
  

 

Abstract— Cognitive workload is an important element of 

cognitive-motor performance such as that exhibited during the 

piloting of an aircraft. Namely, an increase in task demands on 

the pilot can elevate cognitive information processing and, thus, 

the risk of human error. As such, there is a need to develop 

methods that reliably assess mental workload in pilots within 

operational settings. The present study contributes to this 

research goal by identifying physiological and brain 

biomarkers of cognitive workload and attentional reserve 

during a simulated aircraft piloting task under three 

progressive levels of challenge. A newly developed experimental 

method was employed by which electroencephalography (EEG) 

was acquired via a dry (i.e., gel-free sensors) system using few 

scalp sites. Self-reported responses to surveys and piloting 

performance indicators were analyzed. The findings revealed 

that as the challenge (task demands) increased, the perceived 

mental load increased, attentional reserve was attenuated, and 

task performance decreased. Such an increase in task demands 

was also reflected by changes in heart rate variability (HRV), 

as well as in the amplitude of the P300 component of event-

related potentials to auditory probes, and in the spectral power 

of specific EEG frequency bands. This work provides a first 

step towards a long-term goal to develop a composite system of 

biomarkers for real-time cognitive workload assessment and 

state assessment of pilots in operational settings. 

I. INTRODUCTION 

Human cognitive-motor performance is highly dependent 
on the efficiency of allocation of brain resources during 
demanding tasks such as the piloting of aircraft, which is 
multifaceted in nature. The increase of task demands on a 
pilot can result in an increase of mental workload and a 
corresponding reduction of attentional reserve. If such 
attentional reserve is depleted below a certain threshold, the 
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cognitive processing of incoming information can be delayed 
or even impeded, leading to a high likelihood of human error 
[1,2]. As such, many studies have examined mental workload 
in the aviation domain [2-5]. Specifically, the goal of new 
fields such as operational neuroscience and augmented 
cognition is to identify robust physiological markers to 
assess/monitor changes in cognitive workload. This would 
allow for the development of adaptive human-machine 
interfaces, novel methods for selecting/training pilots, and 
any applications involving human-machine interactions [6].  

In order to quantify the cognitive workload in pilots, 
previous studies have examined various psychophysiological 
signals (e.g., HRV, EEG, eye movements, and pupillometry) 
[7]. Overall, these studies used EEG systems that are gel-
based, which can be problematic in operational settings due 
to time-intensive preparatory routines. Also, typical montages 
include multiple electrodes; however, the availability of brain 
markers of cognitive workload using a limited number of 
electrodes would reduce the preparatory burden, 
computational cost of the EEG, and subsequently be better 
suited for real-time processing in operational contexts. A new 
method using EEG-derived ERPs was used here to assess 
cognitive workload by evaluating attentional reserve [8]. 

Therefore, the proposed study provides a unique 
contribution to the existing literature by: i) examining 
physiological (i.e., HRV) and brain biomarkers (i.e., spectral 
content, ERPs) of cognitive workload and attentional reserve 
in pilots employing few dry (i.e., gel free) EEG electrodes 
during a series of tasks characterized by various flight 
demands, and ii) assessing if the new method developed by 
Miller et al. [8] can be used with dry EEG sensors in more 
ecologically valid tasks (flight simulator) to detect cognitive 
workload with resolution beyond the binary low/high 
demand. This study is an initial step in identifying and 
selecting multiple biomarkers to form a composite metric 
sensitive to the dynamic construct of cognitive workload and 
attentional reserve while combining data mining (i.e., feature 
selection) and classification (i.e., machine learning) 
techniques. Our long-term goal is to develop an approach 
using single/few trials for combining multiple markers 
characterized by different time scales and allowing for real-
time assessment of the cognitive workload/attentional reserve 
via the use of portable systems (e.g., dry EEG system in 
concert with other biomarkers) in ecologically valid settings. 

