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Abstract— This paper presents a segmentation methodology
of abdominal axial CT images. The aim of the study is to
determine the location of mesenteric

¯
area from the axial images

so the organs enclosed within can be localized precisely for
diagnostic purposes. The challenge confronted here is that
there is no a certain deterministic shape of abdominal organs.
The methodology implemented here utilizes a curvelets stage
followed by morphological image processing to achieve a con-
tour emphasized segmentation from the gestalts of surrounding
organs. This paper gives a detailed analysis of approach taken
with the problems faced and a brief comparison wrt to other
wavelet approaches.

Index Terms— curvelets, wavelets, abdominal image segmen-
tation, non-maximal suppression, edge and contour detection,
non-maximal suppression, connected-components labeling.

I. INTRODUCTION

There is no a specific one simple algorithm to locate

objects in cluttered environments. Problem gets even tougher

with the objects having varying texture and contour charac-

ters. To achieve a successful localization requires a prepro-

cessing stage of images to enhance the ROI which is a low-

level image processing. This follows a segmentation stage

and then involves further rendering of object classification

to distinguish the organs of interest. Here, our focus is to

detect mesentery from CT images and later on the bowels

in particular. The mesentery is an evaginated reflection of

the peritoneum connecting bowels to the posterior abdominal

wall. As well intestines, some other organs included within

abdominal viscera are like stomach, liver and biliaryduck

system, pancreas, spleen, kidneys, ureters. The positions

of the abdominal viscera vary with the activities, posture,

respiration, degree of filling, and with the gravity. Therefore,

radiological evaluations cannot have a fixed model, as studies

have shown that ”the normal abdominal viscera have no fixed

shapes and no fixed positions, and every quantification must

take into account the conditions existing at the time of obser-

vation. It is reported in [2], [1] such that profound variations

of position may be caused not only by mechanical forces but

also by mental influences. An efficient semi/fully automatic

organ segmentation which can at least be suggestive to

guide physicians, is essential to avoid uncertainties leading to
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Fig. 1. Block diagram of our methodology in three stages, curvelet
decomposition, morphological enhancement, segmentation, and assignment
of organs to the boundaries, with respect to a trained dictionary of organs.

correct diagnosis. It is hard to design such a system accurate

enough within the error-tolerance of physicians reaching to

the ground-truth with a minimum false-segmentation rate.

Our approach has three stages as presented in Fig. 1, the

first stage is curvelets, here assumption is that organs have

rather circular details. By employing curvelets we don’t just

eliminate redundant details but we aim to enhance the image

for the related circular features, in Section II. The subsequent

step is morphological stage where segmentation is performed

to obtain gestalt features of organs in terms of contours.

Idea here is to obtain an approximate translation and rotation

free silhouette of organs with their surrounding organs III.

The third stage in section IV focuses on evaluation of con-

tours to eliminate those organs whose shapes and positions

and their neighborhood criteria are easy to determine their

anatomical properties. Maximal meaningful alignment by

entropic exclusion (Helmholtz grouping principle) is applied

here. We determine surrounding muscles and vertebrate,

and then we engulf the possible area of interest. Such a

methodology, excluding unambiguous symptoms and regions

is a well-known common method applied in diagnostics to

approximate anomalies [3]. In sections V, and VI we discuss

existing techniques and the results of our algorithm.

II. CURVELETS

We employ curvelets to develop contours around at the

vicinity of possible edge details with a rather thick stroke

of brash. Curvelets are applied in various fields [6] not

just for denoising of images but also to capture surface

like singularities detecting future descriptors in multidimen-

sional volumetric data involving medical imaging, seismic

imaging, video processing and computer vision. Wavelets

decompose images at every decomposition level into four

subbands from the lowest to the higher frequency bands,

in horizontal, vertical and diagonal directions. The lowest

frequency band coefficients are nondirectional ϕ2(x, y) =
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ϕ(x)ϕ(y) associated with mother wavelet function |φ|, and

filtering is applied in a separable manner. Similarly wavelet

coefficients are ψ(1)(x, y) = ϕ(x) · ψ(y), ψ(2)(x, y) =
ϕ(y)·ψ(x), ψ(3)(x, y) = ψ(x)·ψ(y), for the three directions

given above, respectively. While they are good in compact

piecewise approximations in 1D, and sensitive to the sharp-

point singularities (in 0D), they are not anisotropic, and

blind to the smoothness of the first order features and

unable to isolate lines or curvy features. These limitations

are addressed by the ridgelet transforms by capturing 1D

line singularities, but they are also inefficient to capture

curvature-kind 2nd order features [9].

