
  

 

 
Abstract— We extracted adaptive univariate and 

multivariate dynamic models of cerebral hemodynamics during 

resting and hypercapnic conditions using a Recursive Least 

Squares estimation scheme with multiple adaptive forgetting 

factors. The time dependent relationship between mean arterial 

blood pressure (MABP), end-tidal CO2 tension (PETCO2) and 

middle cerebral artery blood flow velocity (CBFV) was assessed 

using Laguerre - Volterra models with time varying 

coefficients. The results suggest that the addition of PETCO2 as a 

second input yields more accurate and less nonstationary 

estimates, indicating that unobservable physiological variables 

are important in the context of nonstationary systems 

modeling, and particularly for assessing cerebral 

hemodynamics and autoregulation. 
 

I. INTRODUCTION 

Cerebral autoregulation is a complex homeostatic 

mechanism that helps the brain maintain relatively constant 

cerebral blood flow (CBF) and oxygen supply, despite 

variations in a number of external physiological factors such 

as arterial blood pressure (ABP). During impaired 

autoregulation, abnormal changes in CBF can lead to 

cerebral hyperaemia, ischemia or even stroke. Transfer 

function analysis [1] has revealed a close relationship 

between CBF velocity (CBFV) and ABP for frequencies 

over 0.07Hz. Below this limit, low coherence values 

between ABP and CBFV suggest that nonlinearities, 

nonstationarities or other external physiological factors may 

also contribute to effective blood flow stabilization.Previous 

studies of cerebral autoregulation have employed 

multivariate models that incorporate ABP and carbon 

dioxide (CO2) as inputs [2-6]. CO2 is known to have a 

profound effect on CBF. Hypercapnia causes dilation of 

cerebral arteries and increases blood flow, whereas 

hypocapnia leads to arterial constriction and decreased flow. 

Moreover, the role of nonstationarities has been recently 

highlighted in a number of studies [7-13]. In the present  
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study, we extend the results presented in [13] by 

investigating the role of time-varying behavior both during 

resting conditions as well as during hypercapnia. To do this, 

we employ a multivariate adaptive data-driven approach that 

employs discrete-time, time-varying Laguerre-Volterra 

models [14-16]. 

 

II. MATHEMATICAL METHODS 

A. Multiple Input Single Output Discrete-Time Volterra 

Model 

   The relationship between MABP, PETCO2 and CBFV can be 

expressed using a discrete-time Volterra model. Volterra 

models are very useful for system representations due to 

their nonlinear structure and their property of linearity with 

respect to their parameters. The Q-th order, nonlinear, two-

input, single-output relationship of a dynamic and causal 

system can be written as [14],  
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where    are the inputs,  ( ) is the output and    are the Q-

th order Volterra kernels of the system. The first-order 

Volterra system corresponds to the convolution sum for a 

linear system. Higher-order kernels can be viewed as 

weighting functions that describe the effect of past input 

values, as well as the effect of the Q-th order products 

between past values of each input and different inputs in 

order to generate the output signal. Often, the system kernels 

are projected onto an orthornormal basis of discrete-time 

Laguerre functions (DLFs) [14]. The least-squares technique 

may be then used in order to compute the expansion 

coefficients.  The Laguerre parameters    (      )  

define the time scale for which the expansion of the system 

kernels is most efficient in terms of convergence. Systems 

with fast dynamics (small memory) require a small    (close 

to 0), whereas systems with slow dynamics (large memory) 

require a large one (close to 1). Choosing an appropriate 

value for these parameters is crucial as it affects model 

accuracy and complexity. We use a different parameter for 

each input, as different inputs are typically characterized by 

different dynamic characteristics. 
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Figure 1: (a) Variance Accounted For (VAF%) boxplots of the model predictions for all subjects and (b) mean variability indices of the MABP kernels (solid 

line +/- standard error of the mean – dashed lines) as a function of frequency for one-input and two-input linear models under free-breathing conditions. For 

the linear case, the differences in VAF% between one-input and two-input models are significantly. Moreover, one-input models exhibit higher variability in 
the low and very low frequency range (0-0.15Hz) 