II. MATERIALS AND METHOD 

A. Task 

Thirty-eight healthy young participants (ages ranged from 
19 to 23 years) who were enrolled in the United States Naval 
Academy (USNA) Powered Flight Program and received 
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training in basic flight instruments enrolled in this study. 
They performed a visuo-motor task in a flight simulator 
(Prepar3D

®
 v1.4, T-6A Texan II SP2 USN aircraft, Lockheed 

Martin Corporation™) at the USNA in three scenarios each 
having a different task demand. Each scenario was composed 
of a 1-minute familiarization period followed by a 10-minute 
flight challenge during which performance (i.e., airspeed, 
altitude, heading, and vertical speed) was recorded. The three 
progressively challenging scenarios (S1, S2, and S3) were 
defined as follows: i) S1 (low demand): The goal was to 
maintain the aircraft’s current altitude, heading, and airspeed 
while maintaining a straight and level course. The weather 
was defined by the absence of clouds, precipitation, and wind 
with unlimited visibility; ii)  S2 (medium demand): The 
goal was to maintain the aircraft’s current heading, airspeed, 
and a “wings-level” attitude while continuously making 
assigned altitude changes within a specified ascent and 
descent rate. The weather contained no precipitation or wind, 
but visibility was zero; iii) S3 (high demand): The goal was 
to maintain the aircraft’s current airspeed, while constantly  
changing the heading at a 15-degree angle of bank, ascending 
while turning right and descending while turning left. 
Visibility was zero, as in S2, with no precipitation, but with a 
moderate wind. These three scenarios were selected from 
predefined flight training challenges with minor alterations 
developed by experienced pilots from the USNA. 

 

Figure 1: Experimental set-up. Participants executed three flight scenarios in 

a simulator while wearing the dry EEG cap, ECG sensor, and ear-bud 
speakers. Participants controlled the aircraft using the control stick (between 

knees) with the right hand, the throttle with left hand, and the rudder pedals 

with both legs. Performance, EEG and ECG were recorded while probe 
sounds (i.e., to-be-ignored) were delivered. 

The sequence of scenarios was counter-balanced. Novel 
sounds were generated similarly to the method used by Miller 
et al. [8] while using ear-buds instead of external speakers. 

First, participants filled out an informed consent form 
approved by the Institutional Review Board of the University 
of Maryland and the USNA and a handedness survey. Then, 
during a familiarization period, participants practiced the task 
for 5 minutes along with exposure to the novel sounds. 
Participants were then prepared for the placement of the 
electrocardiogram (ECG) sensor and dry EEG cap according 
to the 10-20 system. An initial scenario (challenge) was then 
provided with relevant instructions to the participants. After 
this setup period, the first 10-minute scenario with 
presentation of the novel sound stimuli was executed. 
Participants were then provided the National Aeronautics and 
Space Administration (NASA) Task Load Index (TLX) 
survey to report their subjective experience of cognitive load. 

Also, a visual analog scale (VAS) was used to assess 
perceived mental load and task difficulty. The same order of 
procedures was followed until all three challenge levels were 
completed. The order of conditions was counterbalanced. 

B. Data Acquisition 

In addition to the subjective reports (NASA TLX, VAS) 
and the flight performance captured by a computerized log 
system, the ECG and EEG were continuously recorded 
during the entire study. The EEG system was calibrated, and 
electrode impedances were maintained below 5 kOhm. Both 
EEG and ECG were sampled at a rate of 512 Hz. The right 
mastoid was employed as the ground and the EEG recording 
was accomplished using the left ear as the reference. An 
online band-pass filter was applied with a range of 0.01 Hz to 
40 Hz. Four dry-sensor EEG (g-Tech™, Schiedlberg, 
Austria) signals were collected from sites along the frontal 
(Fz), fronto-central (FCz) central (Cz), and parietal (Pz) 
midline. The ECG record was achieved by placing a sensor 
below the bottom left rib using a unipolar configuration (one 
electrode) with common reference and ground to the EEG. 

C. Data Processing: NASA TLX and VAS 

A series of one-way ANOVAs was employed to test the 
participants’ subjective mental workload measured with the 
NASA TLX and VAS for each scenario. For all subsequent 
ANOVAs reported in this article, the Greenhouse-Geisser 
correction was employed when sphericity was violated.  

