
  

 

Abstract— Nowadays, radiotherapy is one of the key 
techniques for localized cancer treatment. Accurate 
identification of target volume (TV) and organs at risk (OAR) 
is a crucial step to therapy success. Spinal cord is one of the 
most radiosensitive OAR and its localization tends to be an 
observer-dependent and time-consuming task. Hence, 
numerous studies have aimed to carry out the contouring 
automatically. In CT images, there is a lack of contrast between 
soft tissues, making more challenge the delineation. That is the 
reason why the majority of researches have focused on spinal 
canal segmentation rather than spinal cord. In this work, we 
propose a fully automated method for spinal canal 
segmentation using a Gradient Vector Flow-based (GVF) 
algorithm. An experienced radiologist performed the manual 
segmentation, generating the ground truth. The method was 
evaluated on three different patients using the Dice coefficient, 
obtaining the following results: 79.50%, 83.77%, and 81.88%, 
respectively. Outcome reveals that more research has to be 
performed to improve the accuracy of the method.   

I. INTRODUCTION 

Radiation therapy plays a very important role on localized 
cancer treatment. It involves using high dose of ionizing 
radiation with the aim of kill cancer cells by damaging their 
DNA [1]. Due to recent developments on computer 
technology and imaging techniques, intensity-modulated 
radiotherapy (IMRT) is widely used. The two main features 
that differ from conformal radiotherapy are the non-uniform 
intensity of the radiation beams and the use of computerized 
inverse planning [2]. During the treatment planning, the 
oncological specialist has to delineate both specific target 
volumes (TV) and organs at risk (OAR). This step is crucial 
since an imprecise contouring will entail a dose delivery in 
excess as well as unnecessary damages on radiosensitive 
healthy tissue. With the aim of standardize a definition of 
TV, The International Commission on Radiation Units and 
Measurement (ICRU) proposed the following terms: gross 
tumor volume (GTV), clinical target volume (CTV), and 
planning target volume (PTV) [3]. 

One of the most often OAR is the spinal cord, the 
structure responsible for carrying the information between 
brain and peripheral nervous system. Accurate identification 
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of this structure is indispensable to prevent clinical 
complications. However, manual contouring tends to be 
observer-dependent, so guidelines [4], [5] and web-based 
platforms [6] are available for overcoming this limitation. In 
addition, in recent years there has been an increasing interest 
in applying image segmentation techniques to automate the 
contouring and hence reduce the time spent during the 
radiotherapy procedure [7].  

Regarding spinal cord segmentation, owing to low 
contrast between this organ and the surrounding soft tissue in 
computed tomography (CT) images, the majority of research 
have focused on delineation of spinal canal rather than the 
own spinal cord. In this context, numerous studies have been 
published. Karangelis et al. [8] proposed a method for spinal 
canal segmentation based on 2D boundary tracking 
algorithm, which requires selecting an initial point to start. In 
a later study, Nyúl et al. [9] presented an algorithm for 
automated segmentation not only of spinal canal, but also of 
spinal cord. Their approach used a region-growing algorithm 
for spinal canal segmentation whereas spinal cord was 
extracted by a deformable model. Again, it was necessary to 
select an initial slice and seed point. Rangayyan et al. [10] 
carried out the detection and segmentation on pediatric 
patients. Firstly, Hough transform was applied to obtain a 
few seed voxels within spinal canal. Next, a fuzzy region-
growing algorithm dealt with the segmentation problem. 
Burnett et al. [11] published a paper in which they described 
a deformable-model approach with the aim of semi-automatic 
segmentation. Mainly, the procedure detected edges using 
wavelets and then a deformable-model template was fitted. 
Using prior information, Huang et al. [12] developed a 
method to carry out automatic segmentation of the body 
contour and spinal canal. Once a seed point was detected 
within spinal canal, segmentation was performed using a 
fuzzy region-growing algorithm. In contrast to the studies 
described above, Archip et al. [13] presented a knowledge-
based approach for an automatic image analysis. In 
particular, they combined structural and procedural 
knowledge to recognize both spinal canal and spinal cord as 
well as the lamina and the position of the outer thorax.  

