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Abstract— Accurate delineation of pathological lungs from
computed tomography (CT) images remains mostly unsolved
because available methods fail to provide a reliable generic
solution due to high variability of abnormality appearance.
Local descriptor-based classification methods have shown to
work well in annotating pathologies; however, these methods
are usually computationally intensive which restricts their wide-
spread use in real-time or near-real-time clinical applications.
In this paper, we present a novel approach for fast, accurate,
reliable segmentation of pathological lungs from CT scans
by combining region-based segmentation method with local-
descriptor classification that is performed on an optimized sam-
pling grid. Our method works in two stages; during stage one,
we adapted the fuzzy connectedness (FC) image segmentation
algorithm to perform initial lung parenchyma extraction. In
the second stage, texture-based local descriptors are utilized
to segment abnormal imaging patterns using a near optimal
keypoint analysis by employing centroid of supervoxel as grid
points. The quantitative results show that our pathological lung
segmentation method is fast, robust, and improves on current
standards and has potential to enhance the performance of
routine clinical tasks.

I. INTRODUCTION

The use of different imaging modalities for assisting in
diagnosis and quantification of disease has grown tremen-
dously over the past decade [1], [2]. Specifically, CT im-
ages contain enormous amount of visual information (Fig.
1), making it impossible to analyze manually. In addition,
imaging abnormalities often occur in small patches that
can be better classified using local descriptors rather than
global approaches because local descriptors are found to be
extremely successful in detecting pulmonary abnormalities.
However, the enormous amount of data to be processed
in local descriptor calculations coupled with the trade-off
between the accuracy and the efficiency, discourage their
widespread use. Local descriptors can be applied in two
modes in any image analysis task: dense-sampling and
keypoint analysis. Dense sampling uses fixed grid to compute
the local descriptors; however, the optimal density of the grid
is not trivial to find: if the grid is too dense it will increase
the computational cost by computing the local descriptors
at redundant grid-points. On the other hand, if the grid is
too sparse it will miss the clinically relevant information.
Keypoint analysis tries to find the optimal sampling grid for
computing the local descriptors. The keypoint sampling has
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been widely used in various feature detection techniques in
computer vision such as scale-invariant feature transform
(SIFT) and speed-up robust features (SURF) to name a few.
In this paper, we presented a novel approach to patho-
logical lung segmentation using the keypoint sampling of
supervoxels in CT scan. The near optimal grid for the
keypoint sampling is created by adapting the state-of-the-
art Simple Linear Iterative Clustering (SLIC) method [3] to
generate supervoxel for CT images. The modified SLIC has
been demonstrated to generate texturally uniform supervox-
els and adhering to the boundary constraints. The centroids of
these texturally uniform atomic regions are used as keypoint
sampling grid for the calculation of local descriptors. The
performance evaluation tests conducted using surrogate truth
obtained with the expert manual segmentation on a large
dataset from diverse sources with varying amounts and
types of abnormalities confirm the robustness, accuracy, and
computational efficiency of our proposed method.

a

Fig. 1: Schematic diagram showing most common abnormal tex-
ture patterns in pulmonary CT scans. from left to right: consolida-
tion, ground-glass-opacity (GGO), honey combing, and fibrosis.

II. METHODS

Our proposed algorithm consists of two steps. During the
first step, initial segmentation of normal lung parenchyma
is performed using region-based FC segmentation algo-
rithm [4]. Second, the regions containing abnormal imaging
patterns such as consolidation, GGO, etc. as well as the
nearby soft tissues are subdivided into supervoxels and local
descriptors at keypoint sampling points are calculated and
classified using random-forest classifier to separate abnormal
pulmonary regions from the neighboring soft tissues. The
supervoxel classified as pulmonary pattern after classification
are added to the initial FC segmentation to obtain annotated
pulmonary volume. The details of the steps are presented
below.

A. Initial segmentation

Fig. 2 summarizes the initial lung segmentation process
using FC. FC requires two seed points: s;, s, located within
the left and right lungs, respectively. In our design, we auto-
matically set seed locations through a pre-processing step. To
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Fig. 2: Flowchart explaining the initial segmentation using FC.

summarize, for any given CT image I, we use a thresholding
operation 7 using CT attenuation values for normal lung
parenchyma (Hounsfield Units (HU): -700 through -400,
mean ~ —550 HU). Thus, I7 = T{I} _ss0xv. Finally, we
set the seed locations s; and s, after randomly sampling a
few seed candidates (i.e., 3 X 3 x 3 seed window) for each
lung from I7 and select the voxels with minimum HU value
as seeds:

3x3x3 T
['random) € Ileft7
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where £ denotes the location of the voxel(s), and I7 =
I gy UL gy

Apart from seeds, FC algorithm requires approximate
mean m and the standard deviation o of the lung region to
be used in affinity functions. These values were empirically
set to normal lung parenchyma as m = —550 HU, o = 150
HU after analyzing hundreds of CT images. Once seeds and
affinity parameters for FC are set, the initial delineation is
performed. The output of the FC segmentation is a binary
mask of the lung fields. The extent of how well the initial
FC segmentation performs depends on the amount, kind, and

density of abnormality present in the target image.

