
  

 

Abstract— Diagnosis and computer-guided therapy of 

cerebral Arterio-Venous Malformations (AVM) require an 

accurate understanding of the cerebral vascular network both 

from structural and biomechanical point of view. We propose to 

obtain such information by analyzing three Dimensional 

Rotational Angiography (3DRA) images. In this paper, we 

describe a two-step process allowing 1) the 3D automatic 

segmentation of cerebral vessels from 3DRA images using a 

region-growing based algorithm and 2) the reconstruction of the 

segmented vessels using the 3D constrained Delaunay 

Triangulation method. The proposed algorithm was successfully 

applied to reconstruct cerebral blood vessels from ten datasets 

of 3DRA images. This software allows the neuroradiologist to 

separately analyze cerebral vessels for pre-operative 

interventions planning and therapeutic decision making. 

I. INTRODUCTION 

A. Background and Purpose 

The cerebral vascular network is very complex, as seen 

through its geometrical structure and its biomechanical 

organization; particularly in case of lesions or diseases. 

Consequently, practitioners need high-quality images to 

perform both diagnosis and computer-guided therapy. In a 

normal brain, arteries communicate with veins through 

arterioles and small capillaries. A cerebral Arterio-Venous 

Malformation (AVM) occurs when the arteries connect 

directly with the veins without any intervening capillary 

network. This results in venous engorgement and dilation or 

stenosis leading to a high risk of intracranial hemorrhage. 

Advanced imaging and 3D visualization of brain vessels are 

very important for AVM diagnosis and management. Indeed, 

the treatment highly depends on the AVM size and location in 

addition of patient age and general health. Conservative 

treatment with clinical follow-up or curative treatment will 

then be chosen [1]. The embolization [2] which consists in the 

occlusion of the arterial feeders and the AVM nidus thanks to 

an embolic agent can be performed alone or in conjunction 

with other modalities. It is carried out by a neuroradiologist 

using micro-catheters to navigate throughout the intracranial 

arterial feeders until the nidus. In the last few years, the 3D 

Rotational Angiography (3DRA) was considered as a 

promising imaging technique for vessels visualization and 

became the reference imaging modality in neurovascular 

interventions. Indeed, this imaging technique provides 3D 
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high-resolution images of the whole vascular tree, allowing a 

detailed anatomic analysis of the arterial supply of AVMs. 

However, the visual tracking of a specific vessel with its 

branches during the pre-operative interventions planning is 

difficult on such images, due to the complexity and the tangle 

of the vessels. To deeply track a vessel, the neuroradiologist 

needs a new vessel representation obtained by isolating a 

specific vessel from the rest of the vascular tree. 

The present work aims to provide an efficient software to 

facilitate the pre-operative 3D analysis of the AVM feeding 

arteries and draining vessels. For this purpose, an innovative 

method for the 3D segmentation and reconstruction of 

cerebral vessels from 3DRA images is proposed. The novelty 

of this research compared to previous work lies in the 3D 

implementation of the region-growing segmentation process, 

applied to 3DRA images. In addition, our application offers 

the possibility to intervene on the reconstructed image to 

isolate a specific vessel, visualize it in different angles and 

make quantitative measurements. To our knowledge, no 

previous work has dealt with this issue. 

B. Vascular Network Segmentation 

Cerebral vessels are complex objects by their shapes, 

sizes and tree organization/overlapping. Consequently, the 

vascular network segmentation is not an easy task. Several 

methods for the extraction of vascular structures have been 

proposed. The choice of the most suitable one depends on the 

imaging modality and on the intended application [3, 4]. 

Among these methods, pattern recognition-based approaches, 

which can operate in a multi-scale way [5, 6] were proposed. 

