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Abstract— We propose a new Blind Source Separation tech-
nique for whole-brain activity estimation that best profits from
FMRI’s intrinsic spatial sparsity. The Local Sparse Component
Analysis (LSCA) combines wavelet analysis, group-separable
regularizers, contiguity-constrained clusterization and principal
components analysis (PCA) into a unique spatial sparse rep-
resentation of FMRI images towards efficient dimensionality
reduction without sacrificing physiological characteristics by
avoiding artificial stochastic model constraints. The LSCA
outperforms classical PCA source reconstruction for artificial
data sets over many noise levels. A real FMRI data illustration
reveals resting-state activities in regions hard to observe, such
as thalamus and basal ganglia, because of their small spatial
scale.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (FMRI) has al-
lowed new approaches for spatial and temporal brain acti-
vation research by addressing functional connectivity (FC).
By combining voxels into predefined regions of interest
(ROI) from coarse/uncustomized atlases, FC often leads to
inappropriate functional spatial variability characterization
[10]. Blind Source Separation (BSS), on the other hand,
has received attention for consistently estimating FC while
dispensing with the need of a priori ROI delineation by
decomposing data into a set of hidden states and their corre-
sponding spatial components [12], [1], [13], [14]. However,
current BSS is unsuited for characterizing local brain image
features as it imposes no constraint on spatial component
extension. Another BSS weakness lies in overlooking the
multiscale nature of brain images which may be of growing
importance as higher resolution images become available.

Our approach combines the best of both anatomical and
functional worlds thru Local Sparse Component Analysis
(LSCA) to decompose the data into a small number of well
localized spatial components. The related technique known
as Sparse Component Analysis (SCA) only assumes sparsity
in the rows of the observation matrix or in the columns of
the mixing matrix [3], [13] whilst our method imposes more
structure by assuming that the columns of the mixing matrix
act as point-spreading functions. The key hypothesis is that
any spatial component with bounded support can be perfectly
described by few wavelet coefficients forming localized
spatial patterns. In this case, the grouping procedure can be
accomplished by using a contiguity-constrained clustering
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algorithm whose measure of dissimilarity spatially limits
the set of clusters eligible for merging during the iteration
process [16]. This even allows estimating the number of
spatial components.

From the main model (1), we briefly discuss its solution
via the vector soft-thresholding operator (8) which gener-
alizes the scalar soft-thresholding operator in [9]. Simula-
tions against traditional PCA show its superiority (Sec. IV).
Further illustration is given by applying the method to real
resting-state data (Sec. V).

II. PROBLEM STATEMENT

Consider the following BSS model to describe whole brain
FMRI activity:

zt = Axt + vt, (1)

where zt = [z1,t, . . . , zM,t]
T, 1 ≤ t ≤ N , is the vector of

observed signals, xt = [x1,t, . . . , xK,t]
T is a vector of hidden

states and vt = [v1,t, . . . , vM,t]
T is a vector describing small-

scale spatial variations assumed i.i.d. random variables. To
simplify, we further assume vt ∼ N

(
0,R = σ2IM×M

)
.

The M × K mixing matrix A characterizes the effect of
K physiologically meaningful sources

st = Axt =

K∑
k=1

akxk,t, (2)

where ak is the k-th column of A and the goal is to estimate
xt without knowing A.

Different assumptions about xt and A lead to different
solutions to (1). Neuroscientists’s concerns about functional
brain components centers around requiring ak spatial local-
ization. Thus we solve (1) by assuming that st lies in Bs

1,1, a
particular kind of Besov space chosen for containing smooth
functions with localized singularities [15] so that the problem
of estimating st ∈ Bs

1,1 from zt reduces to minimizing the
functional:

f(st) = ‖zt− st‖22 + ‖st‖s,1 = ‖zt− st‖22 +
∑
j,k

λj,k|ŝj,k,t|,

(3)
where ŝj,k,t = 〈st, ψj,k〉 and {ψj,k; j,k ∈ Z+ × Zd}
constitutes an orthonormal wavelet basis [8]. The functional
(3) has a unique global minimum for each t, but it must be
adjusted to provide a consistently solution for all t.