A comparative review of directional wavelets addressing

geometric features in particular (Steerable wavelets, Ga-

bor wavelets, wedgelets, beamlets, bandlets [7], contourlets,

shearlets, wave atoms, platelets, and surfacelets) as group

of X-lets wrt curvelets is presented in references [6], [13].

In reference [8], directional, multiscale edge detection is

proposed through M×M channels decomposed image with

orthogonal and linear-phase M-band wavelet filters, such that

each decomposition could contribute to the results in zero-

crossings at the edge locations in different directions and

resolutions. In recent decades the behavior of neural cells

are characterized by X-lets, selective in scale for example

in mammalian primary cortex, and selective in orientation in

visual cortex [14], [15]. Similarly contourlets are reported in

reference [18] for detecting bowel tumors, where, it is also

reported that contourlet offer less clear directional features

with more oscillations.
Considering a scale function Φj(x) in scale j = 0 for

curvelets such that its Fourier Transform φ̂j(w1, w2) =
Uj{w1, w2}, U(., .) is the window defined in polar coor-

dinates. In [10], φj(x) is explicitly referred as ”mother

curvelet” from which all curvelets at scale 2−j are obtained

by the equispaced sequence of rotations of θl, and transla-

tions of ki, where ki ∈ {k1, k2} ∈Z2, θl = 2π · 2−j/2 · l
with l = 0, 1, ... The support of Uj(r, θ) is a polar wedge.

defined by the support of windows, radial window W (r)
taking smooth, non-negative and real valued arguments and

an angular window V (t) taking real arguments and both

obeying admissibility conditions. Window widths and lengths

change with the scale in each direction. Curvelet family is

defined as φj,l,k(x) = φ(Rθl(x − xj
l,k)) where Rθl is the

rotation by θ radians, at scale j, and position xj
l,k Similar

to wavelet transforms, the full curvelet transform consists

of coarse scale lowest frequency band are Φj0,k which

are non-directional coefficients, and the directional finescale

curvelet bands, with the elements φj>j0,l,k. Our interest is

on the behavior of the fine-scale directional elements, to

determine the strength of the for the contour and boundaries

at the currentwedge. Although curvelet transform is not

orthogonal, its transformation is invertible in both continuous

and discrete domains. The choice of scale 2−j , j ≥ 0, and

the equadistance of rotation angles θj,l = πl2�j/2�/2 with

l = 0, 1, ..., 4.2�j/2�−1, and with rotation matrix Rθ having

the positions bj,lk1,k2 = R−1
θj,l

(k1/2j , k2/2j/2)T lead to a dis-

crete curvelet transformation (DCT) and form a tight frame

Fig. 2. For l = 5 scale curvelet decomposed abdominal image with the
number of rotations l = 8. The number of curvelet bands at every scale
is l ∗ 2.�((j−[j:−1:2])/2� = [8, 16, 16, 32]. Observe the tangential details
around contour in each rotation. ”www.ceremade.dauphine.fr/peyre/matlab/”

Fig. 3. Sum of the subbands as localized energy of DCT coefficients to
give an emphasis on circular discontinuities.

satisfying Parseval’s relation. Therefore, the f(x1, x2) ∈ L2

of image can be expanded by taking its inner products

with curvelets, in the form of f =
∑ 〈f, φj,l,k〉φj,l,k.