Other methods using the extraction of the vessels centerline 

were also largely used to reconstruct the vessels skeleton 

[7, 8], along with the inclusion of methods based on the 

contours-intensity information [9]. Some authors proposed 

advanced global or adaptive thresholding-based approaches 

to segment the vascular tree [10] or cerebral aneurisms. Such 

approaches were applied either on 3DRA, magnetic 

resonance angiography (MRA) or computed tomography 

angiography (CTA) images [11]. Morphological tools have 

also been used to segment 3D-CTA images of AVM [12], but 

these approaches require low noise images. Moreover, 

model-based methods such as Geodesic Active Regions 

(GAR) or level sets were used for an automated segmentation 

of cerebral vasculature in 3DRA [13, 14] or for cerebral 

aneurysms segmentation in 3DRA and CTA [15]. These 

implicit methods provide good results but are very sensitive to 

the parameters setting, and are very time consuming, being 

implemented with an iterative process. Artificial intelligence 

was recently used for AVMs segmentation from MR 

angiographic images [16]. The region-growing method was 

also applied to segment the coronary tree in CT angiographic 

 

Segmentation and Reconstruction of Cerebral Vessels from 3D 

Rotational Angiography for AVM Embolization Planning 

Fan Li, Yasmina Chenoune, Meriem Ouenniche, Raphaël Blanc, Eric Petit 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 5522



  

images [17] and to extract the cerebral vessels from 3DRA 

images [18]. The region-growing algorithm evolution is 

controlled by a homogeneity criterion and by the research of 

local similarities in pixels/voxels neighborhood. To deliver 

reliable results, this algorithm requires highly contrasted 

vessels otherwise it often fails. Furthermore, it usually has to 

be manually initialized. Due to the use of a contrast agent, a 

high uniformity of intensity in the vessels is observed on the 

3DRA images, compared to other brain tissues. Consequently, 

we propose to perform the vessels segmentation with a 3D 

region-growing algorithm. 

C. Vascular Network Reconstruction 

To reconstruct the vessels surface for visualization, 

several methods depending on the segmentation outcome and 

on mesh generation methods have been proposed. 

Model-based or model-free surface modeling techniques 

were implemented [19]. The model-based techniques which 

assume some model assumptions, in particular a circular 

cross-section generally require the centerline extraction from 

segmented vessels [20] and geometric primitives such as 

cylinders [21] are used to fit the vessels surface. However, the 

accuracy of the generated surfaces which present a low visual 

quality might not be sufficient for the diagnosis of pathologic 

structures. The model-free surface representations require no 

assumptions and exploit the segmentation results to construct 

a set of points from which smooth surfaces are obtained. A 

higher accuracy can thus be achieved with the Marching 

Cubes or the Constrained Elastic Surface Nets methods [22]. 

As our region-growing algorithm provided high-quality 

segmentation results, we propose to simply reconstruct the 

vessels surface by converting the set of 2D vessels contours 

resulting from the segmentation step, to a 3D mesh using the 

constrained Delaunay triangulation method. 

II. MATERIAL AND METHODS 

A. Patients and 3DRA Acquisitions 

Ten patients (age range: 27- 62, mean age: 44 years, 40% 
women) with brain AVM underwent 3DRA imaging. 
Acquisitions were performed with a Philips Allura 
angiographic unit (Philips Healthcare, Best, The Netherlands), 
after the injection of 28 cm

3
 of contrast agent to enhance the 

vessels, at 4 cm
3
/second with a rotation of 210° and a delay of 

3 seconds between injection and acquisition. The size of the 
resulted images was 256x256x256 pixels/image with cubic 
voxel size varying from 0.29 to 0.49 mm

3
. The Philips Allura 

angiographic unit delivers initial reconstructions in 4 seconds. 

B. Automated Seeds Selection 

The 3D region-growing algorithm is initialized by 
automatic seeds localization on the binarized and filtered first 
slice of the 3DRA volume. 

Binarization and Noise Filtering 

An example of a 3DRA axial slice is given in Fig.1(a). 

Pixels intensity distribution can be divided into two classes: 

vessel and background [23]. In order to obtain markers of the 

vessels, a thresholding method using the morphological 

geodesic reconstruction [24] was applied. Let I be a grayscale 

image and          and            two thresholds 

                     . The binarization results of   from 

the two thresholds are, respectively named   and  . Let 

          be the connected components of   and 

          be the connected components of  . Since it is 

easily proved that    ,   is called marker and   is called 

mask. The reconstruction       of mask   from marker   is 

the union of the connected components of    which contains at 

least one common pixel with  : 

                                       ⋃   
      

                                           

The lower threshold allows separating the different 

regions of the image while the upper threshold is used to mark 

some points in each potential vessel. On the resulting binary 

image, the small structures are removed by considering a size 

parameter  , to keep only pixels belonging to the vessels. 

