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Abstract— Intrapartum fetal surveillance for early detec-
tion of fetal acidosis in clinical practice focuses on reducing
neonatal morbidity via early detection. It is the subject of on
going research studies attempting notably to improve detection
performance by reducing false positive rate. In that context,
the present contribution tailors to fetal heart rate variability
analysis a graph-based dimensionality reduction procedure per-
formed on scattering coefficients. Applied to a high quality and
well-documented database constituted by obstetricians from
a French academic hospital, the low dimensional embedding
enables to distinguish between the temporal dynamics of healthy
and acidotic fetuses, as well as to achieve satisfactory detection
performance detection compared to those obtained by the
clinical-benchmark FIGO criteria.

Index Terms— Intrapartum fetal heart rate variability, Scat-
tering transform, Dimensionality reduction, Embedding,

I. MOTIVATION, GOALS AND CONTRIBUTIONS

Intrapartum Fetal Heart Variability surveillance. Mon-
itoring intrapartum fetal heart rate is a routine clinical
procedure that aims notably at detecting fetal acidosis as
early as possible. Early detection enables obstetricians to
perform operative deliveries whenever necessary and thus
to reduce fetal and neonatal mortality and morbidity due to
asphyxia [1]. The health status of the fetus is essentially
assessed by analysis of the fetal heart rate variability (F-
HRV), i.e., the fluctuations of the RR-interval times.
Related work. F-HRV analysis often relies on two dif-
ferent steps: i) Extraction of features, discriminating the
temporal dynamics of healthy fetuses from that of fetuses
suffering from acidosis ; ii) Application of a supervised
or unsupervised classification procedure to assess the fetus
health status. For the first step, at the clinical level, F-
HRV analysis relies on the FIGO criteria [2], which mostly
comprise morphological or geometrical features (e.g., depths
or widths of decelerations) or statistical time domain features
(e.g., long term or short term variabilities, cf. e.g., [3]). At the
research level, spectral domain features have been massively
used to characterize F-HRV temporal dynamics and thus
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to detect fetuses suffering from acidosis (cf. [4], [5] for
reviews). Dynamical system oriented analysis tools have also
been used, amongst which entropy rates [6] and other non
linear analysis methods, which exploit information beyond
linear correlation (cf. [4], [7]). Recently, the concepts of self-
similarity and its non linear extension, multifractal analysis,
have also been used in that context (cf. e.g., [4], [8], [9]).
The second step often consists in feeding nowadays standard
yet advanced supervised classifiers (such as Support Vector
Machines, SVM) with usually large sets of features (cf. e.g,
[10]). Such practices are driven by the underlying expectation
that the elaborated classification procedure will make the best
of the high dimensional representation stemming from the
large collection of features, each carrying individually only
a weak classification power.
Goals and contributions. The present contribution aims
at showing that F-HRV time series, despite resulting from
complex physiological mechanisms, which can be viewed
as complex dynamical systems, can be well represented by
a low-dimensional dynamical system that captures essen-
tial information relevant for intrapartum surveillance. This
representation relies on a new signal processing algorithm,
which approximates a dynamical system by constructing a
low-dimensional manifold embedding of scattering coeffi-
cients. Scattering transforms were shown to well preserve
information crucial for acidosis detection [11]. The scattering
transform is introduced in Section III, while the graph-
based algorithm permitting the low dimensional embedding
of data is described in Section IV. It is applied to a
high quality F-HRV database constituted at the academic
Hospital Femme-mère-Enfant (HFME, Women-Mother-Child
Hospital) in Lyon, France (cf. Section II ). Results are
reported in Section V and show that the variability of F-HRV
scattering coefficients, computed within two-minute sliding
window, is well captured by a low-dimensional manifold,
and that dimensionality reduction enables us to use a simple
nearest neighbor procedure as an effective classifier for
acidosis detection. Combined with obstetrician’s annotations,
the achieved detection sheds new and interesting light on
acidotic and healthy fetus temporal dynamics and on the
reasons why particular cases are difficult to classify.

