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Abstract— Wireless Capsule Endoscopy (WCE) is progres-
sively emerging as one of the most popular non-invasive imaging
tools for gastrointestinal (GI) tract inspection. As a critical
component of capsule endoscopic examination, physicians need
to know the precise position of the endoscopic capsule in order
to identify the position of intestinal disease. For the WCE, the
position of the capsule is defined as the linear distance it is away
from certain fixed anatomical landmarks. In order to measure
the distance the capsule has traveled, a precise knowledge of
how fast the capsule moves is urgently needed. In this paper,
we present a novel computer vision based speed estimation
technique that is able to extract the speed of the endoscopic
capsule by analyzing the displacements between consecutive
frames. The proposed approach is validated using a virtual
testbed as well as the real endoscopic images. Results show that
the proposed method is able to precisely estimate the speed of
the endoscopic capsule with 93% accuracy on average, which
enhances the localization accuracy of the WCE to less than 2.49
cm.

I. INTRODUCTION

Wireless Capsule Endoscopy (WCE) is progressively
emerging as one of the most popular non-invasive imaging
tools for gastrointestinal (GI) tract disease diagnosis. Com-
pared with the traditional wired colonoscopy or enteroscopy,
WCE offers a patient-friendly, noninvasive and painless
investigation of the entire small intestine, which other wired
video endoscopic instruments can hardly reach. As a critical
component of the capsule endoscopic examination, physi-
cians need to know the precise position of the endoscopic
capsule in order to identify the position of the abnormality
after it is found by the video source.

A good review of existing localization techniques for the
WCE is given in [1]. However, most of these methods aim to
find the 3D coordinate of the endoscopic capsule, but from
the physicians’ point of view, knowing how much linear
distance that the capsule has traveled away from certain
anatomical landmarks is more useful for them to identify
the position of the lesions during the open surgery [2]. An
commonly used approach to measure this linear distance is
to assume the capsule travels at a constant speed and the
approximate position of the capsule is estimated by keeping
track of the time it traveled away from landmarks, such as
pylorus and ileocecal valve. But in reality, the speed of the
capsule varies a lot propelled by the open and close intestinal
motility (“peristalsis”). Therefore, when using this approach,
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the further the capsule moves away from these landmarks,
the greater the error is.

To enhance the localization accuracy, a precise knowledge
of how fast the capsule moves is urgently needed. In this
paper, we present a novel computer vision based speed
estimation technique that is able to accurately estimate the
speed of the WCE by analyzing the displacements of com-
mon portion of the scene between consecutive endoscopic
frames. The position of the capsule, defined as the distance
away from certain landmarks, is found by integrating the
speed over the elapsed time. The major contribution of this
paper is that we present a quantitative way to calculate
the temporary speed of the endoscopic capsule rather than
assuming it travels at a constant speed, thereby, improve the
localization accuracy of the WCE inside small intestine by
significance. The performance of our approach is validated
under a virtual testbed as well as the real images. Results
show that the proposed approach is able to provide speed
estimation accuracy no less than 93% and improve the
localization accuracy to less than 2.49 cm in terms of linear
distance.

The rest of the paper is organized as follows: in section
I, we descried the detailed procedure of how to estimate
the speed of the endoscopic capsule using computer vision
technique. In section III, experimental results of the proposed
speed estimation approach are given with analytical discus-
sion. Finally, conclusion is drawn in section I'V.

II. MATHODOLOGY

The translation of the endoscopic capsule inside the small
intestine can be modeled as a tiny camera passing through
a elastic cylindrical tube. Since the WCE continuously takes
pictures at a rate up to 6 frames/sec, common portions of the
scene may present between consecutive images [3]. These
portions of the images are called “feature points” (FP). The
pattern and magnitudes of the displacements of these feature
points can be used as a hint to reveal the speed of the
endoscopic capsule.

A. Feature Points Matching

To make an accurate estimation of the capsule’s speed,
it’s very important that the FPs extracted from the refer-
ence (first) frame can be accurately located in the follow-
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(a) Corresponding feature points between two consecutive frames

Fig. 1.

ing frames. The Affine Scale-invariant Feature Transform
(ASIFT) defined by the affine camera model in Eq. 1,
is a perfect matching tool for the WCE images due to
its immune property to viewpoint changes, blur, noise and
spatial deformations.
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where R represents rotation and 7 represents tilt. W is
rotation angle of camera around optical axis. ® is longitude
angle between optical axis and a fixed vertical plane. A is
zoom parameter. Detailed procedure of FPs matching using
ASIFT can be found in [4]. An example of feature points
matching is given in Fig. 1 (a), in which blue “0” represents
the coordinates of detected FPs in the reference frame, red
“o0” represent the coordinates of matched FPs on the second
frame. If we connect the corresponded FP pairs on the same
frame (as shown in Fig. 1 (b)), a bunch of motion vectors will
be generated representing the displacements of FPs between
frames.
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B. Quantitative Calculation of Speed

We use Fig. 2 to illustrate the procedure of calculating
the speed of WCE. In Fig. 2, point P is a FP detected at
a distance D from the initial position of the camera C with
its angular depth equal to 6;. After the camera has moved
forward by a distance d to a new position C’, the angular
depth of P changes to 6,. The changes in angular depth can
be used to calculate the displacement of the capsule.