III. LOCAL SPARSE COMPONENT ANALYSIS

Under matrix notation (1) satisfies Z = S + V, where
Z ≡ (zk,t)k,t is the M × N matrix of observations and
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S = ΦAX is the matrix of spatial components. The first
step is to calculate a sparse representation of Z under an
orthonormal wavelet transformation Φ

Ẑ = Ŝ + V̂ = ΦZ, (4)

where Ŝ = ΦAX. The transform Φ aims to sparsify the
spatial component representation, so that sk = akx

k, where
xk is the k-th row of X, has few significant coefficients in Ŝ,
located on a set Ik ⊂ {1, . . . ,M}, to be clustered. Appendix
VI-A provides a best basis wavelet packet analysis criterion
for reducing model complexity.

Before clustering the rows of Ẑ to obtain Ik, one should
denoise Ẑ considering that st = Axt ∈ Bs

1,1. At any fixed
time t, the l1-norm regularization in (3) (basis pursuit [4])
takes the form of a fully separable penalized regression in
the wavelet domain

min
ŝt

1

2

∑
k

(ẑk,t − ŝk,t)2 + λ
∑
k

|ŝk,t|. (5)

by whose first derivative, one can show its optimum is
attained via the soft-thresholding operator [9]

ŝk,t = sign(ẑk,t) max(|ẑk,t| − λ, 0). (6)

Using (6) to solve (5) for all t at once can result in setting
coefficients to zero for some values of t but not for other
values of t even when λ is large, unless one ties all ŝi,t’s
together for all values of t. To do so, we introduce group-
separable regularizers [17], where the thresholding operator
applies to appropriate jointly chosen groups of variables that
are simultaneously either shrunken or ignored together.

Let ẑk and ŝk be the k-th row of Ẑ and Ŝ respectively.
The aim of group shrinkage is to promote group sparsity in
Ŝ by changing the l1 penalization to an l2 penalization in
(3) and solving M minimization separate problems

min
ŝk

1

2
‖ẑk − ŝk‖22 + λk‖ŝk‖2, (7)

whose solution is determined by the vector soft-thresholding
operator [6]

ŝk =
max(‖ẑk‖2 − λk, 0)

‖ẑk‖2
ẑk, (8)

for 1 ≤ k ≤M . Appendix VI-C contains the appropriate λk
values based on the estimate for σ2 in Appendix VI-B.

In the third step group membership Ik is determined using
a contiguity-constrained clustering algorithm to Ŝ rows and
sk is estimated by applying Φ−1 to each cluster:

sk =
∑
i∈Ik

φ−1i ŝi, (9)

where φ−1i is the i-th column of Φ−1 (ΦT, for wavelet trans-
forms). Appendix VI-D provides a measure of dissimilarity
enforcing contiguity-constraint clustering by combining the
instantaneous correlation between the rows of Ŝ and the
physical distance between the φks’ centers of mass.

Finally, the hidden states xk are estimated using the scores
produced by the first principal component of sk and A is
obtained by maximizing the log-likelihood of (1) given xk.

−20 −10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δ = 1

SNR

A
b

s
o

lu
te

 C
o

rr
e

la
ti
o

n

LSCA x1
LSCA x2
PCA x1
PCA x2

−20 −10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δ = 3

SNR

−20 −10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δ = 5

SNR

Fig. 1. Comparison of efficiency of LSCA and PCA in recovering source
temporal information. Lines represent the mean correlation between the
simulated hidden state xk,t and the estimated hidden state x̂k,t across 30
simulations.

IV. NUMERICAL ILLUSTRATION

To gauge performance data were simulated using (1) on
an M = 64 × 64 grid of side length equal to ∆s = 0.30
for a pair of correlated sources (equal to 0.5) whose relative
distance δ is varied in addition to the amount of background
additive noise. An isotropic bivariate gaussian centered at
µ1 = [27 + δ, 27 + δ] and spreading over Σ1 = 3I2, where
I2 is the 2 × 2 identity matrix, was used as point spread
function for the first source. For the second source, we use an
anisotropic bivariate gaussian centered at µ2 = [37−δ, 37−δ]
and spreading over Σ2 =

[
9 0
0 1

]
.