B. Recursive Least Squares with Multiple Forgetting Factors 

  Time dependent model parameters can be adequately 

tracked and estimated using adaptive algorithms like 

Recursive Least Squares (RLS). The standard RLS 

formulation includes a constant forgetting factor (FF) 

   (   ] that discards gradually older data in favor of  

more recent information. However, in a multiple input 

system parameters corresponding to different inputs may 

vary with different rates. In order to be able to more 

accurately track possible variations, we applied a multiple 

adaptive forgetting factor scheme. Each input was assigned 

with a unique time-varying    that took into account the 

influence of the new data using Cook’s distance [15]. The 

update equations for the unknown coefficients vector at time 

point   are written as [16]: 
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where   is the total number of coefficients,  ( ) is the output 

prediction error,  ( ) is the regressor corresponding to time 

 ,  ( ) is the gain matrix and  ( ) is the covariance matrix 

of the coefficient estimates. The initial value for this matrix 

is  ( )       , where   in this case was selected to be    . 

The elements of  ( ) that belong to the  -th input are 

assigned with a unique time varying FF   ( ). 

C. Model order selection 

   Model order selection is the task of selecting a specific 

model structure in order to avoid overfitting and poor 

predictive performance in new datasets. However, in 

nonstationary systems we are more interested in tracking 

possible changes and building a model that can adequately 

approximate the underlying mechanisms which are changing 

with time. For each dataset, we applied the aforementioned 

RLS scheme and we selected the model structure and the 

FFs that globally minimized statistical criteria such as the 

Bayesian and Akaike Information criteria (BIC and AIC) 

using a mixed integer Genetic Algorithm [17,18]. A Genetic 

algorithm (GA) is an adaptive stochastic optimization 

algorithm based on the idea of natural evolution that can be 

used to solve various optimization problems. Both discrete 

(integer) and continuous (floating point) variables are taken 

into account, hence the term mixed-integer GA. 

 

III. EXPERIMENTAL DATA 

   The subjects gave informed consent to participate in this 

study, which was approved by the University of Calgary 

Conjoint Health Research Ethics Board. ABP was monitored 

by finger photoplethysmography, CBFV was measured in 

the right middle cerebral artery using transcranial Doppler 

ultrasonography, while PETCO2 was measured by mass 

spectrometry. 40 minutes of beat-to-beat values of ABP and 

CBFV, as well as breath-to-breath values of PETCO2 were 

obtained from thirteen healthy subjects under free-breathing 

conditions. Furthermore, we also analysed data from 8 

female subjects during 10 minutes of baseline and 20 

minutes of sustained euoxic hypercapnia in order to track 

cerebral hemodynamics during an externally induced CO2 

stimulus. Arterial gas tensions were controlled using 

dynamic end-tidal forcing. All experimental variables were 

interpolated and resampled at 1Hz to obtain equally spaced 

time series data. 
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Figure 2: 1st-order kernels for one representative subject under free-breathing conditions in the time-frequency domain  (a) MABP and (b) PETCO2 kernels for 
a two-input model. 

 

IV. RESULTS 

A. Free-breathing conditions data 

   Single and multiple adaptive forgetting factor schemes 

were applied to one and two input (input1: MABP, input2: 

PETCO2, output: CBFV) models respectively. Based on the 

identified time-varying systems from all subjects, two-input 

models achieved a higher predictive performance (Fig.1a) 

and exhibited less time-varying characteristics compared to 

one-input models (Fig.1b). The amount of nonstationarity in 

a system is correlated to the obtained values of the FFs. 

