
  

 

Figure 1: Flow chart of image processing steps.  
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Abstract — One of the most important signs of systemic 

disease that presents on the retina is vascular abnormalities 

such as in hypertensive retinopathy. Manual analysis of fundus 

images by human readers is qualitative and lacks in accuracy, 

consistency and repeatability. Present semi-automatic methods 

for vascular evaluation are reported to increase accuracy and 

reduce reader variability, but require extensive reader 

interaction; thus limiting the software-aided efficiency. 

Automation thus holds a twofold promise. First, decrease 

variability while increasing accuracy, and second, increasing 

the efficiency. 

In this paper we propose fully automated software as a 

second reader system for comprehensive assessment of retinal 

vasculature; which aids the readers in the quantitative 

characterization of vessel abnormalities in fundus images. This 

system provides the reader with objective measures of vascular 

morphology such as tortuosity, branching angles, as well as 

highlights of areas with abnormalities such as artery-venous 

nicking, copper and silver wiring, and retinal emboli; in order 

for the reader to make a final screening decision. To test the 

efficacy of our system, we evaluated the change in performance 

of a newly certified retinal reader when grading a set of 40 

color fundus images with and without the assistance of the 

software. The results demonstrated an improvement in 

reader’s performance with the software assistance, in terms of 

accuracy of detection of vessel abnormalities, determination of 

retinopathy, and reading time. This system enables the reader 

in making computer-assisted vasculature assessment with high 

accuracy and consistency, at a reduced reading time. 

      

I. INTRODUCTION 

Cardiovascular disease (CVD), a common co-morbidity 
of diabetes mellitus (DM), is the number one cause of death 
among type 2 diabetics [1]. Signs of target end organ damage 
(TOD) caused by DM and CVD can be detected in the retina 
as hypertensive retinopathy (HR) [2]. Retinal vascular 
changes such as artery-venous (AV) nicking, copper and 
silver wiring, emboli, tortuosity, and changes in branching 
angle are reported to be associated with DM and CVD 
[3,4,5,6]. The features of HR can predict severity and risk of 
stroke and CVD, independent of blood pressure (BP) or its 
fluctuations, and even in patients with good BP control [7].  

There is a dearth of eye care professionals to manage all 
of the patients at risk via traditional methods, especially in 
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underserved areas. Introducing teleretinal screening allows 
primary care givers to provide access at a low cost. However, 
the inter-reader variability and qualitative nature of today’s 
teleretinal screening settings create inefficiencies [8]. The 
inter-reader agreement for the detection of vascular 
abnormalities is only fair to moderate, such as κ=0.56 for AV 
nicking, and κ=0.42 for arterial narrowing [9,10], indicating 
high inconsistency in readers. Furthermore, intra-reader 
agreement of κ=0.34 indicates that readers often classify the 
same images in different categories. Several research groups 
have presented computer-assisted vascular analysis tools that 
are semi-automatic and address only a subset of vascular 
characteristics; such as the Diagnos CARA system [11], or 
IVAN [12,13]. These systems require extensive manual 
interaction in tracing of vessels or in classifying arteries and 
veins, and only measure artery-vein ratio, which takes up to 
15 minutes; thus rendering them of limited utility for clinical 
use where real-time feedback is needed [12,13].  

We present the first fully automated retinal vasculature 
analysis software as a second reader system, integrating the 
newly developed algorithms that provide vascular 
morphology measurements and vessel abnormality detection, 
to assist a reader in identifying the signs of retinopathy. This 
system allows a reader in making more accurate and 
consistent screening decisions with quantitative precision and 
quick turn-around time; which improves the cost 
effectiveness and efficiency of screening. This paper is 
organized as follows. Section II describes the methods and 
materials; Section III presents our results and discussion; 
finally, Section IV summarizes our conclusions. 

II. METHODS AND MATERIALS  

A. System design 

Fig. 1 shows the data flow and corresponding algorithms 
involved in the retinal image analysis. In the top row, the 
software sequentially processes a retinal image to produce a 
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Figure 2. Automatic artery (red) – vein (blue) classification.  

 
Figure 3. (a) Constriction of a vein by an artery. (b) Decreased vessel 
width profile, magnified view.  
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map of the vasculature using previously developed methods. 
In the middle row, the system uses our innovative algorithms 
that produce the features needed by the reader to determine a 
finding and make a grading decision.  

B. Retinal vessel network analysis 

The retinal vasculature assessment system was designed 
based on image analysis algorithms previously developed for 
vessel segmentation [14], segmentation correction by vessel 
reconnection [15], vessel tree separation by structural 
mapping [16,20], and artery-venous classification [17,18,20]. 
The performance of these algorithms was comparable to the 
relevant literature, and is reported in the cited publications. A 
brief description of these algorithms follows. 