Location of Region-Growing Seed Points 

The centers of the extracted regions are then defined as the 

seeds. The center of mass was usually considered as the seed 

in some previous work [18]. Nevertheless, the forms of 

vessels are not always convex and the center of mass may be 

located outside the region. For that reason, we considered a 

center which should be strictly inside the region. In a binary 

image  , let R  be one region of interest which contains   sets 

of pixels               . For each pixel    in  , the sum 

of all the distances       from this point to all the other 

pixels    is defined as follows: 

     
 ∑(|     |  |     |)

 

   

                          

with        and        respectively the   and 

   coordinates. The central point         is obtained such as: 

              
      

     
                                       

C. 3D Region-Growing Vessels Segmentation  

Once the seeds markers are successfully selected on the 
first slice, we apply the 3D region-growing method to segment 
a given branch, by selecting one seed from all the defined 
markers. The algorithm evolution depends on a region 
membership criterion. Because of the uniformity of the voxels 
intensity on the 3DRA images, a voxel intensity criterion is 
used. Let      and     denote separately the greatest and the 
lowest gray level of voxels in the whole volume. Let the voxel 
             be the initial seed point,       be the intensity 
value of     Each 6-connected neighbor    of    is labeled as 

the same vessel as    if the following condition is satisfied: 

   |       (  )|    |         |                    

with  (  ) the intensity of    and   a weighting parameter. 

When the condition (4) is verified for a neighbor    of 

  , the process is iterated for the six neighbors of the voxel    . 

This process ends when no changes occur after two successive 
iterations. Once the 3D region-growing process is completed, 
the 2D contours of the segmented vascular structures are 
extracted slice by slice. They will be exploited, to reconstruct 
the 3D mesh using the 3D Delaunay Triangulation [25]. 
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D. 3D Vessels Reconstruction 

An algorithm for creating a 3D mesh that tightly fits the 

external surface of the vessels is proposed. It is based on the 

constrained Delaunay triangulation and converts the set of 2D 

vessels contours resulting from our region-growing algorithm, 

to a 3D mesh, constituted of non-overlapping triangles that 

represent the surface of the vessels. 

This algorithm establishes a correspondence between 

selected points from each two successive contours, belonging 

to the same vessel (see example on Fig.2 (b)). Since the 

vessels sections are not always convex, the triangulation is 

constrained by the contours to avoid problems of external 

triangles construction. The implemented algorithm is able to 

reconstruct vessels with various forms and sizes and also to 

identify vessels divisions into two branches (bifurcations). 

III. RESULTS AND DISCUSSION 

Our segmentation and reconstruction algorithm was 

applied on a region of interest for each 3DRA image of our 

dataset. First, the seeds are automatically selected from the 

first image of the considered stack of slices. The user is then 

asked to choose the vessel he wishes to reconstruct. Then, the 

region-growing algorithm starts from the corresponding seed 

point and propagates through the 3D volume in order to carry 

out the vessel segmentation. Blood vessels with different 

sizes and shapes as well as multiple bifurcations have been 

successfully reconstructed. Furthermore, the exploration of 

the voxel neighborhood in the three spatial directions allows 

the automated detection of vessels bifurcations, which is very 

important for the complete visualization of a given vessel 

with all its branches.  

For each processed dataset, the analysis of the logarithmic 

histogram of the 3D image [13] allows the determination of 

the suitable Threslow and Threshigh values used in the first step 

for automated seeds selection. The filtering process enables 

the detection of all the vascular structures and removes most 

of noise components (see Fig.1.(c)).  

