
  

  

Abstract— Over the last decade, a plethora of computer-
aided diagnosis (CAD) systems have been proposed aiming to 
improve the accuracy of the physicians in the diagnosis of 
interstitial lung diseases (ILD). In this study, we propose a 
scheme for the classification of HRCT image patches with ILD 
abnormalities as a basic component towards the quantification 
of the various ILD patterns in the lung. The feature extraction 
method relies on local spectral analysis using a DCT-based 
filter bank. After convolving the image with the filter bank, q-
quantiles are computed for describing the distribution of local 
frequencies that characterize image texture. Then, the gray-
level histogram values of the original image are added forming 
the final feature vector. The classification of the already 
described patches is done by a random forest (RF) classifier. 
The experimental results prove the superior performance and 
efficiency of the proposed approach compared against the 
state-of-the-art. 

I. INTRODUCTION 

Interstitial lung diseases (ILDs) constitute a 
heterogeneous group of more than 200 chronic lung disorders 
characterized by scarring and/or inflammation of lung 
parenchyma that cause respiratory failure [1]. The diagnosis 
of ILD is usually based on the assessment of thoracic 
computed tomography (CT). However due to the lack of 
strict clinical guidelines and the resemblance between the 
different ILD findings, the problem of radiological ILD 
diagnosis is time consuming and requires extensive 
experience, a fact that reduces significantly the diagnostic 
accuracy of the radiologists and increases the inter- and 
intra- observer variability up to 50% [2]. Optimal treatment 
and prognosis of ILDs depend on accurate diagnosis. 
Misdiagnosis may lead to serious and life-threatening 
complications [1]. Therefore, additional invasive procedures 
are often required like transbronchial or even surgical 
biopsies, increasing both the risk and the cost of the 
diagnosis. To this end, a lot of research effort has been put 
into the development of computer aided diagnosis (CAD) 
systems able to improve the diagnostic accuracy. 

II. RELATED WORK 

A typical CAD system for ILD consists of two major 
stages: (a) lung segmentation and (b) ILD pattern 
quantification. In the first stage the pulmonary parenchyma is 
extracted whereas in the second, the existing ILD pathologies 
are identified and quantified by classifying local image 
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patches. In this study, we will focus on ILD quantification 
stage which has attracted considerable attention over the last 
decade. A variety of mainly texture feature sets have been 
proposed for the description of patches and different 
classification techniques for recognizing the described area.  

The first proposed approaches employed already 
established statistical tools for the description of lung tissue 
such as first-order statistics, gray level co-occurrence 
matrices (GLCM), run-length matrices (RLM) and fractal 
analysis [3]-[6]. The concatenation of them results in the so-
called adaptive multiple feature method (AMFM) as 
proposed by Uppaluri et al. [3]. Uchiyama et al. [7] 
introduced the use of geometrical measures based on the 
morphological top-hat transforms while Sluimer et al. [8] 
used histogram moments after filtering with multi-scale 
Gaussian, Laplacian and Gaussian derivative filters. Vo et al. 
[9] proposed a similar description model with additional 
wavelet and contourlet features. Sorensen et al. [10] used 
local binary patterns (LBP) combined with a gray level 
histogram.  

Recently, several studies adopted unsupervised feature 
extraction techniques based on Bag of Features (BoF) [11]-
[13] and sparse representation (SR) models [14]-[16]. In 
these methods, a set of texture atoms, namely textons are 
identified by k-means and k-SVD, respectively, and every 
local structure in the image is represented by the closest 
texton or a linear combination of the entire set. Image 
description is usually done by estimating the frequency 
distribution of the various existing textons. For the 
description of textons in the BoF models Gangeh et al. [11] 
proposed the use of raw pixel values, Rodriguez et al. [12] 
used a wavelet transform on the differences of Gaussians, 
while Xu et al. [13] computed the moments on pixel values 
and local Hessian eigenvalues. The same features were also 
used within a SR approach in [14] by the same team. Vo et 
al. [15] proposed a SR-based method using wavelet-
contourlet features, whereas Zhang et al. [16] built their SR 
model on the normalized intensity values and then used a 
joint RS-intensity histogram. Li et al. [16] utilized a Gaussian 
Restricted Boltzmann Machine (GRBM) for the learning of 
16 filters for each of the 3 considered scales and then used 
the sum of the filter responses as features. 

After the description stage, a feature vector is created and 
a machine learning classifier is usually employed in order to 
assign to each patch an ILD pattern label. Many different 
classification methods have been used such as linear 
discriminant (LD) [6], [8] and Bayesian [3], [5] classifiers, 
the k-Nearest Neighbors (kNN) [8], [10], [12], artificial 
neural networks (ANN) [4], [7], and support vector machines 
(SVM) with linear [14], [17] or Radial Basis function (RBF) 
[8], [11], [13] kernels. Vo et al. proposed the use of a 
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multiple kernel learning classifier (m-MKL) in [9], while in 
[15] they used the minimum reconstruction error as a 
classification criterion after reconstructing the patch using 
class-specific dictionaries.   

