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Abstract— This work presents a new automated method for 
spinal canal detection in Computed Tomography (CT) images. 
It uses both 2D and 3D information and the algorithm extracts 
the spinal canal automatically. The procedure can be divided 
into three main steps. Firstly, a thresholding and a set of 
morphological operations were applied. Secondly, 3D 
connectivity analysis was defined to extract the objects forming 
part of the spinal canal. Finally, the centroid of each slice 
constituting the spinal canal object was computed. 
Furthermore, interpolation and extrapolation of data were 
performed, if required. The method was applied on two 
different groups, each one coming from different acquisition 
systems. A total of 25 patients and 8704 images were used. An 
experienced radiologist evaluated the method qualitatively 
supporting the utility of it, as all extracted points fell into the 
spinal canal. Therefore, our method was able to reduce the 
workload and detect spinal canal objectively. We expect to 
carry out a quantitative evaluation in our future research. The 
qualitative outcome of this work suggests promising results.   

I. INTRODUCTION 

Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI) are the most widely used image technologies 
providing information associated to spinal disorders such as 
fractures, osteoporosis, stenosis, and masses. In recent years, 
there has been an increasing interest in analyzing medical 
images by computational methods due to the vast amount of 
data obtained. Therefore, these computer tools play a very 
important role assisting physicians not only in the diagnosis 
of diseases, but also in the treatment and monitoring. 

Automated spine detection in CT images is an important 
component in many applications. For instance, the exact 
knowledge about spinal canal localization is essential in 
radiotherapy to avoid unnecessary damages of the spinal 
cord, which is housed and protected by spinal canal. This 
localization serves as initialization for automated spinal canal 
segmentation. Manual delineation of spinal canal is a time 
consuming and tedious work, so studies trying to automate 
this task can be found in the literature [1], [2]. Another 
application where spine detection is fundamental is in spine 
segmentation [3], [4], and hence in biomechanical modeling 
[5] as well as computer-aided detection (CAD) [6]. 
Furthermore, precise spine detection allows performing 
curved planar reformation and enabling easier navigation and 
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manipulation of spine in 3D [7]. In any case, fully automated 
detection in CT spine is a valuable but difficult process 
meantime. In addition to the common artifacts in CT images, 
mainly partial volume effect and noise, the most difficult 
challenge is to find an algorithm that can be used in patients 
with different abnormalities as well as in images coming 
from different acquisition systems with different resolution 
and field of view.  

A considerable amount of literature has been published 
on this context. Štern et al. [8] proposed a method for 
automated detection of spinal centerline in CT and MR 
images of thoracic and lumbar spine. Their approach was 
based on anatomical property that the vertebral body walls 
have a cylindrical shape. Although they were able to localize 
the centerline regardless of image modality, outcome was 
relatively low in the upper thoracic region. In another 
posterior study [9], the same researchers presented a method 
for automated detection not only of spinal centerline, but also 
of vertebral bodies and intervertebral discs. Authors reported 
promising results; however, the method was only tested on 
lumbar spine. Rangayyan et al. [10] proposed methods to 
perform automatic identification of the rib structure, the spine 
and the spinal canal in CT images of pediatric patients. In this 
case, spinal canal detection was performed from the spine 
and ribs previously segmented. Therefore, if the 
segmentation is not precise, it can negatively affect the 
detection. 

According to Major et al. [11], spine detection methods 
can be divided into two categories: data-driven and 
anatomical model-driven methods. The first approach uses 
minimal or no anatomical knowledge without machine 
learning whereas the latter learns characteristics of a training 
dataset as well as integrating a considerable amount of 
anatomical knowledge. Previous methods fall into the first 
category whereas Major et al. approach falls into the second 
one. They presented an algorithm for landmarking and 
labeling of spine in CT scans. Authors used 16 volumes for 
training and 36 for testing. The latter volumes allowed 
evaluating the method on three aspects: precision of the disk 
landmarks, correctness of the assigned labels and time 
performance. Following this kind of methods, Gloker et al. 
[12] presented a work for automatic localization and 
identification of vertebrae using regression forests and 
probabilistic graphical models. They used a total of 200 CT 
scans with different field of view. With the aim of vertebrae 
localization in pathological spine, a new approach was 
proposed by Gloker et al. [13]. This new method used 
classification forest but avoiding explicit parametric 
modeling of appearance. Unlike these approaches, Graf et al. 
[14] proposed a fully automatic algorithm for detecting the 
vertebrae without taking into account volumetric information. 
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Moreover, they labeled the detected vertebrae to determine 
the body region under study. 

Anatomical model-driven methods have the advantage of 
being able to detect the whole spine (including the sacrum) 
with a high accuracy. However, they require a training 
dataset and hence a great amount of prior knowledge, which 
is not always available. 

