
 
Figure 1. Two trails of bivariate time series 

with the same set of points but different degrees of convolutedness. 

 

Abstract— A feature of time-series variability that may 

reveal underlying complex dynamics is the degree of 

"convolutedness". For multivariate series of m 

components, convolutedness can be defined as the 

propensity of the trail of the time-series samples to fill 

the m-dimensional space. This work proposes different 

convolutedness indices and compare them on synthesized 

and real physiological signals. 

The indices are based on length L and planar 

extension d of the trail in m dimensions. The classical 

ones are: the L/d ratio, and the Mandelbrot's fractal 

dimension (FD) of a curve: FDM =log(L)/log(d). In this 

work we also consider a correction of the Katz’s 

estimator of FDM, i.e., FDKC =log(N)/(log(N)+log(d/L)), 

with N the number of samples; and FDMC, an estimator 

of FDM based on FDKC calculated over a shorter running 

window Nw<N appropriately selected to reduce 

estimation bias. 

Synthesized fractional Brownian motions indicated 

that all the indices increase with FD, but differ for other 

aspects, namely the dependence on N; the capacity to 

estimate FD; or to distinguish between true bivariate and 

degenerate bivariate time series. Application on real 

multivariate recordings of muscular activity before and 

after exercise-induced fatigue suggests that these indices 

can be profitably used to identify complex changes in the 

dynamics of physiological signals.  

I. INTRODUCTION 

The “complexity” analysis of time series often requires 
the calculation of quantities that describe specific features of 
variability associated to their nonlinear dynamics, or to their 
fractal structure, or to their predictability. For instance, 
complexity analysis may include measures of entropy, that 
characterizes the level of irregularity or unpredictability of 
the time series; estimations of Lyapunov’s exponents, that 
quantify the rate of separation of close trajectories; or 
calculation of scale coefficients, that describe how the time 
series looks self-similar over different temporal scales. A 
feature of time-series variability common to these aspects of 
complexity and that appears particularly useful for 
characterizing multivariate time series is the degree of 
“convolutedness”. For a multivariate time series of m 
components, the convolutedness can be defined in words as 
the propensity of the trail of its samples to fill the m-
dimensional space where the time series is plotted. 
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This work presents different indices for quantifying the 
degree of convolutedness of multivariate physiological time 
series. The first part illustrates the characteristics of these 
indices with synthesized signals. In particular, it shows the 
link with the concept of fractal dimension and highlights an 
error sometime committed in the quantification of the 
convolutedness of time series. The second part applies the 
indices on real multivariate recordings of muscular activity 
before and after a fatigue-inducing exercise. This is done to 
evaluate in a real physiological application the capability of 
convolutedness indices to detect changes in signal dynamics, 
as those possibly produced by fatigue on muscle activity. 

II. INDICES OF CONVOLUTEDNESS 

Let’s consider N samples of a multivariate time series 
X(i) with m components, i.e., X(i)=[x1(i),…, xm(i)]

T
 with 

1≤i≤N. Let’s then construct the trail of X(i) in the m-
dimensional Euclidean space by plotting the sequence of 
points Pi with coordinate (x1(i), …, xm(i)). An index of 
convolutedness should describe how densely the trail covers 
the volume (or hypersurface in the m-dimensional space) that 
it occupies. It is important that any proposed index of 
convolutedness would not be defined only by the geometrical 
properties of the set of N points {Pi}, but that information on 
the temporal order of the data is maintained. For instance, an 
estimation of the geometrical fractal dimension of {Pi} by a 
box-counting algorithm will provide the same “space filling” 
measure for identical sets of points, even if they are generated 
by time series that we want to characterize with different 
levels of convolutedness (see the example of figure 1). In this 
context, the relations between two parameters of the {Pi} set 
appear important. One is the length, L, of the trajectory in the 
m-dimensional space, defined as: 
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with dist(Pi ,Pj) the Euclidean distance between points i and j: 
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Figure 2. Upper panels: monovariate segments of fractional Brownian 
motions. Mid and Lower panels: Trails in the (xi,xj) space of bivariate time 

series derived by combining all couples of monovariate segments. 

Extension d (dashed red line) and L/d ratios are also shown. 

       




m

k

kkji
jxixPPdist

1

2
,  

The second parameter is the planar extension of the trail, d, 
defined as the largest distance between any couple of points: 
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The extension d is a measure of the volume occupied by the 
dataset {Pi} while L is a geometric measure of length that 
preserves information on the temporal order in which the 
points are plotted. It should be underlined that the units of all 
the m components xk should be the same for equations (1)-(3) 
to make sense. This rarely happens in real physiological 
applications. In these cases, each component xk should be 
normalized before calculating L and d, for instance by 
dividing it by its standard deviation to get a dimensionless 
variable. For a monovariate time series x(i), i.e. when m=1, 
the calculation of L and d is largely simplified because 
normalization is not needed, L is the sum of increments in 

absolute value, L=|x(i+1)-x(i)|, and d is simply the range of 
the time series, d=max(x)-min(x).  

