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Abstract— Monitoring lower body motion, especially gait
pattern, using low cost Inertial Measurement Units on a daily
basis is becoming critically important for the diagnosis and
rehabilitation of neurological diseases. The current state of the
art algorithm is to double integrate motion acceleration and
compensate cumulative errors by resetting velocity signals to
zero at the stance-phase of each stride. However, this method
is only applicable for foot-mounted sensors. For the medically
more preferable ankle-mounted position, the assumption of this
zero-velocity-update (ZUPT) method does not hold. In this
paper, a new non-ZUPT method is proposed. We estimated
the true velocity during stance-phase, and reset velocity to the
estimated value instead of zero. 10 subjects were recruited for
40-meter-level flat floor walking. The stride length estimation
error was reduced to 3.58% from 13.22% on average comparing
to the conventional ZUPT method on an ankle-mounted sensor.
Validity of this method is further supported by stairs walking
of 4 more subjects.

I. INTRODUCTION

Wireless inertial sensors including accelerometers, gyro-
scopes and magnetometers allow clinicians and researchers
to monitor the quantity and the quality of human activities
on a daily basis. With these advances, the urgent need for in-
expensive and continuous human motion monitoring system
for diagnosis and treatment of neurological conditions can
be fulfilled [1][2]. Among different types of human motion
analysis, gait analysis, investigating the walking pattern, has
been widely used for disease diagnosis and rehabilitation
guidance due to its periodicity and frequentness in daily life.

One approach for tracking lower body motion is to use
a double pendulum model [3]. But this model needs two
sensors on each side (one on the thigh and one on the ankle)
for accurate estimation. Moreover, the requirement of correct
orientation and placement of the sensors limits its practical
application.

The other approach is double integration of the motion ac-
celeration. A zero-velocity-update (ZUPT) method is applied
to compensate the cumulative error [4][5][6]. The ZUPT
method needs only one sensor and is extensively employed
because of its robustness and easy implementation. This
ZUPT method assumes that there exists a stable zero-velocity
interval within each stride and this critical assumption only
holds when the sensor is mounted on the foot. However, in
most medical applications, clinicians prefer ankle-mounted
positions for lower body motion tracking[7][8][1]. This is
because, not all patients wear shoes with laces everyday. It
happens fairly often that they don’t even wear shoes when it
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is important to capture activity. In contrast, ankle-mounted
sensors allow clinicians to deploy the sensors without consid-
ering these constraints. Hence, a new velocity update method
for ankle-mounted sensors is needed.

In this paper, a novel non-ZUPT method is proposed.
In this non-ZUPT method, the velocity signals are reset to
estimated values instead of zeros at the stance-phase of each
stride. This stance-phase velocity estimation was calculated
using gyroscope measurements and sensor position informa-
tion. A training process with short walking was deployed to
avoid the manual measurement of sensor position each time
the sensor is mounted.

The rest of this paper is structured as follows. After a
quick review of the widely used ZUPT method for foot-
mounted sensor trajectory estimation, detailed discussion of
the novel non-ZUPT method will be described in section II.
In section III, experimental design and results are reported.
In section IV, conclusions and suggestions for future work
are presented.

II. METHOD

A. Experimental Instrumentation

Invensense Motion SDK sensors produce 3D accelerome-
ter measurements (sat ), 3D gyroscope measurements (sω t ),
and filtered orientation information in quaternion represen-
tation (iqt ) with 200Hz sampling rate. The right subscript t
represents a sample at time t; the left superscript s represents
the measurement in the sensor frame; the left superscript i of
the quaternion represents the orientation of the sensor with
respect to the initial frame when the sensor was powered on.
Data were transmitted through the on-board Bluetooth to a
local PC.

Two sensors were mounted on the left ankle and the
left foot (Figure 1) of the subject. For the ankle-mounted
sensor, performance of the traditional ZUPT and newly-
proposed non-ZUPT methods will be compared. In addition,
a performance reference is provided by a foot-mounted
sensor using ZUPT method.