B. Abnormality detection

Abnormality detection module consists of two parts. First,
a search-space for prospective abnormalities is defined that
includes the nearby soft tissue as well as abnormal pul-
monary areas that have intensities very similar to nearby soft

tissue. The search space is subsequently partitioned into su-
pervoxels by applying an adapted SLIC algorithm to handle
gray-scale 3D volumetric CT scans. The algorithm partitions
the CT image into superpixels of nearly uniform sizes whose

i boundaries closely match with the natural boundaries in
! the image while capturing the redundancy in the data [5].

Supervoxels provide a primitive neighborhood from which

i a single representative local descriptor can be computed for
i all voxels belonging to that supervoxel. Finally, the random
forest classifier is used for binary classification (pulmonary
i abnormality, near-by soft tissue) of the descriptors. Fig.

3 summarizes the abnormality segmentation module, the

! details are presented in the following subsections.
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Fig. 3: Schematic diagram showing texture classification-based
refinement, highlighting both predictive model learning for RF and
the pathology classification in the target image based on the learned
predictive model.

1) SLIC supervoxel segmentation: In [3] Achanta et
al. introduced a memory efficient method named, simple
linear iterative clustering, for generating superpixels and
supervoxels. The method has since then been applied in
various applications and has shown to exhibit excellent
preservation; therefore, improving the overall performance
of the subsequent delineation method. The only parameter
to the algorithm is the desired number of approximately
equal-sized supervoxels k. The clustering process begins
inside a 4-dimensional space where k cluster centers C; =
{v,2,y,2};,Vi € {1,...,k} are sampled on a regular grid.
To produce roughly equal-sized supervoxel the grid interval

S is set to S = \/%,
supervoxels. Next, each voxel is assigned to the nearest
cluster center whose search space coincides with the voxel

location. Once every voxel has been associated with a cluster

where N is the total number of
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center, an update step is performed to adjust the cluster center
to the mean of [v,z,y,z]; vector of all voxels belonging
to the cluster ¢. The L, norm is then used to estimate the
residual error between the previous and the updated cluster
center locations. The update step is repeated iteratively until
the error converges.

C. Local descriptor extraction

Although local descriptors are very useful for detecting
local patterns such as pathologies, it is not trivial to extract
discriminative feature sets to drive the detection process.
Moreover, assessing every voxel’s class label may be com-
putationally expensive. To address these two challenges,
we integrated rib cage extraction and convex-hull fitting
processes into the random forest classification algorithm in
order to restrict the search space (Fig. 4) to rib cage area
only. To further reduce the redundancy, the local descriptors
are calculated only at the centroid of the supervoxels (Fig.
5) within the search space forming an optimized keypoint
sampling grid since the centroid of texturally uniform su-
pervoxel can be assumed to representative of the entire
supervoxel. For random forest voxel classification of lung
tissues, we employ grey-level run length matrix (GLRLM),
gray-level co-occurrence matrix (GLCM), and histogram
features. Justification of the use of GLCM, GLRLM, and
histogram features is based on the visual analysis of CT lung
pathologies [6].

Fig. 4: Schematic diagram showing the supervoxel-segmented
search space (red) with initial FC segmentation (green).

Fig. 5: Schematic diagram showing the centroid of a supervoxel
(red dots) with neighborhood (green dots) for local descriptor
extraction.

TABLE I: Extracted features for voxel-wise classification of lung
tissues.

Energy

Entropy

Correlation

Inverse Difference Moment (IDM)

Inertia

Cluster Shade (CS)

Cluster Prominence (CP)

Short Run Emphasis (SRE)

Long Run Emphasis (LRE)

Gray-Level Non-uniformity (GLN)

Run Length Non-uniformity (RLN)

Run Percentage (RP)

Low Gray-Level Run Emphasis (LGRE)

High Gray-Level Run Emphasis (HGRE)

Short Run Low Gray-Level Emphasis (SRLGE)

Short Run High Gray-Level Emphasis (SRHGE)

Long Run Low Gray-Level Emphasis (LRLGE)

Long Run High Gray-Level Emphasis (LRHGE)
Mean

GLCM

GLRL

Variance  Skewness
Min. Max.

