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Abstract— In recent years, permutation entropy is widely
used to characterize the complexity of EEG time series and can
be applied to predict the onset of serious brain diseases, such as
the epileptic seizure. In many practical situations, the number
of EEG time series that need to be analyzed simultaneously is
very large, so the computation of the permutation entropy is
time-consuming and should be accelerated so that the real-time
analysis is possible. Noting that mathematical operations can be
sped up effectively with hardware implementation, we design
a parallel FPGA platform consisting of 128 reconfigurable
pipelines, which are used to calculate the permutation entropy
for a single EEG time series. When the platform works at
150MHz and the embedding dimension is 5, an average speedup
of 5553 for different window sizes is achieved compared with
C codes running on a 3GHz Intel(R) Core(TM) i5-2320 CPU.
Meanwhile, the hardware cost is very low.

I. INTRODUCTION

Nowadays, a growing number of people suffer from seri-
ous brain diseases. However, scientists fortunately find that
the complexities of EEG signals of patients start to change
in advance of the clinical diagnosis. That’s to say, if we can
record transitions of EEG signals earlier, we could adopt
some measures to prevent these diseases from happening.
Then, creating a good measure to characterize the complexity
of EEG signal is crucial.

During the last two decades, lots of methods have been
proposed to measure the complexity of EEG signal, such as
Kolmogorov entropy [1], Lyapunov exponents [2], permuta-
tion entropy [3] and weighted-permutation entropy [4] etc.
Among these measures, the permutation entropy is widely
used because of its simplicity and robustness. Benefiting
from its advantages, permutation entropy has a great po-
tential to be used in real-time applications. Lots of studies
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about the complexity analysis of patients’ EEG signals with
permutation entropy have been conducted [5] [6].

In physical applications, we usually need to analyze EEG
data in real time. However, current instruments used to record
EEG signals usually have 64 channels, 128 channels or
even more. Therefore, if you want to apply permutation
entropy to real-time applications, you have to complete all
the analysis of these EEG signals in real time simultaneously.
Even though permutation entropy is simple and easy to com-
pute, it’s impossible to complete all these calculations with
software timely. Note the fact that mathematical operations
could be accelerated in orders of magnitude by hardware
implementation [7], we explore the permutation entropy
acceleration through hardware platform, instead of software
implementation, so as to satisfy the real-time demand. Mean-
while, EEG data recording of patients is a long-term process.
This requirement also drives us to design a simple wearable
device which could collect EEG data without disturbance for
our daily lives [8].

In this paper, we design a 128-way reconfigurable parallel
hardware acceleration platform for the real-time calculation
of permutation entropy with FPGA. When it works at
150MHz and the embedding dimension is 5, an average
speedup of 5553 for different window sizes is achieved ver-
sus C implementation. The paper is organized as follows. A
brief description of permutation entropy is shown in section
II. Section III elaborates the architecture of hardware design.
In section IV, performance evaluation and implementation
results are shown. At last, section V concludes our work.

II. PERMUTATION ENTROPY

Considering the time series {xt}Tt=1 and its time-delayed
embedding representation Xn,τ

t = {xt, xt+τ , ..., xt+(n�1)τ}
for t = 1, 2, ..., T − (n − 1)τ , where n and τ denote the
embedding dimension and time delay respectively. In order
to simplify the hardware design, we set the time delay to
1. Then, time series {xt}Tt=1 has T − (n − 1) subvectors
expressed as Xn

t = {xt, xt+1, ..., xt+n�1}. To compute
permutation entropy, every subvector is assigned a single
permutation type out of n! possible ones (representing all
unique orderings of n different real numbers). Then the
permutation entropy of embedding dimension n ≥ 2 could
be calculated with the following formula:

H(n) = −
n!∑
i=1

p(πi) log p(πi) (1)
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Fig. 1. The Microarchitecture of Pipeline

Where log is with base 2, πi is one of the n! permutation
types {πi}n!i=0 and p(πi) is defined as:

p(πi) =
‖{t|t ≤ T − n+ 1, type(Xn

t ) = πi}‖
T − n+ 1

(2)

Where ‖.‖ denotes the cardinality of a set. So permutation
entropy is the information contained in comparing n consec-
utive values of the time series and it assumes values in the
range of [0, log n!].