Two methodologies to obtain DC coefficients, are FDCT by

utilizing unequally spaced FFT, and FDCT by wrapping as

detailed in references [10], [11]. The difference is mainly on

the choice of spatial grids employed to translate curvelets at

each scale and angle. Curvelet coefficients are obtained by

IFFT of partitioned coefficients that are obtained as a result

of {wedgewrapping{FFT (f)∗FFT (spatialwedge(ϕ)}}.

To decompose images, we use curvelab toolbox in MAT-

LAB, (www.curvelet.org). In Fig. 2, an axial CT image is

decomposed into a number of subbands, figure presents the

energy of the coefficients. Fig. 3, is to make their localized

energy sum explicit.

III. MORPHOLOGICAL CONTOUR DETECTION

A straightforward application is that the curvelet coef-

ficients thresholded could offer an appearance of organs.

But such an approach of thresholding require continuous

and tedious manual intervention for repetitive forward and

backward experimenting of soft and hard thresholds to de-

termine the upper and lower intensity levels not even for a

complete abdominal ROI under examination. Here our aim

is rather to approximate a definite silhouette of organs and

discard other isolated edges of small details. This suggests to

utilize morphological filters. We take the approach similar to

the scheme applied with Canny edge detection in [12] with

curvelet coefficients, with an exception, we put emphasis

on morphological filters instead of canny edge detectors.

To underline, Canny edge detection in fact partially covers
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Fig. 4. Inverse FDCTed image after non-maximal-suppression applied.

morphological filters in non-maximal suppression stage as

presented below.

The correspondence from curvelet coefficients to the pixels

requires special attention. Because at each decomposition

level the resolution is determined by the DCT, although each

curvelet coef has a specific fixed orientation li and located at

a certain location k1, k2 of the subband (curveband) at level

l. The decomposition depth is determined empirically. We

consider the curvelet bands from 2nd to P-1, P is the last

finest level and we map coarser level directional features,

over finer levels gradually as presented in [12]. A directional

orientation map is obtained in two steps, firstly we take the

absolute sum effect of the magnitudes of the coefficients

and then determine the dominant direction as the argmax

of directions and record both the strength of the orientation

and the direction as its dominant angle of the location. To

eliminate undesired superfluous edges in parallel and contour

deviations at the vicinity of strong edges, we employed non-

maximal suppression to suppress those having weak gradient

within the same curveband. (Fig. 4).

With curvelets, there is no need to check every angle

with fine increments as it happens in usual non-maximal

suppression check wrt every pixel offset in x and y with a

specified radius. Instead we check angles ±2π/(li), where li
is the number of the curvebands at every level. All operations

are performed in curvebands, 2 to li/2 since the other half of

the curvebands are symmetric. The radius of non-maximal

suppression is scaled between 3−1.2 pixels from level P−1
to 2 because the distance between boundaries initially are

assumed to be not less then 4 − 3 pixels, which is some-

thing depends on the adjacency of the organs against each

other and here we further perform morphological operations

(consecutive opening and closing operations with different

structuring elements set for ROI of organs) to eliminate

adjacent pixels both marked as local maxima.

Finally we obtain contour boundaries emphasized by using

Otsu’s thresholding, and label the internal segments by using

methodology of connected-components labeling. It wasn’t

always possible to achieve a precise segmentation due to

the various factors mostly due to the inflexibility of the

thresholding and complexity of the CT images. However,

this segmentation provided a platform to alleviate the seg-

mentation problem to the higher levels of matching against

a template and apply possible amendments.

IV. ANATOMICAL ASSIGNMENT OF SEGMENTED

REGIONS: BOUNDARY EVALUATION

In the previous sections CT images are treated as gray level

images with no consideration of the anatomical topology.