R R
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replacing D in Eq. 3 with Eq. 2, we get:
R tan6,
d= 1- 4
tan6, ( tan91> “)

where R is the radius of the small intestine. Since the small
intestine is a nonrigid environment, R changes as the small
intestine contracts. In our previous work [5], we developed
an algorithm that can automatically determine the radius R by

(b) Formation of motion vectors

Feature matching between two consecutive images using A-SIFT

Fig. 2. Geographic model for speed estimation

measuring the size of black hole in the image. If we assume
the time interval between the frames is half a second (which
can be up to 6 frames / sec for the most recent released
capsules), the speed of the capsule can be calculated by:

N Z a tanBy;
Z tan92, < ) )

tan0y;
where N equals to the total number of all detected FPs.
From Eq. 4 it can be seen that information on depth of
FP is factored into the final expression of distance moved
by the capsule. In this way, the actual displacement d of the
camera is independent of the location of the FP chosen in
the image.

C. Image Unrolling

To facilitate the derivation of angler depth, we map the
coordinate (x,y) of any point on the original cylindrical
image plane to the unrolled image plane (x',y’) by:

L
/ /!
. = 6
X=5r Y= (6)
where ¢ is the angle between point P and horizontal axis.
¢ =tan™! <y— )’0) @)
X — X0

r is the radius of the circular ring associated with point P
that can be calculated by:

r=1/(e—x0)?+(y—y0)*. ®)

L and H are length and height of the unrolled image plane
respectively. Fig. 3 shows the result of image unrolling.
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Fig. 3. Image unrolling

In this unrolled image plane, x’ axis represents the radian
angle ¢ whose value ranges from O (when x' = 0) to 27
(when X' = L). y’ axis represents angular depth which reflect
the distance away from the camera. y = 0O represents a 0
angular depth and y' = H gives the maximum field of view 1
of the camera. Under this new coordinate system, the angular
depth of any point P can be calculated directly through its
y' value by:

~ (Y
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ITII. EXPERIMENTAL RESULTS AND ANYLYSIS

Validation of the proposed speed estimation algorithm is
extremely difficult. One of the major reasons is that we
have limited control of the capsule after it is swallowed
by the patient, so we could not verify the performance
of the algorithms [2], [6]. Besides, experiments on human
subjects are strictly restricted by law. Thus, the only way
to quantitatively test our speed estimation algorithm is to
create a virtual emulation testbed. In our previous work [7],
we established a virtual testbed for validation purpose (as
shown in Fig. 4 ). The virtual test bed shared the same size,
texture and topology with the real small intestine and we
move a camera view point inside the testbed at known time-
variant speed and takes pictures at 2 frames / sec. Similar
emulation set up can be found in [6], [8], [9]. In this way,
by applying the proposed speed estimation algorithm to the
emulated image sequence, the quantitative performance of
the proposed approach can be validated.

A summary of the experimental results is given in Table
1. The average speed of the capsule inside small intestine
is 0.48 mm/s. It can be seen from Table 1 that more FPs
are detected when the capsule moves slowly. As long as the
speed of the capsule stay below 4 mm/s, the proposed speed
estimation algorithm is able to provide estimation accuracy
no less than 93%. Thus, it fullfills the accuracy requirement
for the WCE application. As the speed increases, since
the overlap portion between consecutive frames becomes
smaller, less FPs are detected, which affects the accuracy of
the proposed speed estimation algorithm. When the capsule’s
speed reach to 10 mm/s, almost no common portion present
between the frames, thus, no FPs are detected the algorithms
fails.

Real endoscopic image Emulated endoscopic image

Fig. 4. Emulation testbed for speed estimation

TABLE I
SPEED ESTIMATION RESULTS UNDER TESTBED

Average speed  Number of detected FPs  Average estimation errors

1 (mm/s) 79 0.022 (mm/s)
4 (mm/s) 32 0.298 (mm/s)
10 (mm/s) NA NA

Then we compare the localization results using the pro-
posed speed estimation method with the previously men-
tioned constant average speed method. 5000 artificial frames
were generated by moving the view point inside the virtual
testbed with speeds various from 0 to 4 mm/s. The position
of the capsule is determined by calculating the distance it
has traveled away from the starting point. Fig. 5 shows the
comparative localization results of using both methods. We
found that the average error of using the proposed speed
estimation is able to provide accuracy less than 2.71 cm on
average compared with up to 27 cm error that constant speed
algorithm provides.

We also tested our algorithm with the real clinical data.
Fig. 6 shows a sequence of 60 endoscopic frames. After
applying our speed estimation algorithm, a plot of the
corresponding speed is given underneath. Since we do not
have precise control of the capsule, we are not able to
perform quantitative evaluation, but we can examine the
images manually by visual inspection. As shown in Fig. 6,
the whole image sequence can be divided into 4 sections
marked by A, B, C, and D. It can be seen that during
section A and C, the scene almost stays still which indicates

[+ Localization using constant speed
| — Localization using proposed speed estimation approach
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Fig. 5. Comparative localization results between the proposed method and
constant speed method
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Fig. 6. Speed estimation results of a sequence of real endoscopic images
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Fig. 7.

a slow motion of the capsule, while in section B and D,
the capsule moves faster. The trend of the corresponding
speed estimation plot matches this observation. To further
validate our algorithm, we compared the statistical results of
clinical data (4 short video clips and 1 long video clip) from
5 different patients. The results are shown in Fig. 7. It can be
seen although the video clips are from different individuals,
after applying our speed estimation algorithm, the estimated
speed shares very similar distribution in term of probability
density function (PDF) and cumulative distribution function
(CDF).

IV. CONCLUSIONS

In this paper, we present a novel computer vision based
speed estimation technique to facilitate the localization of
WCE inside small intestine. The proposed method extracts
the speed of the endoscopic capsule by processing the
video source that comes with the endoscopic examination,
therefore, no extra device is needed. Experimental results
show that our method is able to precisely estimate the speed
of endoscopic capsule and enhance the localization accuracy
of WCE by significance.
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