Fig. 1: Experimental Setup
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Fig. 2: Gait Segmentation

B. Data Preprocessing

All data collected are preprocessed by the method de-
scribed in this section. Before the motion starts, a short stable
period was required. The sensor frame during this period was
considered to be the global reference frame. The average
of the accelerometer measurements and quaternions in this
period are denoted as ga0 and gq0. The quaternions at any
time t can be projected onto the global reference frame with
Equation 1.

gqt = (gq0)
−1× (iqt) (1)

Using quaternions in the global reference frame, the ac-
celerometer data can be projected onto the global frame with
Equation 2, where gqt is the quaternion conjugate of gqt .[

0
gat

]T

= gqt ×
[

0
sat

]T

× gqt (2)

Since ga0 is a good estimate of gravity in the global frame
gG, pure motion acceleration in the global frame gaMotion

t
can be calculated by subtracting ga0 from gat (Equation 3).

gaMotion
t = gat − gG

= gat − ga0
(3)

This preprocessing procedure gives motion acceleration
gaMotion

t and sensor orientation with respect to the global
frame in quaternion gqt .

C. Foot-sensor Gait Reconstruction Using ZUPT

1) stance phase detection: Figure 2 shows the complete
gait cycle of a healthy adult. At the middle of each stance-
phase, the foot is stable and flat on the ground. These time
stamps should be detected before velocity update can be
implemented.

A detection method similar to the Acceleration Magnitude
Detector in [6] is applied. The average of the motion accel-
eration energy ‖gaMotion

t ‖2 in a sliding window (length 0.1s)
is evaluated. By selecting the proper threshold (0.025m2/s4)
, windows of stance phase are detected. The mid-points of
these stance-phase windows are denoted as STi, where index i
means the stance-phase of the ith stride in the whole walking
process.

2) velocity update and trajectory estimation: Raw veloc-
ity signal (gvraw

t ) calculated by integrating gaMotion
t (Equa-

tion 4) has cumulative error because of the noise in the
accelerometer. This cumulative error is corrected by resetting
gvraw

t to zero at STi. Then, a reliable trajectory can be
calculated by integrating this corrected velocity (gvcor

t ).

Fig. 3: System Block Diagram For Trajectory Reconstruction

gvraw
t =

t∫
0

gaMotion
τ dτ (4)

D. Ankle-sensor Gait Reconstruction Using Non-ZUPT

For ankle-mounted sensors, the velocity at the middle of
the stance phase in each stride is not zero. This velocity can
be estimated, and a similar non-ZUPT can be applied.

1) stance phase detection: The average of the motion
acceleration energy ‖gωMotion

t ‖2 in a sliding window (length
0.1s) is evaluated. By selecting the proper threshold (2
rad2/s2) , coarse windows of stance phase are detected.
Within each of these coarse windows, a finer window of
length 0.05s with the smallest gyroscope energy variance
is selected. The starting and ending of this finer window
are denoted as STi1 and STi2, and the center of these fine
windows are denoted as STi (i = 1...n, n is the total number
of strides).

2) velocity update and trajectory estimation: During the
stance-phase of each gait cycle, the calf is rotating around
the heel (Figure 2). Hence, for an ankle-mounted sensor,
the angular velocity sω t from gyroscope signals, velocity
svt and the rotation moment arm r (determined by the
sensor position) are related by Equation 5. The velocity
is solved in the sensor frame. This is because, for rotation
motion, velocity in the global frame is constantly changing
in direction while velocity in the sensor frame is relatively
constant.

svt =
s
ω t × r, , t ∈ [STi1,STi2] (5)

Figure 3 shows the system block diagram for the trajec-
tory reconstruction. We start with integrating the pure motion
acceleration gaMotion

t and calculating the raw velocity signal
gvraw

t (Equation 4). The velocity is then projected into the
sensor frame using quaternion information (Equation 6).[