The outcome is not always perfect boundaries, in some cases

the image of the organs seem to be over segmented or merged

each other (Fig.5). At this stage we adopt a two-stage,

regenerative, and discriminative model based registration of

abdominal 2D axial intersections, with a sketchy silhou-

ettes library of the visceral organs. In regenerative stage, a

weighed match of organs in adjacent groups is taken account,

and in the discriminative step, the organ based registration

of silhouettes is adopted. Consider a closed contour signal

y ∈ Rn as linear combination of basic dictionary elements

dj , taken from an overcomplete dictionary D ∈ Rn,K by

an underdetermined equation y = Dx, such that where

x ∈ RK and j = 1...K. In sparse form this equation has

many solutions, it is possible to have a unique but non-sparse

solution with many nonzero elements, in minx||x||2 sense,

and the the solution, x = DT (DDT )−1y = D+y., where

D+ is pseudoinverse of D. A sparse representation of this

equation in l0 norm sense is minx||x||0 subjected to y = Dx
which is a NP hard problem, however there are solutions,

for example Orthogonal Matching Pursuit method grantees

the solution in terms of sparse combinations of dictionary

elements. Our objective function is

min{λ1

∑

1:N

(||yi−Dxi||2)2+λ2

∑

1:N

||x||0+λ3F (C)} (1)

Here, the λi are to regularize the function between three

components. The first is the error of regeneration utilizing

dictionaries. Correct dictionary of the organ will provide

minimum error, with minimum sparsity that is the second

part of the equation. And the last part is the Fisher discrimi-

native term to introduce an explicit selectivity by maximizing

the ratio of inter to intra-class variance between contour

shape characteristics. The contour shape characteristics are

obtained by using bending function [16], which provides the

sparsest, scale and rotation invariant presentation of contours,

and offers the set of maximal bending points. The focus

of the first part of Eq.1 is on entire image registration

to a template image, and the last part is on component-

wise. Testing a contour Ci against other mean contour

vectors, such that the one that a kth contour Ck is assigned

to, minm=1:M{(Ck − C̄m)(Ck − C̄m)T } where M is the

number of organs at each CT slice, and C̄m is the mean

vector of the mth organel contour dictionary. Then the F (C)
discriminant selectivity criteria in equation 1, is defined as

FC =
||∑i=1:M,j:M,j �=i(Ci − C̄j)(Ci − C̄j)

T ||22
||∑i=1:M,(Ci − C̄i)(Ci − C̄i)T ||22 (2)

Eqns.2, and 1, give an optimal set of assignment for organs,

after each contour is assigned to an organ in l2 norm sense.
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Fig. 5. (Left) Over and (Right) Under segmented regions of abdominal CT
Scout image 17 with different thresholdings where we were able to obtain
correct contours only partially.

Fig. 6. Segmented abdominal region of CT Scout image slice 17 from the
curvelet subbands after morpho-processing. Psoas, Erector Spinae Muscle,
Quadratus Lumborum Muscle, Internal Oblique and External Obligue,
Tranversus Abdominus, Rectus Abdominus Muscle

V. EXPERIMENTAL RESULTS

We used 35 axial non-contrast scout images taken with

3mm distances from Lumbar L4/L5 region of anonymized

five normal adults. Only 15 of these images are used to train

silhouettes library, and the remaining are used for testing.

The organs explicitly visible, abdominal muscles stretching

at the left and right lateral quadrants, and vertebrate, and

muscles at the medial posterior proximity of the vertebrate

are detected as presented in Fig.6, to employ principle of

exclusion by assuming that the residual area is the abstract

representation of mesentery. We determine final contours by

using dictionaries that are trained from the corresponding

subbands of the organs. We took the anatomical positioning

into account and using rotation and scale invariant bend

functions which yield a non-iterative image registration based

on the trained contours.

VI. CONCLUSION

In this paper, we presented an embedded scheme to detect

abdominal organs from DICOM images in three stages,

curvelets, morphological edge enhancement and a registra-

tion stage wrt template dictionaries of abdominal organs. Our

Fig. 7. Approximate mesenteric area completely extracted, CT slice 17.

approach is novel in the sense of using the gestalts of these

organs with lower entropy, we approximately extract the

mesenteric region which has a nature of higher uncertainty.

In 6 CT images out of 10, the boundaries of mesentery

was completely extracted. To achieve the same results with

the wavelets was not possible.Our preliminary results of

the success ratio with curvelets at this stage is satisfactory,

just above 60% of correct segmentation, registration and

identification. The research is continuing to take into account

texture information and other anatomical dependencies and

will be further extended to 3D volume images.
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