III. METHODS 

In this study, we propose a method for the description and 
classification of HRCT image patches with ILD pathologies 
based on local 2D discrete cosine transform (DCT) transform 
and random forest (RF) classification. The considered classes 
are six including healthy tissue and five ILD patterns, namely 
ground glass opacity (GGO), consolidation, reticulation, 
honeycombing and the combination of reticulation with 
GGO. Examples of the aforementioned lung tissue patterns 
are presented in Fig. 1.  

A. Feature Extraction 
Many different filters have been proposed for the 

description of local image structures such as edges, ridges 
and blobs by emphasizing specific frequencies in the two-
dimensional spectrum. In this work we used a filter bank 
consisting of the 2D-DCT orthogonal basis functions, 
covering the entire frequency spectrum of a local area. The 
DCT describes a discrete signal as a linear combination of 
cosine functions oscillating at different frequencies. The 
two-dimensional DCT of an N×N image I(x,y) is defined as: 
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Each of the DCT coefficients in F(u,v) corresponds to one 
2D frequency of the DCT basis and represents its 
contribution in the linear combination of frequencies that 
results in the original image. Fig. 2 presents the basis of the 
5×5 DCT with the frequencies increasing from left to right 
and from top to bottom.  

The convolution of an image with the N×N DCT basis 
functions produces an equal number of images, each of them 
describing the contribution of a local frequency in the 
original image. The distributions of the filter bank responses 
carry information regarding the local spectral content of the 
image and could be used for characterizing its texture. In 
order to capture this information we propose the use of a 
relatively small number of quantiles. Quantiles are points 

taken at regular intervals from the cumulative distribution 
function (CDF) of a random variable. Even a few quantiles 
are usually able to describe accurately the distribution of a 
random variable while providing robustness against noise.  

If the number of considered intervals is q, q-1 values are 
defined, often referred to as q-quantiles. In practice, CDF is 
approximated by the cumulative histogram and the q-
quantiles for every filtered image are computed and 
concatenated into a feature vector. The histogram of the 
original image is also added since the grayscale distribution 
of CT images expresses fundamental physical properties of 
the tissue. The motivation behind using histogram values for 
the original image but the quantiles for the spectral analysis 
lies in the fact that noise is more prominent in high 
frequencies. The final size of the feature vector is (N×N)*Q 
+ B, where N is the size of the local DCT transform, Q is the 
number of quantiles considered and B is the number of bins 
of the gray-level histogram. The feature extraction procedure 
is depicted in Fig. 3.  

B. Classification 
After the feature extraction procedure, image patches are 

represented by feature vectors which are fed to a random 
forest classifier in order to be classified. RFs are ensemble 
classifiers proposed by Breiman [18]. A RF is a combination 
of decision trees with each tree depending on the values of a 
randomly sampled feature vector. To classify a new input 
vector, each tree “votes” for a class and the forest chooses the 
class having the majority of votes over all the trees in the 
forest. RFs have been used successfully in numerous machine 
learning applications yielding classification performances at 
least comparable to SVM and ANN while being much faster, 

 
 
Figure 1. Two example CT representations of each ILD tissue pathologies. 
From left to right: healthy, GGO, honeycombing, consolidation, reticulation, 
reticulation/GGO. 

 
Figure 3.Overview of the feature extraction procedure 

 
 

Figure 2. The basis functions of the 5x5 DCT. 
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especially in the prediction phase. Moreover, RFs can handle 
very large numbers of input variables and they are fully 
parallelizable and easily implemented. However, to the best 
of our knowledge, they have never been used before for CT-
image lung tissue classification. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Data 
For the needs of the present study, the publicly available 

TALISMAN database was used [19]. The database consists 
of 113 HRCT scans with an average of 25 slices per scan and 
512×512 pixels per slice. It also includes annotated regions of 
interest (ROIs) for 17 different pathological patterns along 
with clinical parameters from patients with histologically 
proven diagnoses of ILDs. For the current study, six lung 
patterns were considered and re-annotated by experienced 
radiologists of the Bern university hospital - Inselspital. 
Based on the annotated ROIs for the healthy and the five 
selected ILD patterns, a dataset of nearly 2500 ILD image 
patches was created with size equal to 21×21pixels. The 
patches are entirely included in the lung field and they have 
an overlap with the corresponding ROI of at least 90% while 
the maximum overlap among the patches is 33%. Table I 
presents an overview of the database. 

TABLE I.  DATABASE OVERVIEW 

Tissue category # Cases # ROIs # Patches 
Normal 15 103 506 
GGO 16 152 506 

Honeycombing 10 28 343 
Consolidation 12 34 136 
Reticulation 18 61 506 

Reticulation/GGO 41 177 506 
 

B. Evaluation 
The evaluation procedure for the classification of the ILD 

patches is based on a 5-fold cross-validation scheme. The 
database is randomly split into 5 subsets and each of them is 
used for testing after having trained with the rest. The 
performance is assessed in terms of the average F-score over 
the different classes: 
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C. Results 
The best values for the parameters were identified by a 

trial and error procedure while cross-validating on the whole 

dataset. Specifically, the optimal filter size was found equal 
to 5×5 resulting in 25 filters. For the q-quantiles, q was set to 
10 giving 9 values to which the max and min values were 
also added. The gray-level histogram of the original images 
was clustered to 32 bins producing 307 features, in total. 
Adding more quantiles or histogram values increased the 
computational complexity without improving the 
performance. For the RF classifier, 40 trees were considered 
sufficient and the number of variables at each node was set 
equal to the square root of the total number of features. The 
experiments were carried out using MATLAB on an Intel i5-
2500 @3.30 GHz CPU with 8GB of RAM. 