0
svraw

t

]T

= gqt ×
[

0
gvraw

t

]T

× gqt (6)

The raw velocity signals svraw
t are reset to svSTi at the

resetting point STi in each stride. This corrected velocity
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Fig. 4: System Block Diagram For Sensor Position Estima-
tion
svcor

t will be projected back into the global frame (Equation
7). Further integration of gvcor

t will give us the trajectory
estimation. [

0
gvcor

t

]T

= gqt ×
[

0
svcor

t

]T

× gqt (7)

3) sensor placement estimation: This non-ZUPT algo-
rithm works only if we know the rotation moment arm r in
Equation 5. A detailed method of estimating r in a training
process will be described below.

In a training process, the subject was asked to do a 3-
meter-level short walking on a flat floor. The raw data was
preprocessed with the same method described in section II-
B. The system block diagram for sensor position estimation
is shown in Figure 4.

Similarly, motion acceleration gaMotion
t was first integrated

to calculate velocity gvraw
t (Equation 4). Then, gvraw

t was
projected onto sensor frame svraw

t with Equation 6. Because
we keep the training process short (3-meter-level walking),
resetting the velocity to zero at the starting and ending
will correct the cumulative error, and gvcor

t was calculated.
The stance-phase window was detected with the method
described in section II-D-(1). Finally, the rotation moment
arm can be estimated by MMSE using the sampling points
over stance-phase windows in Equation 8.

r = argmin
r

∑
t
‖svcor

t − s
ω t × r‖, t ∈ [STi1,STi2] (8)

Since the cross product between two three-element column
vectors can always be reformulated as product of a matrix
and a vector, Equation 8 can be easily solved in normal
equation form.

III. EXPERIMENTS AND RESULTS

A. Experimental Procedure
10 subjects were recruited for applying the non-ZUPT

algorithm to flat-floor walking. First, in the training process,
the subject was asked to perform a 3-meter-level walking (the
walking length does not need to be exact). Sensor position
information was estimated with the method described in
section II-D-(3). Second, in the testing process, the subject
performs two sets of 40-meter-level walking on the ruled
floor.

(a) ZUPT for a foot-mounted sensor

(b) non-ZUPT for ankle-mounted sensor

Fig. 5: Velocity Update Before and After Using ZUPT And
Non-ZUPT Method

In addition, 4 subjects were recruited for applying the non-
ZUPT algorithm to stairs walking. The training process is
performed on flat floor as well and is consistent with the
above. In the testing process, however, the subjects were
asked to walk on stairs.

Total walking distance estimations (lest ) from both the
ZUPT and non-ZUPT trajectory reconstruction algorithms
were compared to the ground truth (lgt ) collected during the
experiments. Estimation errors were calculated in Equation
9 and reported in Table I.

err =
|lest − lgt |

lgt (9)

B. Results and Analysis

Figure 5 shows the velocity estimation before and after
drift correction under the ZUPT algorithm and non-ZUPT
algorithm. Note that only a short interval within a long
walking was shown in the figure for clear visualization.
Before any velocity correction algorithm, integrating the
accelerations produces drifted velocity signals. The ZUPT
algorithm detects stance-phases in each gait cycle and resets
velocity there to be zero (Figure 5a). For the new non-ZUPT
algorithm, however, we would reset the velocity at each
stance-phase to an estimated value based on the estimated
sensor position and gyroscope signals (Figure 5b).
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Subject
number

Ankle sensor
(ZUPT)

Ankle sensor
(non-ZUPT)

Foot sensor
(ZUPT)

1 30.41% 3.63% 2.88%
2 4.24% 3.53% 0.32%
3 17.71% 6.04% 0.84%
4 16.89% 1.70% 4.00%
5 5.17% 5.44% 2.57%
6 9.17% 5.43% 0.37%
7 11.53% 4.76% 1.83%
8 16.01% 1.24% 2.54%
9 9.71% 2.22% 4.61%
10 13.55% 1.32% 3.36%
Avg. 13.44% 3.58% 2.33%