Vessel Segmentation: The segmentation algorithm [14] 
was developed based on illumination correction, multi-scale 
linear structure enhancement, and second order local entropy 
thresholding. 

Vessel Reconnection: Image quality affects the quality of 
vessel segmentation resulting in interruptions, where a 
continuous vessel is often segmented into multiple 
disconnected vessel segments. This creates a false 
representation of vessel morphology. An algorithm was 
developed based on a method that identifies interruptions 
using connected component analysis and reconnects vessels 
using Dijkstra’s graph search that determines a minimum cost 
path corresponding to the vessel ridges [15].  

Structural Mapping: Vessel abnormality detection that is 
specific to a primary vessel and branching generations for 
both arteries and veins is needed for precise assessment of 
retinopathy [19]. However, the vessel trees are highly 
intertwined and complex for manual analysis. An algorithm 
was developed for remodeling the vessel trees into a vessel 
segment map and applying Dijkstra’s graph search using 
vessel structural properties, to separate the vessel trees; as 
described in [20,16].  

AV Classification: An algorithm was developed for 
artery-venous classification (Fig. 2) using a supervised 
classification method combined with vessel tree graph 
analysis [17]. This method uses multiple color and color 
variation features in the RGB, CIELab, YCbCr color spaces, 
as well as morphological features. A partial least squares 
(PLS) classifier is used to determine the probability that a 
vessel segment belongs to an artery or vein. 

C. Retinal vessel abnormality detection 

Detection of vessel abnormalities is highly predictive of 
hypertension and stroke [3,7]. We present the first fully 

automatic application that detects the vessel abnormalities 
and incorporates them into a computer-assisted system. The 
vessel network analysis methods form a foundation for newly 
developed algorithms for detecting various vessel 
abnormalities, described as follows. The ground truth was 
provided by a retinal specialist. 

Vessel Morphology: The vascular morphology was 
measured in terms of vessel tortuosity and branching angle. 
An algorithm was developed based on a method for 
calculating tortuosity that formulates a tortuosity index (TI, 
see equation below) [21] comprising curved vessel length 
over its chord length (Lc/Lx), number of curvature sign 
changes (n), and magnitude of curvature (Ɵ).  

The normal values of branching angle (72°) reflect an 

efficient blood transport [22], whereas the variations in 
branching angle may indicate atherosclerosis. During the 
structural mapping process [16,20], vessel properties such as 
vessel orientation are measured to separate the vessel trees by 
grouping vessel segments with similar properties. Therefore, 
branching angle is derived from the values of vessel 
orientation at each branching. 

AV Nicking: A nicking or constriction of a vein by an 
artery at an artery-venous (AV) crossing (Fig. 3a-b) is 
indicative of hypertension [4]. Our system uses structural 
mapping to separate vessel trees and to detect the AV 
crossing points [16]. The vessel segments inside a region of 
interest (ROI, determined by image size) centered at each 
crossing point, are identified as arteries or veins using the AV 
classification [17,20]. The width of the vessel segments that 
is classified as a ‘vein’ inside the ROI, is then measured. AV 
nicking is identified when the average width of the vessel tip 
falls below 70% of the average width of rest of the vessel 
segment. Both proximal and distal tips of the vein segment 
are analyzed and the position of the vessel tips that fits the 
criterion for AV nicking is marked [10]. Twenty five fundus 
images were used to test the algorithm resulting in an 
accuracy of 82% against the ground truth, comparable to the 
accuracy of 88% reported in the literature [23].  

Copper and Silver Wiring: With hypertension and 
atherosclerosis, arterial vessel walls thicken and the blood 
column color becomes less saturated, resulting in a shiny 
reflection of the arterial vessel wall known as copper and  
silver wiring (Fig. 4a). Our system uses a vessel reconnection 
method [15] to reconnect the interruptions in segmentation 
caused by copper or silver wiring, and AV classification 
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Figure 4. a) Copper wiring, b) Intensity profile at cross section, c) 

Wiring marked by white dots on vessel edges. 

 
Figure 5. a) Plaque at arterial bifurcation. b) Higher Intensity profile at 
plaque position. c) Automated detection of a plaque 

 
Figure 6: Example GUI showing abnormality detections 

[17,20] method to identify arteries and veins. The presence of 
wiring is detected by analyzing the arterial cross-sectional 
intensity profile changing from vessel edges to vessel 
centerline (Fig. 4a-b), throughout the segmented artery 
length. The contrast between vessel edges and vessel 
centerline is enhanced by adaptive histogram equalization. 
The second order derivative of the equalized image is 
obtained, which describes the local vessel curvature and 
identifies the ridges formed by the presence of wiring. The 
arterial cross-sectional intensity profile in the derivative 
image is analyzed to determine a differential scalar value that 
represents the number of sign changes as well as the 
magnitudes of crests and troughs (Fig. 4b). A scalar value 
above an empirical threshold (representing a varying 
intensity profile) indicates the presence of copper or silver 
wiring, as marked by white dots on the vessel edges (Fig. 4c). 
The threshold is selected so as to differentiate between an 
arterial central reflex and presence of copper or silver wiring. 
The method was tested on 25 fundus images, yielding an 
accuracy of 71%.  