 

A. Length/Extension Ratio, L/d 

A simple index of convolutedness is the ratio between 
length and extension of the trails, L/d, a dimensionless 
number quantifying the “density” of the curve. Figure 2 
shows an example of L/d calculation for three monovariate 
fractional Brownian motions, xA, xB and xC, of N=50 samples 
with Hurst exponent H equal to 0.9 for xA, 0.5 for xB and 0.1 
for xC (the series were generated by the Matlab function 
wfbm(H,N)). Bivariate time series XI,J =[xI, xJ]

T
 were then 

obtained by combining all the possible couples of 
monovariate time series. For monovariate series, L/d 
increases when H decreases, as intuitively expected for 
increasingly irregular time series. An interesting case regards 
bivariate time series with identical components: XA,A, XB,B 
and XC,C. They can be defined as “degenerate” bivariate 
series, because their trails in the bidimensional space can be 
seen as obtained from a monodimensional trail after a 45° 
rotation of the Cartesian reference. Actually, XA,A, XB,B and 
XC,C, have trails that fills a monodimensional space even if 
plotted in a plane; moreover they have the same L/d ratio of 
their monovariate component (xA, xB and xC) even if L and d 
of the bivariate series are larger.  

B. Mandelbrot’s winding of a curve, FDM=log(L)/log(d) 

To illustrate the concept of fractal dimension, Mandelbrot 
described the relation between the length of a winding river 
and the straight distance from its source to its mouth as: 

length distance
FD

 [1]. This leads to define FDM 

=log(L)/log(d) as index of convolutedness for any trail of 
multivariate time series in the m-dimensional space. Unlike 
the L/d index, FDM requires normalization even for 
monovariate series to avoid that it depends on the units of 
measure.  

C. Katz’s proposal for the fractal dimension of waveforms 

Mandelbrot’s definition of fractal dimension of a curve 
was extended to monovariate time series by Katz [2]. Katz 
considered the graph of the time series x(t) as a bidimensional 
curve in the (x,t) space, and the fractal dimension of this 
curve a measure of the time-series convolutedness. To make 
FDM independent of the units of measure, L and d were 
divided by a, the average length of each “step” in the curve: 
a=L/N [3]. This led to define the following index:  

  )log()log()log( L
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This measure of convolutedness is popular in biological 
sciences, but successive works showed that it suffers from 
important limitations in the estimation of the true fractal 
dimension FD of synthesized series [4,5]. These limitations 
make FDK unable to properly describe the dynamics of 
physiological time series. Its poor performances were 
recently found to be due to a flaw in the definition of distance 
between points Pi=(x(i), ti) and Pj =(x(j), tj) that, in the Katz’s 
method, is: 
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In fact, this equation erroneously sums together terms with 
different units [5]. 
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Figure 3. Convolutedness indices: means over 100 estimates for monovariate 

(Mx), degenerate bivariate (Bxx) and bivariate (Bxy) time series synthesized 
by fractional Brownian motions of length 30≤ N≤ 2000 and fractal 

dimension 1≤ FD≤ 2. 

D. Corrected Dimensions FDKC and FDMC  

Katz’s index in eq.(4) can be corrected by changing eq.(5) 
as dist(Pi,Pj) =|x(i)-x(j)|. It can be extended to multivariate 
series by calculating L and d according to eq.(1)-(3). Let’s 
call FDKC this correction of the FDK index. 

Simulations with deterministic and stochastic 
monovariate series showed that FDKC correctly estimates the 
true FD when FD <1.5, but it tends to progressively 
overestimate FD when N increases and FD >1.5 [5]. To avoid 
overestimations, eq.(4) may be calculated over a running 
window of length Nw<N, with Nw the length of the data set 
with extension d equal to half the extension of the whole 
dataset [5]. Let’s call FDMC this further correction of the 
original Mandelbrot’s FDM.  

III. APPLICATION ON FRACTIONAL BROWNIAN MOTIONS 

The performances of the presented indices of 
convolutedness (L/d, FDM, FDKC and FDMC) were tested 
making use of synthesized fractional Brownian motions. 
Monovariate time series Mx(i)=[x(i)], 1≤i≤N , with N=30, 60, 
125, 250, 500, 1000 and 2000 points were generated by the 
Matlab function wfbm(H,N). Eleven Hurst exponent H 
between 0 and 1, corresponding to FD=2-H, were considered. 
For each FD and for each size N, 100 monovariate series 
were generated. Then 100 bivariate series Bxy(i)=[x(i),y(i)]

T
 

were generated for each FD combining couples of 
independent fractional Brownian motions synthesized with 
the same FD. Finally, 100 degenerate bivariate series 
Bxx(i)=[x(i),x(i)]

T
 were synthesized for each FD. 