The wavelet package (see VI-A) employed a library of 2D
Haar functions with wavelet coefficients up to level 3. The
regularization parameter λ (see VI-C) was chosen to repre-
sent the upper limit of an interval with 95% of confidence
for σ2. We set r = 9 (see VI-D) yet results are similar for
all neighbourhood sizes r = 3, . . . , 9. The hidden states were
assumed zero mean and unit variance independent random
variables. The figure of merit for source reconstruction was
the average value of the correlation between the simulated
hidden state xk,t and the estimated hidden state x̂k,t across
30 repetitions of each parameter combination. For PCA the
results were compared using the largest correlation between
xk,t and the identified hidden states.

A. Simulation results

Fig. 1 shows the LSCA superiorirty over PCA for N =
250 over the noise levels (σ2 = 1, 3, 5, 7, 9) corresponding
to SNR = −2.5,−7.5,−12.5,−17.5 and −22.5 db (SNR =
10 log10(VAR(s)/σ2) with s = vec([Ax1 · · ·AxN ]). This
suggests that LSCA outperforms traditional PCA and that
much information can be recovered even under very low
SNR.

V. EXPERIMENTAL RESULTS

For real data illustration, we used fMRI images from
one volunteer under a resting state protocol with results not
only in accord with current resting state theories but most
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importantly revealing subcortical regions hard to capture
using standard methods because of their small spatial scale.

A. Data Acquisition Details

Whole brain volumes of FMRI data (TR = 600sec,
TE = 33ms, 32 slices, FOV = 247 × 247 mm, matrix
size 128× 128, in plane resolution 1.975× 1.975 mm, slice
thickness 3.5mm with 1.8mm of gap) was acquired on a
3T system under resting condition using a Multiplexed Echo
Planar Imaging sequence (multi-band accelerator factor of
4) [11]. A high-resolution T1 image was also acquired with
an MPRAGE sequence (TR = 2500 ms, TE = 3.45 ms,
inversion time = 1000 ms, 256 × 256 mm FOV, 256 × 256
in-plane matrix, 1× 1× 1 mm voxel size, 7 ◦ flip angle).

B. Preprocessing

After motion and slice time correction and temporal high
pass filtering (allowing fluctuations above 0.005Hz) using
FEAT v5.98, the FMRI data was aligned to the grey-
matter mask via FreeSurfer’s automatic registration tools (v.
5.0.0) resulting in extracted BOLD signals at regions with
preponderantly neuronal cell bodies.

C. Real Data Results

Using 3D Haar functions to generate the sparsifying
transform up to level 3 (other paramenters as in IV), nine well
localized spatial components emerged from 28 image slices
of FMRI images covering cortical and subcortical structures
(M = 458752 voxels) and comprising visual (inferior occip-
ital sulcus (IOS)) and sensory (superior parietal gyrus (SPG))
cortices, the default mode network (precuneus (PC), anterior
cingulate (AC), inferior frontal gyrus (IFG)), the attention
network (frontal pole (FP)), the basal gaglia (BG) and
thalamus (THA), see Fig. 2. As expected, these components
reflect most of data variability and coincide with traditional
resting state regions observed across individuals, different
data acquisition and analysis techniques [2]. Furthermore,
small regions such as the thalamus and the basal ganglia,
often overlooked by ICA and seed based techiniques [7],
[2], clearly appeared. This suggests that the present wavelet
approach can identify structures often obscured by standard
methods.

Fig. 3 illustrates the signals and their wavelet cross spec-
trum (WCS) for (a) the right and left estimated SPG and (b)
right estimated IOS and AC. As expected, these regions are
very correlated and their correlation varies over time. The
time interval with the highest level of correlation is disjoint
among these pairs of regions, indicating that the method
successfully distinguishes sources that are not independent
and which may even be nonstationary.

VI. CONCLUSION

By taking advantage of BOLD signal local nature, we
developed a new BSS method capable of improved FMRI
dataset characterization. Due to space constraints, we have
left systematic comparison to other methods and the consid-
eration of other mother wavelets for future work.

(a) BG, right IOS and right SPG.

(b) PC, AC and right IFG. (c) left SPG, THA and FP.

Fig. 2. Location of the nine spatial components found by LSCA.

(a) Right (blue) and left SPG (red).