In this paper, we propose a fully automated data-driven 
method for spinal canal detection in CT images, combining 
2D and 3D information. Compared to the data-driven method 
just cited, our method is able to deal with both thoracic and 
lumbar level and no segmented reference, as spine or ribs, is 
needed. The only prior-knowledge that our approach uses is 
that spinal canal is surrounded by cortical bone in each axial 
cross-section.  

II. MATERIAL AND METHODS 

A. Material 

The method was tested on two different groups of 
patients. The main properties of data set are presented in 
Table I. Group 1 consisted of 15 oncological patients (age 
ranging from 30 to 80) acquired on a Siemens Sensation 40 
scanner at Fundación Instituto Valenciano de Oncología 
(IVO), Valencia, Spain. On the other hand, group 2 consisted 
of 10 trauma patients (age ranging from 16 to 35) acquired on 
a Siemens Sensation 64 scanner at the Department of 
Radiological Sciences, University of California, Irvine, 
School of Medicine, USA, from Yao et al. [15]. The latter 
studies can be downloaded from a collaborative platform for 
research on spine imaging [16]. Thus, a total of 25 patients 
and 8704 images spanning thoracic and lumbar levels were 
analyzed. In both groups, the size of images is 512  512 
pixels. 

TABLE I.  PROPERTIES OF THE EVALUATED IMAGES 

 Total 
number of 

images 

Mean number of 
images per patient 

In-plane 
resolution 
(min-max) 

Slice 
thickness 

Group 1 4244 283 0.72-0.93 mm 2 mm 

Group 2 4460 446 0.31-0.45 mm 1 mm 

 
The algorithm was implemented in MATLAB 2013a and 

ran on a HP personal computer, with Intel Core i5 processor, 
2.4 GHz, 4 GB of RAM, and Windows 7 Home Premium 
operating system. 

B. Proposed Method 

The algorithm can be divided into three main steps: 1) 
thresholding and morphological operations, 2) 3D 
connectivity analysis, and 3) centroid extraction for each 
slice. Essentially, our approach is based on the fact that spinal 
canal is surrounded by cortical bone in an axial cross-section. 
The underlying idea is to obtain only 3D connected 
components (CC) or objects forming part of spinal canal. For 
this purpose, we took into account both 2D and 3D 
information. The input is a set of CT images selected by the 

user and it automatically provides a point with coordinates (x, 
y, z) for each selected slice. 

1) Thresholding and Morphological Operations 
In this step, we aimed to obtain a set of 3D objects 

belonging to spinal canal. It is very important to emphasize 
that our goal is not to segment spinal canal, but to extract 
points that can lead to algorithm for automated spinal canal 
detection. Firstly, to set a high contrast between spinal canal 
and cortical bone surrounding it, a thresholding was applied. 
In a heuristic way, CT volume was thresholded at 160 HU, as 
seen in Fig. 1a. Next, CC analysis was performed to extract 
the largest object in 3D. Then, CT volume was dilated using 
a structuring element (SE) of cylindrical shape (r = 3mm, h = 
10mm) so that in the majority of slices, spinal canal was 
presented as a hole, reinforcing the idea that it is surrounded 
by cortical bone (Fig. 1b). It could also occur that spinal 
canal remains opened or completely closed. Thus, 
information about spinal canal localization is unknown in 
those slices and hence it is necessary to estimate the 
localization by interpolation and extrapolation (step 3). 

After dilatation, a logical operation NOT was performed 
in the CT volume, obtaining Fig. 1c. For each axial cross-
section, the objects in contact with the border of the image 
were removed. The outcome of this operation is shown in 
Fig. 1d (this object removal was carried out in 2D, not in 
3D). With the purpose of taking out sharp shapes, CT volume 
was closed using a cylindrical SE (r = 1mm, h = 5mm). 
Moreover, a dilatation with the same SE was applied to 
recover as many missed slices as possible and provide a 
better estimation in step 3. It is worth noting that in this point 
we have 3D objects distributed throughout the volume data, 
some of which can belong to the spinal canal and others not 
(Fig. 2a). With the aim of only extracting objects forming 
part of spinal canal, those smaller than 500 mm3 were 
removed and then a 3D connectivity analysis was performed 
(step 3). 