III. HARDWARE IMPLEMENTATION

The microarchitecture of pipeline used to compute the
permutation entropy of one-channel EEG signal composes
of two parts: permutation type generation and permutation
entropy calculation, as shown in Fig.1. They are operated at
two different clock rates and the frequency of clock domain
2 is twice as large as clock domain 1, the reason is elaborated
in the last paragraph of subsection III.B. Once a sample
datum comes, a new permutation type is generated. Then,
permutation type is passed into the latter part of this pipeline
to update the result of permutation entropy.

A. Permutation Type Generation

The hardware implementation used to calculate the per-
mutation type is reconfigurable so that it could support dif-
ferent embedding dimensions. In our design, the embedding
dimension could be 2, 3, 4 or 5 as required. Fig.1 shows
that the generation of a permutation type should go through
four pipeline stages. Firstly, we need to shift values of all
input buffers to their corresponding upper ones to record and

update the data sequence. Meanwhile, the new sample datum
is buffered in Input Buf1. Then data from Input Buf2 to
Buf5 are compared with the new input datum simultaneously.
In the third stage, there are four shift registers storing the
comparison results. These four registers shift one bit to the
right after every comparison operation. At last, the fourth
stage outputs the result of permutation type according to the
configuration value of embedding dimension.

Let’s take a look at how the output is reconfigured
in the light of embedding dimension. Assuming ai
is the new coming datum stored in Buf1, then data
of Input Buf2 to Buf5 are respectively ai�1, ai�2,
ai�3 and ai�4. If we define cm,n as the comparison
result between am and an, values in the comp result1
register are [ci�1,i, ci�2,i�1, ci�3,i�2, ci�4,i�3] and
[ci�2,i, ci�3,i�1, ci�4,i�2], [ci�3,i, ci�4,i�1], [ci�4,i] are
values in comp result2, comp result2 and comp result3.
The setting value of embedding dimension will determine
which element of these four comparison-result registers
could go through the multiplexer. When embedding
dimensions are 2, 3, 4 and 5, the corresponding
permutation type results are [ci�1,i, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ci�1,i, ci�2,i�1, 0, 0, ci�2,i, 0, 0, 0, 0, 0], [ci�1,i, ci�2,i�1,
ci�3,i�2, 0, ci�2,i, ci�3,i�1, 0, ci�3,i, 0, 0] and [ci�1,i,
ci�2,i�1, ci�3,i�2, ci�4,i�3, ci�2,i, ci�3,i�1, ci�4,i�2, ci�3,i,
ci�4,i�1, ci�4,i] respectively. At last, the pipeline
implementation and four parallel comparators guarantee that
the throughput of the permutation type generation unit is
one result per cycle without any stalls.
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B. Permutation Entropy Calculation

Once we get a permutation type, it can be used to update
the value of permutation entropy. Considering an EEG time
series {x1, x2, ..., xi, xi+1, ...}, it is analyzed using a sliding
window contains T samples and the embedding dimension
is n, where n ≤ T . So the ith window contains sample
data {xi, xi+1, ..., xi+T�1} and {xi+1, xi+2, ..., xi+T } is the
sample data of the (i + 1)th window. It’s obvious that
only xi and xi+T can lead to the difference of permutation
entropy between the ith window and the (i+ 1)th window,
because xi makes the occurrence number of permutation
type of subvector Xn

i decrease by 1 and xi+T increases
the occurrence number of permutation type of subvector
Xn
i+T�(n�1) by 1. We define the permutation type of Xn

i

and Xn
i+T�(n�1) as πdecrease and πincrease. If πincrease and

πdecrease are different, the permutation entropy of (i+ 1)th
window could be updated by formula (3). Otherwise, H(n)
remain unchanged. Furthermore, there is no πdecrease in the
first window, so the permutation entropy of the first window
should be calculated by formula (4).