(b) Rigth IOS (blue) and AC (red)

Fig. 3. Figure illustrating two pairs of selected recovered signals and their
respective WCS (see text).

APPENDIX

A. Proposed Extensions For Dynamic Wavelet Packets

For ease of notation, let M = 2J , for J > 0 for the
wavelet packet library L = {Wn}n [5]. For fixed t, consider
the following spatial multiresolution analysis of zt

zt =
∑

(j,n)∈P

2j−1∑
k=0

wj,n,k,twj,n,k, (10)

where P = {(j, n)} ⊂ N× N is a collection of indexes and
wj,n,k = [Wn(2js1 − k), . . . ,Wn(2jsM − k)]T, (j, n) ∈ P
and 1 ≤ k ≤ 2J . If P is such that the intervals [2jn, 2j(n+
1)) form a disjoint covering of [0, 2J), the vectors wj,n,k

form a complete and orthonormal basis of RM [5].
Among all bases generated by L, it is possible to obtain

a complete and orthonormal best basis prioritizing the com-
ponents of zt of largest variance. For this it is necessary to
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define a criterion upon which the importance of each wavelet
packet Wj,n = {wj,n,1, . . . ,wj,n,2j−1} in (10) is judged.

Due to orthonormality, the power of zt is the sum of the
wavelet coefficient powers

E(zTt zt) = E
(∑

(j,n)∈P
∑2j−1
k=0 (wj,n,k,t)

2wT
j,n,kwj,n,k

)
=

∑
(j,n)∈P

∑2j−1
k=0 E

(
w2
j,n,k,t

)
=

∑
(j,n)∈P

∑2j−1
k=0 VAR(wj,n,k,t), (11)

where VAR(x) denotes the time variance of x. The
last equality in (11) follows from E(zt) = 0 implies
E(wj,n,k,t) = 0 for all (j, n) ∈ P e 1 ≤ j ≤ 2J .

As VAR(wt,j,n,k) = σ2 if and only if wt,j,n,k is noise,
we set the following cost function

Cσ2 ({Wj,n}) =

2j−1∑
k=1

1
(
VAR(wj,n,k,t) ≥ σ2

)
, (12)

called dynamic thresholding cost function. Note that
Cσ2 ({Wj,n}) is additive, and so can be used in a best basis
selection algorithm of linear complexity.

B. Additive Noise Estimation
If R = σ2IM×M , then v̂k ∼ N

(
0, σ2IN×N

)
due to the

orthogonality imposed by Φ, where v̂k is the k-th row of V̂.
Assuming zt is sparse under Φ implies that most of {ŝk,t}∀k
are zero or equivalently that most of {ẑk,t}∀k are just noise.
This observation motivates the following estimator for σ2

σ̂2 = median∀k ˆVAR{ẑk,t}, (13)

where ˆVAR denotes temporal sample covariance. It is easy
to see that (13) is unbiased provided that fifty percent of
{ŝk,t}∀k are zero.

C. Setting the regularization parameter
As a rule of the thumb we clip ẑk,t so that most noise-

related coefficients lie below (13) with high probability.
If VAR{ŝk,t} = 0, then ẑk,t are independent normally
distributed random variables, then one may readily show that
this is attained if

λk =
(N − 1)2σ̂2

χ2
α/2,N−1

, (14)

where χ2
α/2,N−1 is the α/2-th percentile of the chi-square

distribution with N − 1 degrees of freedom.

D. Contiguity-constrained Hierarchical Clustering Algo-
rithm

The clustering begins with each time series ŝk , 1 ≤ k ≤
M , defining a singleton cluster. At each step, clusters pairs
(A,B) from the previous step are joined if they minimize
the following criterion

max {dist(ŝi, ŝj) : i ∈ A, j ∈ B}, (15)

where

dist(ŝi, ŝj) =

{
∞, ‖φ̄i − φ̄j‖2 > r

1− |cor(ŝi, ŝj)|, otherwise,
(16)

where φ̄i =
∫
Rd s|φi|2ds/

∫
Rd |φi|2ds defines de center

of mass of φi. In short, the above criterium combines a
complete-linkage strategy and dissimilarity measure account-
ing for the absolute correlation restricted to nearby sources
only.
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