Retinal Emboli (Hollenhorst Plaque): This abnormality 
presents as a bright yellow-colored flake trapped in an arterial 
bifurcation (Fig. 5a), and may indicate a risk of plaque 
formation in other blood vessels, e.g. carotid arteries, which 
could result in a stroke. However, there is no automatic 
application available that detects plaques in fundus images.  

A plaque produces an intensity profile higher than retinal 
background and vessel section at bifurcation as shown in Fig. 
5b. We use the method of structural mapping [16] to separate 
vessel trees, and to detect bifurcation points for the arterial 
vessel trees identified by AV classification [17,20]. The 
contrast between a potential plaque and retinal vessels is 
enhanced by adaptive histogram equalization in the ROI 
centered at each bifurcation point. The presence of a plaque is 
detected when the average intensity in a neighborhood of a 
bifurcation point (plaque region) is more than twice 
(empirical threshold) the average intensity of vessels inside 

the ROI. The method was tested on 15 fundus images, 
yielding an accuracy of 80%.  

D. Evaluation of Reader’s Performance.  

A graphical user interface (GUI) was developed that 
integrates the algorithm findings, and used to aid the reader 
in a computer-assisted screening process. The GUI displays 
the input fundus image and the quantitative or visual data 
describing a particular vessel abnormality (Fig. 6). The 
measurements of morphological properties such as tortuosity 
and branching angle are displayed on the image beside to 
each individual vessel, or as an average value for the vessel 
network. The retinal regions with detected vascular 
abnormalities such as AV nicking, copper/silver wiring, and 
emboli are highlighted on the fundus image. 

  To evaluate the effect of the software in assisting a 
reader, a set of 40 standard two-field (optic-disc and fovea 
centered) fundus images was used consisting of 70% images 
with vascular abnormalities and 30% control images. The 
annotation of individual vessel abnormalities and overall 
determination of a retinopathy for each image, i.e. ground 
truth, was provided by a retinal specialist. A newly certified 
retinal reader with minimal grading experience analyzed 
each image for abnormalities and for the presence or absence 
of retinopathy, with and without the software assistance. The 
interval of 1 week between the two grading sessions offered 
an adequate memory-erase for the reader.  

III.  RESULTS AND DISCUSSION 

The reader’s performance was calculated using the 
following metrics: 1) Sensitivity and number of false 
positives in identifying individual vascular abnormalities, 2) 
sensitivity and specificity in determining a retinopathy, and 
3) average reading time required per image.  Table I shows 
the comparison of reader performance with and without the 
assistance of the software system. 

TABLE I. EFFECTIVENESS OF SOFTWARE-ASSISTANCE IN GRADING 

Performance metric 
Without 

software aid 
With 

software aid 

Sensitivity to abnormalities 57% 85% 

No. of false positive abnormalities 
/ Image 

0.55 0.65 

Sensitivity to retinopathy 81% 100% 

Specificity to retinopathy 87% 100% 
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Figure 7: Reading time required per image 

Our results demonstrate a significant increase in 
sensitivity in detecting vessel abnormalities, as well as 
increase in sensitivity and specificity in determining a 
retinopathy, when assisted with the software system. 

However, the experiment reported a small increase in the 
number of false positive abnormality detections when 
assisted with the software, which is a result of over-detection 
by the software as well as the reader. 

The increase in performance is further highlighted by an 
average reduction of 25 seconds in reading time which saves 
about quarter of the total reading time required per image 
(Fig. 7), due to the readily available vascular features 
provided by the software. Though the reading time with the 
software aid did not decrease significantly, the reader 
detected and annotated more abnormalities, resulting in 
greater than 25% of sensitivity. 

Our study was based on images of sufficient quality for 
clinical determination and a large prevalence of vascular 
abnormalities. It is to be seen how image quality and image 
variation according to actual disease prevalence may affect 
our results. Also, we need to test the hypothesis that our 
system could be used as a learning tool for reading. As such 
it is conceivable that a reader learns from the system and 
becomes more adept at picking up vessel abnormalities. 

IV. CONCLUSIONS 

This work presents a novel software system, the first 
automated application that integrates the innovative 
algorithms developed for characterizing retinal vascular 
abnormalities, to aid human readers in computer-assisted 
screening of retinopathies. The results demonstrate a 
significant improvement in reader’s performance in terms of 
accuracy and efficiency that could increase teleretinal 
screening throughput and point to more access. Better results 
in less time make a good economic argument for computer-
assisted screening. We are in the process of conducting a 
clinical study with data collected at primary care settings to 
validate the algorithms and the system performance. 
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