II. DATABASE

Data measurements. At HFME, Fetal heart rate surveil-
lance and recordings is clinically performed using the STAN,
Neoventa Medical (Moelndal, Sweden) system (STAN 21 or
31 systems, 12bit resolution, which produces high quality F-
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HRV recording, with low level of missing data and corrupted
signals. From electrocardiograms, lists {tn}n∈N, of beat-by-
beat R-peak occurrence times (in ms) are extracted and made
available for analysis.
Database. Obstetricians at HFME have created a database
of intrapartum F-HRV data, representative of healthy subjects
and of fetuses suffering from acidosis, and organized it into
three classes (cf. [8] for detailed description): i) FIGO-
TP: 15 fetuses suffering from fetal acidosis, with post birth
measured arterial umbilical cord umbilical pH ≤ 7.05, hence
abnormal, which were correctly diagnosed as such according
to FIGO-guidelines, and thus referred to as FIGO-True
Positives ; ii) FIGO-TN: 15 non acidotic (healthy) fetuses,
i.e., with normal fetal outcome, and post birth measured
arterial umbilical cord pH ≥ 7.30, which were correctly
diagnosed as such according to FIGO-guidelines, and thus
referred to as FIGO-True Negatives ; iii) FIGO-FP: 15
fetuses non acidotic (healthy) fetuses, i.e., with normal fetal
outcome, with post birth measured arterial umbilical cord
pH ≥ 7.30, which were yet incorrectly diagnosed as acidotic
according to FIGO-guidelines, and thus referred to as FIGO-
False Positives. All recording last for more than 30 minutes.

The database is also documented by obstetricians, notably
with annotations motivating decisions for diagnosis and
operative delivery. One issue obstetricians are struggling with
is the high level of false positive detections, which stems
from the very nature of the application: Misdetection of
fetuses suffering from acidosis during the delivery process
would yield dramatic consequences; FIGO-guidelines are
thus defined stringently so as to avoid such misdetections
(False Negatives), at the expense, though, of a high False
Positive rate. A diagnostic that the fetus suffers from a
precursory acidosis often leads to an operative delivery
decision (C-section, . . . ), which may also, in a number of
cases, induce undesirable post birth complications, for both
the mother and the newborn. Reducing the False Positive rate
has thus attracted significant and continuous research efforts,
at both the clinical and academic levels, a goal to which the
present work contributes.

From the current database, FIGO-criteria provide us with
reference and benchmark detection performance: Sensitivity
of 100% = TP/(TP + FN), at the price of Specificity of
50% = FP/(TP +FP ), a Matthews correlation coefficient
(MCC) [13] of 50% and an overall miss-classification (or
Error) rate of 33% = (FP +FN)/(TP +TN+FP +FN)
(cf. Table I, line 1).
Preprocessing. Often in F-HRV analysis (cf. e.g., [4],
[5]), the series of R-Peak occurrences {tn}n∈N are trans-
formed, prior to analysis, into regularly sampled Beat-per-
Minute (BpM) time series, by interpolation of the samples
{(tn/1000, 60000/(tn+1 − tn))}n. The chosen sampling
frequency is here fs = 8 Hz, as F-HRV does not convey
any physiological information beyond 3 Hz.

III. SCATTERING TRANSFORM

It is now well-accepted that F-HRV signals are character-
ized by stationary multiscale temporal dynamics, within time

scales ranging from seconds to minutes (cf. e.g., [4], [8], [9])
. Scattering coefficients provide stable characterizations for
such processes, by iteratively applying a wavelet transform to
the modulus of complex wavelet coefficients [14]. Scattering
coefficients have been proven useful for many different
applications and notably for capturing essential information
for acidosis detection [11].

Let X(t) denote the time series to analyze and let ψ(t)
denote a complex analytic mother wavelet (thus band-pass
filter). Let ψj(t) = 2−jψ(2−jt) denote the collection of
dilated templates of ψ at scales 2j . Also, let φ(t) denote the
scaling function (thus low pass-filter), associated with the
mother wavelet ψ(t). The first order scattering coefficients
are defined as the average amplitude of the modulus of the
wavelet coefficients X ? ψj(t), for any 1 ≤ j ≤ J , over
50% overlapping time windows of size 2J , centered at time
positions t = k2J−1, k ∈ N:

SX(j, k) = |X ? ψj | ? φJ(t = k2J−1) . (1)

The convolution with the low-pass filter φJ performs an
averaging over a time interval of size 2J . However, this
averaging loses information on the time variability of |X ?
ψj(t)|. This information is recovered by computing a second
set of wavelet coefficients |X?ψj1(t)|?ψj2(t). Second order
scattering coefficients are defined, at each t = k2J−1, for any
1 ≤ j1 < j2 ≤ J , as:

SX(j1, j2, k) = ||X ? ψj1 | ? ψj2 | ? φJ(t = k2J−1) . (2)

Higher order scattering coefficients are defined by repeating
this procedure. For example, third order coefficients are
defined for any 1 ≤ j1 < j2 < j3 ≤ J by SX(j1, j2, j3, t) =
|||X ? ψj1 | ? ψj2 | ? ψj3 | ? φJ(t). Here, we concentrate on
scattering coefficients of order one and two which gather
most of the energy of the process. Because the amplitude of
second order scattering coefficients is proportional to that of
the first order coefficients, the former are renormalized by
the latter:

S̃X(j1, j2, k) =
SX(j1, j2, k)
SX(j1, k)

. (3)

The vector of scattering coefficients (of size N = J+J×
(J − 1)/2 − 1) is defined as the logarithm of the first and
normalized second order coefficients, for time k: SX(k) =(
{logSX(j, k)}1≤j≤J , {log S̃X(j1, j2, k)}1≤j1<j2≤J

)
.