The latter part of Fig.1 shows the hardware structure
which could complete the update of permutation entropy
as described above. The control unit is used to schedule
different steps of update. All control signals are generated
according to the configured values of embedding dimension
and window size. The FIFO is used to record πdecrease and
the occurrence number of every permutation type is logged in
the LogFILE. Four fractions of formula (3) are all calculated
with fix-point divider DIV. Fix-to-float unit transforms the
fix-point results of divider into float-point format. In order
to save hardware cost, the logarithm function defined in [0, 1]
is quantized to a finite LUT (look-up table). Although the
quantized (2048 values) logarithm approximation can lead
to some error, experimental results of subsection IV.A show
that the calculation error is negligible. The first product item
of formula (3) adds with the third one with an adder, so do
the second item and the fourth one. Accumulator performs
addition and subjection alternatively so that the permutation
entropy is updated as formula (3).

As shown in formula (3), two product terms need to be
calculated for each πdecrease and πincrease, so the clock
of permutation entropy calculation unit should have twice
higher frequency than permutation type generation unit.
Meanwhile, the adoption of a dual-port LogFILE enables
operations of πdecrease and πincrease perform in parallel,
accelerating the computation rate.

C. Structure of LogFILE

In our design, LogFILE is a very important component,
because it records the occurrence number of every permu-
tation type in real time during the analysis of EEG time
series and its excellent hardware structure makes the parallel
operations of πdecrease and πincrease possible. Fig.2 shows
the detailed structure of LogFILE. The storage body is a
read-first SRAM which has two input ports and two output
ports. πincrease and πdecrease are connected to addr1 and
addr2 respectively. Therefore, data in1 and data out1 are

responsible for the operations needed by πincrease. Similarly,
data in2 and data out2 belong to πdecrease.

Because clock domain 2 is twice faster than clock domain
1, the values of πincrease and πdecrease are kept constant
during two clock cycles. In the first cycle, data out1 and
data out2 are assigned by the values of SRAM outputs,
namely ‖πincrease‖ and ‖πdecrease‖. At the same time,
‖πincrease‖+1 and ‖πdecrease‖−1 are assigned to data in1
and data in2. During the second clock cycle, ‖πincrease‖+1
and ‖πdecrease‖ − 1 are outputted thorough data out1 and
data out2. Meanwhile, ‖πincrease‖+ 1 and ‖πdecrease‖ − 1
are written into SRAM. However, if πincrease is equivalent
to πdecrease, it’s unnecessary to perform the above operations
because the state of SRAM does not change any after these
effort. Therefore, we can keep SRAM unchanged and output
‖πincrease‖ and ‖πdecrease‖ directly in two clock cycles
when πincrease and πdecrease are identical. At last, we have
to pay more attention to the first window where operations of
πdecrease don’t exist. Hence, wr en2, data in2 and data out2
should all keep “0” in the first window, but operations of
πincrease are the same as above description.

RAM

+1

-1-1

“0”

“0”

“0”

“0”

in_Src1

in_Src2

out_Src1

out_Src2

data_out1

data_out2

data_in1

data_in2

wr_en1

wr_en2

+1

addr1

addr2

Fig. 2. Hardware Structure of LogFILE

IV. EVALUATION
In physical applications, we usually need to collect EEG

data from 64, 128 channels or even more. Therefore, we
should compute permutation entropies for all of these EEG
time series simultaneously. Given this, by simply instantiate
the pipeline of Fig.1 128 times, we implement a 128-way
parallel hardware acceleration platform with FPGA. Through
parallel computing, we could get the permutation entropies
of 128 EEG time series in real time simultaneously. The
FPGA platform we used is Xilinx Virtex-7 XC7V2000T, the
state-of-the-art FPGA device.