TABLE II.  COMPARISON OF FILTER BANKS FOR THE FEATURE 
EXTRACTION  

Filter Bank Number of filters Favg (%) 
Leung-Malik [20] 48 76.6 

Schmid [21] 13 78.7 
Gabor [22] 36 79.2 
MR8 [23] 8 81.3 

DCT 25 89.0 
 

In order to justify the choice of the proposed DCT filters 
for the feature extraction, we compared with some of the 
most popular filter banks found in literature keeping the rest 
of the system as proposed. Table II includes the results of the 
experiment that prove the advanced performance of the 
chosen filters due to their ability to capture information from 
the entire spectrum. 

TABLE III.  COMPARISON OF METHODS FOR THE DESCRIPTION OF 
FILTER RESPONSES 

Classifier Values per image Favg (%) 
Moments 4 86.9 
Histogram 11 87.5 
Quantiles 11 89.0 

 

The next experiment compares different ways to capture 
the relevant information from the filter responses for the 
feature extraction. Table III provides results for using (i) four 
histogram moments (mean, standard deviation, skewness, and 
kurtosis), (ii) histogram values and (iii) the proposed 
quantiles. In all cases the original image is described by its 
histogram. The results prove the robustness of quantiles in 
describing frequency distributions. 

TABLE IV.  COMPARISON OF CLASSIFIERS USING THE PROPOSED 
FEATURE SET 

Classifier Favg (%) Training time (sec) Testing time (sec) 
kNN 80.0 0.043 0.295 
SVM 83.1 14.641 0.526 
ANN 84.3 1.451 0.013 
RF 89.0 4.064 0.004 

 

After the experiments regarding the feature extraction we 
conducted a comparison of four popular classifiers trained on 
the proposed DCT-based feature set. The overall 
classification performance along with the average execution 
time for the training and testing of each classifier are 
summarized in Table IV. An extensive search was performed 
to identify the best parameters for every classifier; the k 
parameter for kNN was set to 11, ANN was implemented as 
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a two-layer feed-forward network with 43 hidden and 6 
output neurons while for SVM the RBF kernel was used with 
C=4 and gamma = 16. From the results, one can confirm the 
superiority of the RF which yielded the best performance 
while keeping a low training time and the lowest by far time 
of prediction.  

Furthermore, Table V provides a comparison of the 
proposed approach against four state-of-the-art methods as 
implemented by the authors.  

TABLE V.  COMPARISON OF THE PROPOSED METHOD AGAINST FOUR 
STATE-OF-THE-ART SYSTEMS 

Method Features Classifier Favg (%) 
Sluimer [8] Moments after filter bank SVM-RBF 65.7 
Uppaluri [3] GL Moments, GLCM, RLM Bayesian 77.5 
Gangeh [11] Raw pixel textons SVM-RBF 78.9 
Sorensen [10] LBP + GL histogram kNN 82.7 

Proposed Quantiles of local DCT 
+ GL histogram RF 89.0 

 

Finally, Fig. 4 presents the confusion matrix for the 
proposed method. The relatively high misclassification rate 
between the combined GGO/reticulation and the individual 
GGO and reticulation patterns could be justified by the fact 
that the former constitutes an overlap of the latter. Moreover, 
honeycombing is misclassified as reticulation with a rate of 
8% due to their common fibrotic nature while 7% of GGO is 
classified as normal since they both share similar texture with 
just a slight difference in the average intensity. 

V. CONCLUSION 
In this paper, we proposed a method for classifying lung 

tissue with ILD pathologies based on local spectral analysis 
and random forest classification. For the spectral analysis, a 
filter bank consisting of the 5×5 DCT basis functions was 
used. The distribution of the filtered images was described by 
the 10-quantiles (deciles) together with the max and min 
values while a 32-bin gray-level histogram of the original 
image was also considered for the feature set. The highly 
discriminative feature set was combined with a RF classifier 
which was used for the first time on the specific application. 

The experimental results proved the superior performance 
and efficiency of the proposed method achieving the best 
results with an average F-score equal to 89%. For future 
work we will investigate the extension of the proposed 2D 
fixed-scale filter bank to multiple scales and 3 dimensions. 
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Figure 4. The confusion matrix of the proposed classification 
scheme. The entry in the ith  row and jth column corresponds to the 
percentage of images from class i that was classified as class j. 
Norm: normal tissue; GGO: ground glass opacity; Cons: 
consolidation; Ret: reticulation, HC: honeycombing; Ret+GGO: 
combination of reticulation and ground glass opacity. 
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