D. Data Processing: Flight performance 

In each scenario, acceptable performance criteria were 
predefined as deviations of the flight status (e.g., altitude, 
airspeed, heading, bank angle, etc.) from the tolerance limits 
(i.e., goals) defined by the experienced naval pilots. For each 
metric (airspeed, altitude, heading, and vertical speed), the 
behavioral performance was reconstructed and a composite 
performance index scaled between 0 (worst) and 1 (best) was 
computed. Also, change in the performance index between 
S3 and S1 as well as between S2 and S1 were calculated. 
One-way ANOVAs were subsequently calculated to assess 
any changes in both the performance index and for the 
percentage drop between the various levels of challenge. 

E. Data Processing: EEG 

The data were re-referenced to an averaged-ears montage 

and then filtered using a 20-Hz low pass filter, 48 dB rolloff. 

Next, ERPs to the novel sounds were generated to estimate 

attentional reserve. One-second epochs that were time-locked 

to the auditory stimuli were extracted from the EEG signals 

and were mean baseline-corrected using the pre-stimulus 

interval (i.e. -100-0ms). The transformed data were then 

visually inspected and those epochs retaining significant 

artifact were excluded from further analyses. The remaining 

epochs were averaged for each of the three conditions, 

resulting in three components derived from the ERPs 

generated for each individual. Finally, the average amplitude 

for the P3 (270-370 ms) component was derived. One-way 

ANOVAs were computed separately for each electrode to 

assess differences in ERP amplitudes for each challenge. 

To estimate cognitive workload, spectral analysis was 

used using a Fast Fourier transform (1-Hz resolution). The 
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spectral power was then computed for each scenario. The 

frequency bins were log-transformed and summed to obtain 

spectral power for the Theta (3-8 Hz) / Alpha (8-13 Hz) ratio. 

A one-way ANOVA was employed to assess differences in 

the power ratios for the three levels of challenge. 

 
F. Data Processing: HRV 

The HRV was computed according to previous methods 
used by the Task Force of The European Society of 
Cardiology and The North American Society of Pacing. 
Namely, the square root of the mean squared successive 
differences (RMSSD) was calculated. The mean squared 
differences before and after each interval were calculated and 
then the square root value was computed. A one-way 
ANOVA was used to assess differences in the HRV for the 
three levels of challenge. To assess the HRV in relationship 
to perceived workload and task difficulty, one-tailed t-tests 
between the conditions were used for each of the VAS scales. 

III. RESULTS 

A.  Behavioral assessment  

As the demand increased, the performance index 

significantly decreased (p<0.001) (Fig. 2A).  

 
Figure 2: Pilots’ performance based on the index generated during each 

scenario (S1: low demand; S2: medium demand and S3: high demand). Left 

panel: Performance index is a composite of all the metrics computed for 
each scenario. Right panel: Changes in performance expressed as 

percentage drop relative to S1. For this figure as well as Figures 3 and 4, 

stars without fork indicate that all the comparisons between the levels of 
challenge are significantly different; otherwise the fork indicates the 

specific significant contrast. *:p<0.05; **:p<0.01; ***:p<0.001.  

Pilots’ relative performance (percentage change) for S2 and 

S3 with respect to S1 significantly decreased (p<0.001) (Fig. 

2B). The findings revealed that participants’ responses to 

challenge generally differed across the three scenarios on the 

items of VAS and NASA TLX. Post-hoc analyses showed 

that participant ratings of load increased, as expected, as the 

challenge increased. However, comparisons between the 

easy and medium levels on Ease and Physical Demand were 

not statistically significant (Fig. 3). 

B. Physiological assessment 

Although differences in the RMSSD were not significant 

when comparing the three scenarios (p>0.05), it was found 

to be significantly lower for the individuals who perceived 

the task as demanding a high degree of concentration (Fig. 

4A,B; p<0.05), which indicates a reduction of vagal 

influence on the heart under elevated load. 

 
Figure 3: Participants’ responses for each of the three levels of challenge for 

the assessment to the level of mental demand, physical demand, effort and 

frustration using the NASA TLX.  

 
Figure 4: (A-B) RMSSD metrics to assess HRV during the easy, medium 

and hard scenarios. (C) Amplitude of P3 response for the site Pz and (D) 

Theta/alpha EEG power ratio for each of the three levels of challenge (i.e., 

easy, medium, and hard).  