In almost all preliminary approaches, segmentation was 
carried out using either a region-growing algorithm or a 
deformable model. Furthermore, taking into account the low 
contrast between soft tissues in CT images, previous studies 
have focused on spinal canal segmentation instead of spinal 
cord. In this work, we propose a method with the purpose of 
delineating the spinal canal automatically. Our approach uses 
a deformable model to achieve such goal, specifically, the 
Gradient Vector Flow (GVF) snake [14].    
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II. MATERIAL AND METHODS 

A. Data Set and Ground Truth 

The method was tested on three different patients. The 
main properties of the data set are presented in Table I. Case 
1 and 2 were oncological patients acquired on a Siemens 
Sensation 40 scanner at Fundación Instituto Valenciano de 
Oncología (IVO), Valencia, Spain. On the other hand, case 3 
was a traumatic patient acquired on a Siemens Sensation 64 
scanner at the Department of Radiological Sciences, 
University of California, Irvine, School of Medicine, USA, 
from Yao et al. [15], downloadable from [16]. Thus, a total 
of 3 patients and 960 images spanning thoracic and lumbar 
levels were segmented. All images had a 512  512 pixel size 
and a 12-bit bit depth. 

TABLE I.  MAIN CHARACTERISITCIS OF THE ANALYZED CASES 

 Age 
Number of 

images 
In-plane spatial 

resolution 
Slice 

thickness 

Case 1 58 325 0.94  0.94 mm 2 mm 

Case 2 49 210 0.89  0.89 mm 2 mm 

Case 3 -a 425 0.31  0.31 mm 1 mm 

a. Information not available. 

 

Manual segmentation was carried out by an experienced 
radiologist. The expert delineated the spinal canal slice-by-
slice with the goal of performing a quantitative evaluation. 
This delineation was performed using an in-house application 
with a graphical user interface developed in MATLAB. The 
Dice similarity coefficient (DSC) was computed for this 
purpose [6].  

B. Proposed Method 

The presented algorithm was implemented using 
MATLAB 2013a (The MathWorks, Inc., Natick, MA, USA) 
and ran on a personal computer, with Intel Core i5 processor, 
2.4 GHz, 4 GB of RAM, and Windows 7 Home Premium as 
operating system. 

The approach proposed in this paper entails three main 
steps. The first one is to detect a seed point for each slice, 
automating the segmentation in this way. The second one is 
to carry out a rough segmentation of the spinal canal. The last 
one is to refine the segmentation obtained in the previous 
step. The user must select the volume under study and 
afterwards the whole process is completely automatic. 

1) Spinal Canal Detection 
   In order to automate the algorithm, firstly the spinal 

canal was detected using the method proposed by Díaz-Parra 
et al. [17]. Díaz-Parra et al. method deals with the detection 
of seed points within spinal canal. Briefly, their approach 
exploits the idea that spinal canal is surrounded by cortical 
bone in an axial cross-section. Thus, thoracic and lumbar 
levels can be extracted combining 2D and 3D information. 
The detection algorithm can be divided into three main steps. 
Firstly, after setting high contrast between spinal canal and 
bone, a set of morphological operations are carried out to find 
the maximum possible number of voxels forming part of the 

spinal canal. Secondly, a 3D connectivity analysis is defined 
to extract only that object conforming the spinal canal. 
Finally, centroid extraction for each slice of the spinal canal 
object is performed. Moreover, interpolation and 
extrapolation of data is applied since, in the majority of cases, 
not all slices are presented in the spinal canal object. Stand 
out the importance of this step, as if accurate detection is not 
obtained, the following task will produce imprecise results. 
An extensive explanation of the method is provided in [17]. 

2) Coarse Segmentation 
Once the points lying within the spinal canal were 

detected, a 10  10 cm region of interest (ROI) was set to 
reduce the computational burden of the whole segmentation 
algorithm. Firstly, a thresholding at 160 HU was carried out 
(Fig. 1a and 1d). We aimed to obtain a rough segmentation of 
only those slices in which spinal canal was completely 
surrounded by spine. To determine which ones satisfied this 
condition, for each slice, a flood-fill operation on background 
starting from the point previously detected was performed. 
Thus, if spinal canal was actually surrounded by spine, the 
hole was filled, as shown in Fig. 1b. However, if spinal canal 
was not presented as a hole, the entire background was also 
set to white (Fig. 1e). Afterwards, the difference image 
between the filled image and the thresholded image was 
computed, obtaining Fig. 1c and 1f. Finally, the objects 
connected with the border of the image were removed. After 
removal, if spinal canal was as a hole in the slice under study, 
then a coarse segmentation was obtained; if not, the outcome 
was as an image of logical zeros. 