(4)
A Battle-Lemarié complex cubic spline wavelet [14] is used
here. The ScatNet software is available at http://www.
di.ens.fr/data/software/scatnet/.

IV. LOW DIMENSIONAL MANIFOLD EMBEDDING

The scattering coefficients SX(k) are viewed as points
in a high N -dimensional space. Assuming that the data is
governed by merely few physiological factors implies that
SX(k) do not fill the high dimensional space uniformly, but
rather, lie in a low dimensional manifold. The investigation of
the existence of such a low dimensional structure has recently
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become common practice in a broad range of applications
relying on various different techniques (cf. e.g. [15] and
reference therein). In the present work, a particular manifold
learning method, especially designed to exploit temporal
dynamics, is applied [12].

The local variability of the high dimensional data, as
captured through the covariance of the vectors in short time
windows, is used to define a Riemannian metric. Let C(k)
denote the covariance matrix of SX(k) and Ĉ(k) its estimate
in short windows of length 2L+1 centered at time frame k:

Ĉ(k) =
k+L∑

l=k−L

(SX(l)− µ̂(k))T (SX(l)− µ̂(k)) (5)

where µ̂(k) is the empirical mean of the vectors in the
window. Let D denote the dimension of the manifold, where
usually D � N . Since the variations of the data in N
dimensions are confined to a D dimensional structure, the
rank of the local covariance matrices of size N × N is D,
with twofold consequences: First, the empirical ranks of the
covariance matrices estimate the dimension of the manifold.
Second, assuming this dimension is fixed, the consistency of
the rank over time indicates that sufficient data is available.

Scattering coefficients are obtained from time-averaging,
and have been shown to have a nearly Gaussian distribution.
For Gaussian random vectors, log probabilities are defined
by the Mahalanobis distance, yielding Riemannian metric
between pairs of vectors of scattering coefficients:

d(k, l) = (SX(k)−SX(l))T (C(k)+C(l))−1(SX(k)−SX(l))
(6)

The Mahalanobis distance is invariant to local affine dis-
tortions, and has recently been used to better reveal the
governing states of dynamical systems [16], [17], [12].

This Mahalanobis distance is further used to construct a
K × K kernel matrix W consisting of pairwise affinities
between vectors, with ε a tunable kernel scale and K the
number of available time frames:

Wkl = exp
{
−d(l, k)

ε

}
, k, l = 1, . . . ,K. (7)

The kernel defines a weighted graph, where nodes SX(k)
and SX(l) are connected by an edge with weight Wkl.
Thus, each vector is effectively connected to other vectors
that are within ε vicinity with respect to the Mahalanobis
distance (6). Let D be a diagonal K × K matrix, whose
diagonal elements are given by Dkk =

∑
lWkl, and let

Wnorm = D−1/2WD−1/2 be a normalized kernel that
shares its eigenvectors with the normalized graph-Laplacian
I−Wnorm [18].

Applying the eigenvalue decomposition (EVD) to Wnorm

yields a set of eigenvalues and eigenvectors, denoted by λi

and νi, respectively. A nonlinear embedding of the vectors
SX into a D dimensional space is constructed:

SX(k) 7→ (ν1(k), ν2(k), . . . , νD(k)) . (8)

While the kernel represents local connections, a global repre-
sentation that is traditionally viewed as the parameterization

of the manifold is obtained through the eigenvectors of the
kernel that implicitly integrates the local connections.

V. FETAL HEART RATE VARIABILITY EMBEDDING

Fig. 1. Decay of sorted embedding eigenvalues.

Fig. 2. Low-Dimensional Manifold Time-Window Embedding. Each
time-window of each subject is mapped into the 3D coordinates of the
embedding space. Blue ’+’ correspond to FIGO-TN (healthy) subjects, black
’x’ to FIGO-FP (healthy) subjects and red ’o’ to FIGO-FP (acidotic) subjects
Amongst FIGO-FP, filled red circles correspond to time windows at most
6 minutes before delivery.