 
 (a)                                   (b)                                     (c) 

 
 (d)                                    (e)                                    (f) 

Figure 1. Segmentation results after the binarization and filtering steps for a 

3DRA image, (a) A 3DRA slice, (b) zoom-in on a region of interest 

containing vascular structures, (c) the obtained binary image for the 

normalized threshold values Threslow=0.28 and Threshigh=0.43, (d) the filtered 

binary image with S=6, (e) the detected seeds points and (f) the final 

region-growing segmented vascular structures from the seed points. 

The remaining noise is simply filtered by eliminating the 

structures smaller than a given size S. The S parameter 

represents the total number of pixels over the small region 

and allows computing the area of the smallest vessel section 

that can be segmented. In the example of Fig.1, the image 

resolution was of 0.35 mm and the size parameter S which 

controls noise filtering was fixed to 6 pixels. Consequently, 

vessels with a small diameter of 0.96 mm were successfully 

segmented. The finest reconstructed vessel diameter that was 

reached by our algorithm, on all datasets was 0.7 mm. 

The segmentation results were slightly sensitive to the 

value of the T weighting parameter, which controls the 

membership criterion in the region-growing process. This 

parameter was adjusted for each dataset and was 

experimentally fixed between 6% and 8%. Three examples of 

3D vessels reconstructions, computed for three different 

patients are illustrated by Fig.2 and Fig.3.  

   
(a)                                     (b)                                    (c) 

Figure 2. (a) Part of the internal carotid artery reconstructed from 60 3DRA 
slices with the Philips Allura unit, (b) example of a 3D mesh obtained after 

the 2D to 3D Delaunay reconstruction of four successive contours, (c) the 

obtained 3D constrained Delaunay reconstruction result for this vessel. 

First, the Internal Carotid Artery (ICA) is reconstructed 

from a set of 60 3DRA slices (Fig. 2). The obtained result 

shown by Fig.2.(c) was visually compared to the 

reconstruction obtained with the angiographic unit Fig.2.(a) 

by a neuroradiologist. We can easily see that this part of 

vessel was successfully reconstructed. Another example 

shows the reconstruction of the two branches of the Anterior 

Cerebral Artery (ACA) from 120 3DRA slices (Fig. 3). 

Different viewing angles allow for a greater visualization of 

the vessels bifurcations. We also show on Fig.3(e-f) vessel 

reconstruction results obtained with our algorithm in 

comparison with the corresponding Maximum Intensity 

(MIP) images. Thus, the whole process including the 3D 

segmentation followed by the Delaunay reconstruction was 

able to automatically reconstruct a vessel in 3 or 4 seconds. 

Moreover, the process depends on few parameters whose 

values are mostly fixed for all the 3DRA data. 

IV. CONCLUSION 

In this paper, a new method dedicated to the detailed 

visual analysis of cerebral vessels from 3DRA slices is 

presented. The whole process includes a segmentation based 

on a 3D region-growing method and followed by a 3D 

reconstruction using the constrained Delaunay triangulation. 

The obtained results on ten patients with AVM demonstrate 

the efficiency of our method that allows the reconstruction of 

a given vascular structure with its branches and with a high 

precision. The visualization is highly improved since we 

obtain a simplified representation in which the initial tangle 

of vessels is reduced. This new vessel representation might be  
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(a)                     (b)                  (c) 

       
  (d)                      (e)                  (f) 

Figure 3. Examples of vessels reconstruction, (a) the reconstructed vessel tree with the Philips Allura unit, (b) zoom-in of the Anterior Cerebral Artery (ACA), 
(c) ACA reconstruction from 120 3DRA slices using the proposed method with the same view angle, (d) visualization from another angle of view and an 
example of (f) vessel reconstruction using our algorithm in comparison with (e) the Maximum Intensity (MIP) corresponding image. 

of major usefulness for neuroradiologists to guide AVM 

management and to aid for pre-operative interventions 

planning. We are currently extending this work on an 

enlarged database to confirm the efficiency of our algorithm 

and to assess its relevance in a clinical context. In future, our 

aim is to enrich the virtual vessel object that we built, by 

biomechanical measurements such as intracranial blood 

pressure in order to modelize the vascular network. 
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