3) Segmentation by Gradient Vector Flow Snake 
 In this step, we obtained a refined segmentation using a 

parametric active contour, namely Gradient Vector Flow 
(GVF) snake [14]. Given an initial contour, snake moves 
under the influence of two main forces: one internal and one 
external. The internal force tries to keep the smoothness of 
the contour whereas the external one attracts contour to edges 
of the object to be segmented. Particular advantages of the 
GVF snake over a traditional snake [18] are its insensitivity 
to initialization and its ability to move into boundary 
concavities. In our approach, the initial contour is defined 
from the coarse segmentation. 

TABLE II.  PARAMETERS OF THE GVF SNAKE  

Parameter 
Selected 
Value 

Meaning 

µ 0.2 Regularization 

α 0.5 Elasticity 

β 1 Rigidity 

γ 1 Viscosity 

κ 1.4 External force weight 

 

Then, GVF algorithm was only applied on the images 
where a coarse segmentation was obtained from the previous 
step. The value used and the meaning of each parameter are 
shown in Table II. In addition, three iterations were 
computed since initial contour was set closed to the object of 
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interest. Afterwards, outcome of the segmentation obtained in 
this step was used to establish the initial contour of the 
remaining slices, i.e. those slices where the spinal canal was 
not entirely surrounded by spine. Thus, for a given slice, it 
was established as an initial contour the one obtained from 
the segmentation of the closest slice. The values of the 
parameters controlling the algorithm and the number of 
iterations were the same as those previously defined. 

 

Figure 1.  Outcome of coarse segmentation step. (a-c) Spinal canal is 
presented as a hole. (d-f) Spinal canal is not completely surrounded by 
bone.  

III. RESULTS AND DISCUSSION 

The outcome of the spinal canal segmentation is 
presented in Table III. Dice coefficient was of 79.50%, 
83.77%, and 81.72% for case 1, 2, and 3, respectively. In 
addition, time performance of the whole automatic 
segmentation was also computed for each case. Fig. 2a and 
2b show the outcome after applying the developed algorithm 
to case 1 and case 3, respectively. A complete spinal canal 
segmentation of case 1 is displayed in Fig. 3. 

TABLE III.  OUTCOME OF THE SPINAL CANAL SEGMENTATION 

 Dice 
coefficient 

Time performance 

Case 1 79.50% 13.6 min 

Case 2 83.77% 8.9 min 

Case 3 81.72% 39.6 min 

 

The obtained results suggest that our method may be 
independent of the scanner used for image acquisition, as it 
was obtained a value of DSC very similar in all cases (around 
81%). However, only one traumatic patient (case 3) was 
analyzed. We expect to apply the proposed method to both 
oncological and traumatic patients. 

Regarding to the obtained DSC values, these must be 
improved because of the application to which this work is 
aimed, i.e. radiation therapy. The exact knowledge about 
spinal canal localization and its delineation is crucial to avoid 
unnecessary damages and achieve a successful treatment. In 

the near future, in addition to Dice coefficient, we also plan 
to evaluate the segmentation method using the Jaccard 
coefficient [6]. Other studies have used other ways to 
evaluate de segmentation. For instance, Hausdorff distance is 
used in [10]. 

 

Figure 2.   Outcome of automatic spinal canal segmentation (red lines). 
Segmentation in case 1 (a) and case 3 (b). 

 

Figure 3.  3D visualization of the spinal canal segmentation (red shape) of 
case 1. 

A very important aspect is the choice of GVF parameters, 
which are summarized in Table II. This is a non-trivial 
problem due to the huge variety of possible combinations. 
Therefore, the main guide to make a decision is by trial and 
error. Nonetheless, knowing the physical meaning of them 
can be useful. For instance, elasticity and rigidity parameters 
control how much the active contour (or snake) can deform 
to adapt to object edges. As we expected that spinal canal had 
a round shape, we were interested in a rigid snake rather than 
an elastic snake. On the other hand, viscosity and external 
force weight coefficients are related to the resistance that the 
snake perceives during its deformation. Then, as initial 
contour was set close to boundaries of interest, only three 
iterations were computed and the external force was set 
larger than viscosity so that snake could reach the boundary 
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of spinal canal within that temporal period. Finally, the 
parameter µ is a regularization parameter that should be set 
according to the noise present in the image. We fixed it to the 
default value [14].   

IV. CONCLUSIONS 

Segmentation of organs at risk is an essential component 
in radiotherapy. In this sense, image segmentation techniques 
let automate this task and hence reduce the workload of the 
clinical. In particular, spinal cord is a radiosensitive organ 
that has to be precisely delineated to protect it. In this 
preliminary study, we have proposed an automated method 
for spinal canal segmentation, which houses spinal cord, 
using a GVF algorithm. 
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