Figure 1.  (a) Image thresholded at 160 HU. (b) Dilation using a cylindrical 
structuring element. (c) Logical operation NOT (image border is drawn for a 
better visualization). (d) Outcome of removed objects in contact with the 
border of the image.  
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2) 3D Connectivity Analysis. Linking 3D Objects 
The goal of this step was to extract only those 3D objects 

constituting spinal canal.  Each 3D object was represented by 
its upper and lower centroid. Setting any object as reference, 
the algorithm carried out a search of objects placed above 
and below the reference object as follows: 

a) Linking upper objects to the reference object 

To connect the upper objects to the reference object, a 
box of 20  20  30 mm (length  width  height) was 
applied regarding to the upper centroid of the reference 
object, as seen in Fig. 2b. Thus, if the lower centroid of any 
object fell into the box, it was considered to be part of the 
same structure and hence it was linked to reference object. 
The search continued by defining the last linked object as the 
new reference. If more than one lower centroid satisfied this 
condition, the object with a shortest Euclidean distance 
between its lower centroid and the upper centroid of the 
previous reference object was set as a new reference. The 
search of upper objects ended when no lower centroid was 
found inside the box. 

Similarly, the lower objects were linked to the reference 
object.  

Figure 2.   (a) After closing, objects can be found in 3D. Only those ones 
corresponding to the spinal canal are interesting for our purpose. (b) 
Linking process to extract only the objects constituting the spinal canal. 
Each object is represented by its upper and lower centroid. 

b) Setting a new reference 

Once the linking process has finished, i.e. the search of 
the objects above and below the reference object, a new 
object was set as a reference and a new search was carried 
out. Finally, when all objects were served as a reference, the 
evaluation of which structure corresponded to the spinal 
canal was performed. To determine it, we extracted the 
longest 3D connected object along the z axis, called the 
spinal canal object. 

3) Centroid Extraction. Interpolation and Extrapolation 
The last step consisted of computing the centroid of each 

slice constituting the spinal canal object. In addition, in most 
cases it was necessary to carry out a linear interpolation 

since, as a result of the previous morphological operations, 
not all slices were presented in the spinal canal object. When 
this occurred at the edges of the volume data, a constant 
extrapolation was performed. 

III. RESULTS 

Fig. 3a shows the detected spinal canal in different 
patients from group 1. It can be observed that all points fell 
into the spinal canal, even when spinal canal was not 
completely surrounded by cortical bone. On the other hand, 
detection of patients from group 2 is presented in Fig. 3b. 
Again, all detected point lied within the spinal canal. A 
complete spinal canal detection of a patient from group 1 can 
be observed in Fig. 4.  

Figure 3.  Outcome of spinal canal detection (red points). Detection in 
different patients from group 1 (a) and from group 2 (b). 

 

Figure 4.  3D visualization of a spinal canal detection (red line) from a 
patient of  group 1. 

The method was evaluated qualitatively by an 
experimented radiologist. The expert determined that all 
points extracted by the algorithm lied within spinal canal, 
what reveals the utility of the method since it lets automate 
the detection of the spinal canal, reducing thus the important 
workload that would imply a manual detection. 
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The computational time was 48.68 ± 14.44 s (mean ± 
standard deviation) and 109.98 ± 9.80 s per patient from 
group 1 and 2, respectively. Therefore, the algorithm could 
be used for real time applications. 

IV. DISCUSSION AND CONCLUSIONS 

Our method is based on the anatomical property that in 
each axial cross-section spinal canal is surrounded by cortical 
bone. It was applied for detection of thoracic and lumbar 
levels obtaining accuracy outcome since the experienced 
radiologist determined that all points were localized within 
spinal canal. This fact suggests that our method is completely 
independent of the scanner used for image acquisition. 
Although the method was tested on thoracic and lumbar 
levels, some volumes selected by the radiologist included the 
last cervical vertebra. Therefore, we suggest that the method 
could detect cervical level as well. 

The algorithm is able to detect spinal canal in a precise 
way, even when it is not completely surrounded by cortical 
bone, as shown in right column Fig. 3b. This is possible due 
to interpolation process carried out in step 3. Indeed, as a 
result of morphological operations (step 1) and 3D 
connectivity analysis (step 2), we obtain a set of points with 
coordinates (x, y, z) that let us estimate the localization of the 
spinal canal in missed slices of the spinal canal object. 

We have focused on spinal canal detection, similar to [1]. 
Other studies deal with vertebral body detection rather than 
spinal canal, e.g. [8]. In any case, both approaches aim to 
detect a set of point to localize the spine, and hence automate 
many applications [5], [6] and make the navigation of spine 
in 3D easier [7]. 

We have proposed a method for spinal canal detection 
that is completely automatic. Being aware of the importance 
of quantitative evaluation, our future research includes it as 
principal task as well as comparing with other methods. For 
this purpose, we have several options. On the one hand, the 
expert could manually localize the spinal canal and hence 
compute the mean distance between the ground truth and the 
outcome provided by the method, as in [8]. Another option 
would be that the expert segmented the spinal canal to 
evaluate the algorithm in terms of true positives (TP) and 
false positives (FP). Thus, detected points within segmented 
spinal canal would be TP, and FP otherwise, similar to [11]. 
In any way, the obtained outcome in this work suggests 
promising results. 
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