Scattering coefficients. To study the time evolution (or
trajectories) of the temporal dynamics of F-HRV BpM time
series and thus of the fetus health status, scattering coef-
ficients SX(k) (cf. Eq. 4) are computed, for each subject,
across the entire F-HRV time series, within sliding windows
of size ' 2min, with 50% overlap, with J = 10, yielding
2J/fs = 128s. Parameter J = 10 is chosen such because
it is known from previous works (cf. e.g., [4], [5], [8])
that F-HRV temporal dynamics relevant to acidosis detection
involve time scales ranging from 1s to 1min. The choice of a
2min-long window the computation of the SX(k) (cf.Eq. 4)
yields empirically maximal classification performance and
is consistent with the physiological information dynamics
ranging from seconds to minutes. For each time window,
SX(k) has dimension N = 55.
Embedding procedure. The embedding procedure is ap-
plied to the collection of the SX(k) computed along the
entire trajectories for P = 45 (subjects), resulting into
K = 5952 time positions. Embedding parameters ε and
L (cf. Section IV) are selected empirically by checking a
posteriori that the eigenvalues λi of Wnorm exhibit a smooth
decay (as shown in Fig. 1), and set to ε = 30 and L = 10.
Low-dimensional manifold embedding. Fig. 2 displays
the mapping of each time-window for each subject into the
embedding space, restricted to its 3 first dimensions (setting
D = 3). It clearly illustrates that the data create a croissant-
shaped low dimensional manifold, showing a number of
interesting features. First, the three classes are spread along

6375



a continuum on the manifold, yet tend to concentrate in
different sub-parts of the manifold. Second, acidotic fetuses
(FIGO-TP) clearly depart from healthy subjects (FIGO-FP
and FIGO-TN). Third, amongst Healthy subjects, the FIGO-
FP do form a different cluster from the FIGO-TN, yet this
cluster departs to the left from the FIGO-TN cluster,while the
FIGO-TP cluster departs to the right. This result exemplifies
and explains the difficulty in this classification problem.

Sensitivity Specificity MCC Error-rate
FIGO 100 (–) 50 (–) 50 (–) 33 (–)

Emb+NN 66 (29) 89 (15) 62 (29) 18 (13)
SVM 60 (27) 93 (10) 59 (26) 18 (10)

TABLE I
Classification Performance in %. MEAN (STD) OBTAINED FROM

AVERAGE ON 100 REPETITIONS OF THE CLASSIFICATION PROCEDURES.
MCC STANDS FOR MATTHEWS CORRELATION COEFFICIENT [13].

Classification performance. To quantify the embedding
quality, a Nearest Neighbor classifier procedure, which is
asymptotically optimal when data density increases, is im-
plemented on the manifold (referred to as Emb+NN). It is
compared against a (Gaussian Kernel-based) SVM classifier
(cf. e.g., [19]), applied directly to vectors of scattering coef-
ficients SX(k), which does not rely on any dimensionality
reduction. For both procedures, training and testing sets
contain 80% and 20% of the available subjects respectively.
The last 16 time-windows (corresponding roughly to 17min
before delivery) of each subject are used as input. For each
subject in the testing set, the time-windows are classified
independently, and the status (Healthy or UnHealthy) of a
given subject is selected by majority voting. The parameters
of both procedures (kernel width and slackness parameter for
SVM, dimension D and number of nearest neighbors ) are
optimized during training through five-fold cross-validation.
This is repeated 100 times for different train-test partitions
to compute average classification performance, with means
and standard deviations reported in Table I. The advanced
SVM classifier usually provides better results than the simple
nearest neighbor procedure. Table I shows that here Nearest
Neighbors performed on the low dimensional manifold (Line
2) achieves performance comparable to that of SVM (Line
3). This constitutes a clear validation that the dimensionality
embedding captures most of the relevant temporal dynamics
involved in acidosis detection.
Classification analysis. In Fig. 2, it can be seen that
several FIGO-FP subjects fall into the FIGO-TP embedding
domain, while others fall into the FIGO-TN embedding
domain. Making use of obstetrician annotations allows to
identify that the former group consists of subjects showing
complicated-shape and severe decelerations, while the latter
group consists of subjects showing Low-Variability or Low-
reactivity. Such low dimensional representations thus yield
interesting analysis of the temporal dynamics of healthy and
acidotic fetuses: FIGO-TP acidotic trajectories and temporal
dynamics clearly differ from those of FIGO-TN healthy
subjects ; FIGO-FP subjects showing severe decelerations
have temporal dynamics that very much resemble that of aci-

dotic subjects and thus cannot be easily discriminated from
them ; FIGO-FP subjects showing low-variability and/or
low reactivity have temporal dynamics that may differ from
those of FIGO-TN subjects yet that also depart from that of
acidotic fetuses and can thus be distinguished from them.

VI. CONCLUSIONS AND PERSPECTIVES

A graph based dimensionality reduction methods applied
to the scattering coefficients of F-HRV time series yields
new and fruitful analyses of differences between the temporal
dynamics of healthy and acidotic fetuses, as well as acido-
sis detection performance that outperforms those obtained
with the benchmark FIGO criteria. Application to a larger
database is under current investigation.
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