Results are shown in figure 3. All indices monotonically 
increased with the theoretic FD of the fractional Brownian 
motions generating the monovariate and bivariate time series. 
This is a desirable property because a larger FD is intuitively 
associated to a greater convolutedness. However, the indices 
also remarkably differed on other aspects of the 
quantification of convolutedness. Looking at the trails in the 
example of figure 2, one may expect that the convolutedness 
of a degenerate bivariate series is exactly the same of the 
corresponding monovariate series. This was true for all the 
proposed indices except FDM, since log(L)/log(d) was lower 
for Bxx compared to Mx. As to the relation between true 
bivariate series Bxy and degenerate bivariate series Bxx, the 
convolutedness was lower for degenerate series when 
quantified by L/d and FDM, and for FDKC when FD>1.5, but 
not for FDMC. Regarding the use of these indices as FD 
estimators, FDM diverged from FD when N increased. This 
occurred also for FDKC but only when FD >1.5, while FDMC 
was relatively close to the FD of synthesized series over the 
whole FD range even for large N.  

IV. APPLICATION ON REAL DATA 

The proposed indices were calculated on real 
electromyogram (EMG) and mechanomyogram (MMG) 
signals. The aim was to evaluate whether convolutedness 
indices may indicate alterations in signal dynamics associated 
to muscle fatigue. It may be in fact hypothesized that muscle 
fatigue may change the dynamics of EMG and MMG signals 
during muscular contractions and that these fatigue-induced 
changes may be quantified differently by each index, thus 
allowing to separate different components of  
convolutedness.  

EMG and MMG were recorded with electrodes and 
accelerometers placed on the biceps of the dominant arm in a 
healthy male volunteer during an isometric muscle 
contraction of the arm. The contraction force was maintained 
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Figure 4. Indices of convolutedness (mean and standard deviation) in a 

volunteer before (open bar) and after (dashed bar) exercise, for mono- 

(EMG, MMG) and bi-variate (BIV) analysis; the * and ** indicate 

significant differences (p<0.05 and <0.01) between conditions. 

close to 80% of the maximal volitional force measured 
immediately before the recording. Two recordings were 
performed, before and after an exercise protocol to induce 
muscle fatigue. Each recording lasted 25 s, with sampling 
rate of 2 KHz. A stable 6 s segment was selected at the end of 
each isometric contraction, before and after the fatigue-
inducing exercise.  

The indices of convolutedness were calculated over 6 
consecutive, nonoverlapping windows of 1 s (N=2000 
samples). The time series were normalized in each window 
by removing the mean and by dividing the time series by its 
standard deviation. The analysis was performed on 
monovariate EMG and MMG time series, and on the 
bivariate [EMG, MMG]

T
 series. Mean and standard deviation 

of each index were calculated over the group of independent 
estimates in the 6 windows. The conditions before and after 
the fatigue-inducing exercise were statistically compared by 
Mann Whitney test. 

After the fatigue inducing exercise the force produced 
during the stable isometric contraction decreased from 195 to 

126 Newton. The associated changes in the convolutedness 
indices are shown in figure 4. All the indices decreased 
significantly after the fatigue inducing protocol, with the 
exception of FDMC which did not vary substantially after 
exercise. This would suggests that the fatigue-inducing 
exercise preserves the fractal dimension of the time series 
while altering importantly other aspects of signals 
“irregularity”.  

V. CONCLUSION 

The proposed indices are computationally simple and 

results on synthesized time series indicate that they can 

provide meaningful descriptions of convolutedness even for 

very short time series. This suggests their possible use also 

in real time monitoring of physiological signals. All indices 

are linked to the concept of fractal dimension, and 

simulations with fractional Brownian motions actually 

showed that all indices monotonically increases with the 

theoretic FD of the synthesized signals. However, among the 

proposed indices only FDMC can be considered a reliable 

estimator of FD for physiological signals, whose FD values 

may widely range between 1 and 2. This would suggest that 

other features of time series variability may influence each 

of these indices. This is coherent with the general definition 

of “convolutedness”, an aspect of time series variability in 

which different components of complexity (like signal 

entropy, deterministic chaos, self-similarity) may play a role.  

Convolutedness analysis on real EMG and MMG series, 

although performed on a single volunteer, appears promising 

regarding its use as diagnostic tool for detecting alterations 

in the dynamics of physiological series. Moreover, the 

finding that exercise-induced fatigue did not alter the 

“purer” index of FD (i.e., FDMC) but has dramatic effects on 

other convolutedness indices (like L/d,  probably reflecting 

different complex components of variability) emphasizes the 

multifaceted nature of the dynamics of physiological time 

series. 
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