Kurtosis

Hist.

For every voxel within the search region, we extract the
features considering a region-of-interest around the voxel.
The complete list of 24 distinct features is shown in Table I.

Since, our aim in this study is only to segment pathological
lungs, we considered all pathological regions not captured by
FC as belonging to a single label (i.e., T},). All the voxels in
the search space, R, are classified into two classes: patho-
logical (T},) or non-pathological (7},) regions. In particular,
neighboring structures of the lung were considered as non-
lung and/or non-pathological structures and labeled as 7,.

Random forest has been shown to be powerful for var-
ious pattern classification tasks due to its high accuracy,
efficiency, and robustness. In training a random forest classi-
fier, two experienced observers annotated various pathology
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TABLE II: Parameter settings for random forest classification
method in pathology detection.

# of bins per axis = 16 =
% # of directions = 4 é # of directions = 4
3 | Offset = 2 S | # of levels = 8
Pixel intensity dynamic
_| range = 16 bits s | ROI dynamic-range = 16-
& | # of trees in a forest = 70 é bits
'g % of training set used to ROI window =7 x 7
& | build individual trees = 0.6

patterns from randomly selected CT scans (21 CT scans
from different subjects). A total of 997 non-overlapping
ROIs were extracted from those annotations such that 507
observations belong to 7}, while 490 observations belong to
T.,. A random forest classification model is constructed using
those observations with the corresponding labels. Table II
summarizes the set of parameters used for feature extraction
and random forest classifier training.

III. PERFORMANCE EVALUATION

TABLE III: Data Description of the CT scans used in our
experiments.

Notes

Patient scans with TB-
infected  lungs. The
data contains  various
pathologies prominently:
consolidation, GGO,
cavity, bleb, and pleural
effusion. (http://
tuberculosis.by/).

# of patients # of scans

Tuberculosis 80 93

LOLA 55 55 Data set designed as part
of the lung segmenta-
tion challenge (MICAII
2011). The pathologies in
lung scans range from
mild to severe. (http://

lolall.com).

High-resolution scans
with  mild pathologies
(consolidation, and
effusion). (http:
//image.diku.
dk/exact).

Total 175 188 —

EXACT 40 40

To evaluate the performance of our proposed method, we
used publicly available datasets from various sources. The
description of the evaluation data is provided in Table III.
When biopsy images are not available, manual expert evalu-
ation is mostly accepted as the gold standard. For reference
standard in our study, the reference standard were provided
by two experienced observers through manual segmentation.
Dice similarity coefficient (DSC) was used as evaluation
metrics for quantitative analysis. Table IV summarizes the
quantitative evaluation of the annotation produced by our
method. Results clearly demonstrates the effectiveness of
the proposed technique in dealing with most commonly
encountered pathologies.

TABLE 1V: Overall performance of the proposed lung segmenta-
tion approach averaged over different data sets and averaged overall.
Mean and standard deviation (std) is provided for each index.

Data set DSC
Observer-1 Observer-11

Tuberculosis Data  mean 0.9611 0.9692

std 0.0326 0.0133
Exact mean 0.9801 0.9797

std 0.0121 0.0143
Lola mean 0.9527 0.9623

std 0.0149 0.0223
Total mean 0.9527 0.9623

std 0.0149 0.0223

IV. CONCLUSION

In this paper, we present a fully automated lung segmen-
tation method for CT scans with and without pulmonary ab-
normalities. The distinctive pulmonary abnormality patterns
are mostly localized; therefore, global region-based methods
mostly fail to capture those abnormalities. Local descriptors
are found to extremely successful in finding those abnormal
patterns; however, these methods are computationally ex-
pensive, therefore, efficient computation of local descriptors
requires appropriate grid density estimation which is difficult
to estimate. To address this issue, we propose a novel key-
point sampling method based on texturally uniform atomic
regions known as supervoxels. Our method begins with
computationally efficient initial FC segmentation to segment
the normal lung regions, followed by a machine-learning-
based local refinement scheme performed on near-optimal
key-point sampling grid formulation to capture missing ab-
normal patterned pulmonary regions. The evaluation results
shows an overlap score (DSC) of greater than 95% from
publicly available challenge data sets, indicating a successful
pathological lung segmentation system to be used in routine
clinics.
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