A. Accuracy of Hardware Design

Given the quantized logarithm LUT could bring some
computation error, the accuracy of our hardware platform
is testified firstly. We use our FPGA platform to calculate
permutation entropies for 128-way EEG time series that
come from the Computational NeuroEngineering Laboratory
of UFL. Each EEG time series contains 4200 sample data
which are collected when people are required to watch a
face picture. We compare our results with C implementation.
The maximum error and average error for different window
sizes and embedding dimensions are recorded in table I. It
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shows that nearly every average error is less than 0.15%.
Furthermore, all of the maximum errors are also so small that
they are negligible. Therefore, we can definitively conclude
that all permutation entropy results are calculated precisely
with our parallel FPGA platform.

TABLE I
CALCULATION ERROR OF FPGA PLATFORM

Window Embedding Maximum Average
size dimension error(%) error(%)

3 0.150 0.070
256 4 0.229 0.147

5 0.349 0.212
3 0.115 0.070

512 4 0.174 0.116
5 0.211 0.158
3 0.057 0.034

1024 4 0.097 0.058
5 0.105 0.078

B. Speedup Analysis

Our FPGA platform is designed to accelerate the com-
putation of permutation entropy so that it could be applied
in real-time applications. Therefore, we test its speedup
versus C codes. In the experiment, the FPGA platform works
at 150MHz, namely that the clock domain 1 is 150MHz.
No matter what the values of window size and embedding
dimension are set to, the FPGA platform accepts one sample
datum per clock cycle, so the execution time of FPGA
is a constant. As for the C implementation, we also use
formula (3) and (4) to compute the permutation entropy.
Because the number of sample data is fixed at 4200, with
the increase of window size, formula (4) is computed more
times and less times for formula (3). What’s more, the
amount of computation in formula (4) is less than formula
(3). Therefore, the bigger the window size, the shorter the
execution time for C implementation. The C code runs on
a desktop which is configured with 4GB main memory
and a 3GHz Intel(R) Core(TM) i5-2320 CPU. During the
experiment, window size and embedding dimension are set
to different values. Table II shows that when embedding
dimension is 3, 4 and 5 respectively, corresponding average
speedup for different window sizes are 4555, 4965 and 5553.
So the computation rate is sped up considerably.

TABLE II
SPEEDUP VERSUS C LANGUAGE

Window Embedding FPGA C Speedup
size dimension (µs) (ms)

3 28.203 140.947 4998
256 4 28.203 151.994 5389

5 28.203 165.935 5884
3 28.203 132.090 4684

512 4 28.203 142.492 5052
5 28.203 156.014 5532
3 28.203 112.316 3982

1024 4 28.203 125.584 4453
5 28.203 147.830 5242

C. Implementation Result

The parallel FPGA platform is implemented in Verilog and
synthesized with Xilinx EDA tool named Vivado. Hardware
resource cost is summarized in table III. All functional

units perform operations in IEEE single-precision format,
and 47.41% DSP IPs is needed. 49.54% BRAM (Block
RAM) is used to implement the FIFO, LogFILE and LUT of
logarithm function. As for the FF (Flip-flop) and LUT, two
main resources of FPGA, the utilization rate are only 17.88%
and 25.21% respectively. Therefore, we can claim that the
FPGA platform is implemented at a very low hardware cost.

TABLE III
IMPLEMENTATION RESULT OF FPGA PLATFORM

Resources Utilized Available Utilization Rate(%)
FF 436736 2443200 17.88

LUT 307968 1221600 25.21
Memory LUT 1280 344800 0.37

I/O 67 1200 5.58
BRAM 640 1292 49.54
DSP48 1024 2160 47.41
BUFG 3 128 2.34

MMCM 1 24 4.17

V. CONCLUSIONS
In this paper, a hardware acceleration platform which

could complete the real-time calculation of permutation
entropies for 128 different EEG time series in parallel is
achieved at a very low hardware cost. It consists of 128
pipeline circuits, which are used to compute the permutation
entropy for a single EEG channel. The pipeline is reconfig-
urable so as to support different window sizes and embedding
dimensions as demanded. Compared with C implementation,
the FPGA platform which works at 150MHz is 4555, 4965
and 5553 times faster for different window sizes when the
embedding dimension is 3, 4 and 5 respectively.
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