TABLE I: Motion Tracking Error for Flat Floor Walking

Table I shows the distance reconstruction error for dif-
ferent algorithms over ten subjects. Not surprisingly, the
traditional ZUPT algorithm gives satisfactory trajectory esti-
mation with 2.33% error. On the other hand, applying the
ZUPT algorithm on the ankle-mounted sensor (Table I
column 1) produces poor results with 13.22% error. Note
that applying ZUPT to ankle-mounted sensors always under-
estimates the total walking distance. This is because at each
stance-phase, the sensor on the ankle has positive velocity
along the walking direction. Forcing them to zero with the
ZUPT algorithm makes the velocity smaller than the actual
values. Integrating the under-estimated velocity signals will
have a cumulative effect on the distance estimation results.
This systematic error can be corrected by the newly proposed
non-ZUPT algorithm. The non-ZUPT algorithm estimates
the actual velocity value at each stance-phase, making the
trajectory estimation more accurate. Table I column 2 shows
that distance estimation error was reduced to 3.58%.

Table II shows the distance estimation error for walking
upstairs and downstairs. For upstairs walking, distance es-
timation error was reduced to 3.61% using the non-ZUPT
method from 24.65% using the ZUPT method. In addition,
ZUPT method is always over-estimating the walking dis-
tance. This is because, the ankle has a negative velocity
at the stance-phase when walking upstairs. Forcing them
to zero over-estimates the velocity, hence, over-estimates
the walking distance. For downstairs walking, non-ZUPT
reduces estimation error significantly only for subject No.4.
For 3 other subjects, because there exists a short zero-
velocity interval for each stance-phase even for the ankle-
mounted sensor, performance of the ZUPT method is also
acceptable. Overall, the non-ZUPT method, without the zero-
velocity interval assumption is more robust over different
walking styles.

IV. CONCLUSIONS

In this paper, a new non-ZUPT method was devel-
oped. This method makes single-sensor lower-body motion
tracking possible for the medically more preferable ankle-
mounted sensors. We use the fact that during the stance-
phase, the ankle-mounted sensor is rotating around the heel.
Thus, the velocity of the ankle-mounted sensor in this period
can be estimated using angular velocity and the estimated
rotation moment arm. The rotation moment arm is acquired

Subject
number

Ankle sensor
(ZUPT)

Ankle sensor
(non-ZUPT)

Foot sensor
(ZUPT)

Upstairs
1 25.57% 7.00% 8.29%
2 31.04% 1.75% 3.34%
3 23.18% 2.44% 8.07%
4 18.81% 3.23% 2.94%
Avg. 24.65% 3.61% 5.66%

Downstairs
1 4.60% 1.06% 4.44%
2 4.50% 4.53% 4.32%
3 2.96% 2.80% 14.14%
4 20.51% 7.83% 14.82%
Avg. 8.14% 4.06% 9.43%

TABLE II: Motion Tracking Error For Stairs Walking

through a training process with a short walking period. With
this easily available training activity, we avoid the need
of measuring the sensor position manually each time the
sensor is mounted. Resetting velocity at the stance-phase to
the estimated velocity compensates the cumulative error and
estimates the final trajectory correctly.

With this method, ankle-mounted distance estimation error
was reduced to 3.58% on average, compared to 13.22% on
average using the conventional ZUPT method for flat floor
walking. For upstairs walking, estimation error was reduced
to 3.61% from 24.65%, while for downstairs walking, esti-
mation error was reduced to 4.06% from 8.14%.

Future studies are planned to apply similar method to
unhealthy gaits of neurological disease patients (e.g. stroke
and Parkinson’s disease). Instability, asymmetry and large
variations all make this task more challenging. To solve
these problems, new detection methods as well as new
biomechanical models might be needed.
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