting alpha and beta power relative to the LI group.  
Further, the HI group exhibited greater right relative to left 
hemisphere activity in these ranges, whereas the LI group 
demonstrated the opposite pattern of asymmetry.  Kounios et 
al suggest that heightened occipital beta activities in the LI 
group reflect more focused attention. 

Outcomes in [2] are directly the opposite from those 
observed here. Notably, though, [2] administered an 
anagram task, whereas the present work involved arithmetic 
and quantitative reasoning.  Given the tendency toward left 
hemisphere lateralization of arithmetic abilities in right-
handers [11], the left posterior focus of the correlations 

 
Figure 3.   Mean solution times associated with low, medium, and high 

insight. 

 
 
Figure 4. Power spectra during rest from individuals with the lowest 

(red) and highest (blue) insight scores. Thick lines indicate 
mean spectra for each group.  The grey box delineates the 
frequency range in which insight scores reliably correlated 
with power across all participants 

 
Figure 2.  Map of ROIs created from channel montage. 
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found here is unsurprising.  Further, it is likely that the 
mental restructuring precipitating an Aha! experience would 
require more focused attention – and hence higher beta band 
power – in the case of the challenging math puzzles 
administered here (requiring on average between 20 s and 1 
minute to solve)  relative to anagrams (which were solved 
within 16 s or less). 

This study also uncovered the novel finding that during 
problem solving, the magnitude of theta activities in the 
middle portion of trials differentiates high versus low insight 
performance outcomes.  Trials that receive high insight 
ratings tend to involve much higher theta power during this 
time window than trials receiving low insight ratings.  
Frontal and frontal midline theta activity have been 
extensively implicated in tasks requiring attentional control, 
such as error monitoring [12] or maintenance of verbal and 
visuo-spatial information in immediate memory [13-21].  
Thus, greater mental effort in the middle of problem solving 
tends to result in greater subjective experiences of insight at 
the time of solution.  This finding is remarkable, as it reveals 
that well before the actual Aha! moment, insight problems 
elicit different patterns of neurocognitive engagement than 

counterpart problems solved more straightforwardly.  Next, 
we plant to analyze causal connectivity between frontal 
midline and left posterior source contributions to the surface 
EEG. 
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Figure 5. Differences obtained by subtracting mean theta power on low 

from high insight trials over central midline electrodes for 
each participant.  Positive values reflect greater power on 
high versus low insight trials; negative values, the reciprocal.  
Asterisks indicate reliable differences from zero. 

 

 
 

Figure 6. ERSP plots derived from frontal and occipital ROI’s 
reflecting mean spectral modulations during the middle seven 
seconds of trials involving high versus low insight. 
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