C. Brain dynamics assessment 

The amplitude of the P3 component at site Pz revealed a 

robust significant difference (p<0.05). As expected, the 

magnitude of the ERP amplitude was higher for the Easy 

compared to Hard (S1 vs. S3: p<0.05) scenarios and Medium 

compared to Hard (S2 vs. S3: p<0.05) scenarios (Fig. 4C). 

EEG spectral analysis revealed that the theta/alpha ratio 

increased as the challenge increased; significant differences 

were found between all levels of challenge (S1 vs. 

S2:p<0.05; S2 vs. S3:p<0.01; S1 vs. S3:p<0.001;Fig. 4D) 

IV. DISCUSSION 

This study confirms and extends previous research by 

identifying multiple biomarkers, and particularly those 
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derived from EEG by combining a newly developed 

experimental method and the use of dry EEG to assess 

cognitive workload and attentional reserve during 

progressive simulated piloting task demands. EEG power 

and HRV were used to assess cognitive workload while the 

ERPs assessed attentional reserve. Cognitive workload and 

attentional reserve were negatively related. 

Specifically, elevations in flight simulator task demands 

were positively associated with subjective reports of mental 

workload and negatively related to performance. EEG 

provided two important markers. First, the theta/alpha power 

ratio was positively related to workload. This ratio was 

sensitive to the three levels of challenge and able to 

effectively discriminate between them. Secondly, the P300 

amplitude recorded in the parietal region indicated lower 

attentional reserve in S2 (medium demand) compared to S1 

(low demand) as well as in S3 (high demand) compared to 

S1 (low demand). Overall, these EEG findings confirm and 

extend those from previous studies in two directions: i) 

identifying EEG biomarkers for an aircraft piloting task 

using only four dry EEG sensors [2,7,9] and ii) extension of 

a recent method to assess attentional reserve, as previously 

used in a laboratory setting, to a more ecologically valid 

performance environment using few dry EEG sensors [8,10]. 

However, additional biomarkers must be considered in the 

future since it has been suggested that simple metrics such as 

EEG power (for various frequency bands and their ratios) 

can be modified by other mental states such as sleep 

deprivation. This concern suggests a potential distortion of 

the assessment of cognitive workload [2,11]. Also, 

compared to EEG, HRV was less sensitive to changes in 

absolute cognitive workload, but it was related to perceived 

workload as measured by self-report. In particular, elevated 

HRV was indicative of elevated vagal influence to the heart, 

believed to be protective of cardiac stress, and was 

characteristic of participants who perceived less effort 

during the imposed workload. The biomarkers derived from 

EEG recorded with only four dry EEG sensors, were 

sensitive to various levels of cognitive workload. This 

finding is important since a dry EEG system composed of 

only few sensors does not require using conductive gel and 

the very limited number of sensors can reduce the 

preparatory and computational burden, which is promising 

for operational settings (e.g., cockpits and unmanned aerial 

vehicles). A similar approach could be used for other fields 

of research such as assistive technology in a cognitive-motor 

rehabilitation context as with amputee populations. 

 

V. CONCLUSION 

As previously mentioned, this work is a first step towards 

a programmatic effort to include additional biomarkers to 

assess cognitive workload in operational settings. Although 

this present work includes multiple markers within data 

modalities such as the time and frequency domains (ERP 

and spectral metrics, respectively), as well as between HRV 

and EEG, future research in this area will also include eye-

tracking technology (e.g., gaze behavior and pupillometry) 

and functional near-infrared spectroscopy to assess the state 

of the brain since it was shown that both systems were able 

to provide biomarkers sensitive to cognitive workload 

fluctuation [7,12-15]. The idea that a multiplicity of markers 

could lead to a sensitive and robust composite biomarker to 

assess the cognitive workload and attentional reserve forms 

the basis of this research. Such a composite biomarker could 

then be used for the classification of cognitive workload and 

operator state using machine learning. This work will 

include data mining and machine learning algorithms 

combined for feature selection and classification while 

considering multiple time scales [16].  
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