Lower FFs usually indicate the presence of rapid system 

changes, whereas FFs closer to one describe systems with 

slow variations. Lower FFs can also indicate the absence of 

crucial information that can lead to more stable parameter 

estimation. In order to justify this, we computed the 

variability of the identified one-input MABP-CBFV kernels 

in the frequency range of interest (0-0.5Hz) and we detected 

high variability in the very low frequency range, where 

PETCO2 and CBFV are correlated (Fig.1b). The variability 

index of each extracted time-varying kernel was computed 

as [10, 13], 
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where   ( ) is the FFT magnitude of the first-order kernel 

of the input    for time   of the data segment at frequency   

and  ̅( ) is the average value of    ( ) over   at each 

frequency  . For all subjects, PETCO2 kernels exhibited a 

more random and variable pattern compared to the MABP 

kernels (Fig.2). The origin of these nonstationary 

characteristics may be partially due to the low correlation 

between PETCO2 and CBFV at specific time windows, as well 

as to the possible presence of a time-varying pure time 

delays between PETCO2 and CBFV as suggested by Fig. 3, 

where we show the windowed cross-correlation function 

between PETCO2 and CBFV as a function of time. Note that in 

the present study we assumed that this delay was constant 

(4sec) for each subject. Low correlation may affect the 

estimation procedure and the update of the covariance 

matrix in the RLS algorithm and time-varying delays are 

translated into time-varying model orders, since the model 

order complexity needs to be increased in case of large pure 

time delays and decreased in case of small or no delays. 

 

 
 

Figure 3: Normalized windowed cross correlation between PETCO2 and 

CBFV.  The pure time delay of the effects of PETCO2 is variable, assuming 

values between 5 and 15 sec. Time windows with low cross correlation are 

also evident. 
 

A. Hypercapnic step data 

   10 minutes of baseline period were followed by a 20 

minutes hypercapnic step and a 10 minutes post-hypercapnic 

phase. Our main goal was to extract and quantify important 

features of the identified nonstationary system such as phase 

and gain through time and provide a more comprehensive 

characterization of dynamic autoregulation [13]. Based on 

all subjects we found that the phase lead of the MABP 

component in the low frequency range decreased during the 

hypercapnic step, indicating impaired autoregulation 

(Fig.4a). This phenomenon was accelerated during the onset 

of the step and decelerated afterwards. On the contrary, 

during free breathing conditions, the phase lead exhibited 

periodicities around specific values (Fig.4b).      
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Figure 4: (a) Averaged (solid line +/- standard error of the mean – dashed lines) over all subjects (a) mean phase of the MABP kernels in the low frequency 

range  (LF: 0.04-0.15 Hz)  for two-input models as a function of time during the three experimental phases (baseline, hypercapnia and post-hypercapnia). 
The two vertical dashed lines denote the onset (around 200s) and the offset (around 1400s) of the hypercapnic step (b) Mean phase of a representative 1st-

order MABP kernel (Fig. 2a) in the low frequency range (LF: 0.04-0.15 Hz)  for  a two-input model as a function of time under free-breathing conditions.   

 

   We also identified a significantly faster increase in the 

phase lead of the system during and after the offset of the 

hypercapnic step (Fig.4a). The gain of the MABP 

component decreased abruptly immediately after the onset of 

the hypercapnic step but rebounded to its baseline values. 

Overall we did not observe any specific pattern.  The 

variability indices of the extracted MABP kernels were 

higher for the one-input models during all three 

experimental phases [13] indicating once again that the 

addition of PETCO2 results into less time-varying components. 

  

V. DISCUSSION AND CONCLUSIONS 

   We investigated cerebral autoregulation under free-

breathing and hypercapnic conditions by applying a 

multivariate data-driven adaptive approach. One input 

models exhibited in general less accurate and more time-

varying characteristics compared to two-input models 

indicating that PETCO2  plays an important role mainly in the 

very low frequency range. During resting conditions, time-

varying forgetting factors revealed periodicities in the 

MABP kernel components, whereas the PETCO2 kernels 

varied in a more random pattern. The origin of these 

nonstationarities is an interesting subject that needs to be 

examined further. In accordance with previous studies, 

sustained euoxic hypercapnia led to a decrease in the phase 

lead of the MABP component indicating that hypercapnia is 

associated with impaired cerebral autoregulation.  
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