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Abstract— In classification with Support Vector Machines,
only Mercer kernels, i.e. valid kernels, such as the Gaussian
RBF kernel, are widely accepted and thus suitable for clinical
data. Practitioners would also like to use the sigmoid kernel,
a non-Mercer kernel, but its range of validity is difficult to
determine, and even within range its validity is in dispute.
Despite these shortcomings the sigmoid kernel is used by some,
and two kernels in the literature attempt to emulate and
improve upon it.

We propose the first Mercer sigmoid kernel, that is therefore
trustworthy for the classification of clinical data. We show the
similarity between the Mercer sigmoid kernel and the sigmoid
kernel and, in the process, identify a normalization technique
that improves the classification accuracy of the latter.

The Mercer sigmoid kernel achieves the best accuracy on
three clinical data sets, detecting melanoma in skin lesions
better than the most popular kernels; while with non-clinical
data sets the Gaussian RBF and normalized sigmoid kernels
achieve better accuracy than the Mercer sigmoid kernel. It
consistently classifies some points correctly that the Gaussian
RBF kernel does not and vice versa.

Index Terms— Clinical Signal Processing, Clinical Data Clas-
sification, Support Vector Machine, Sigmoid Kernel, Mercer
Kernel

I. INTRODUCTION

The strong performance of Support Vector Machines
(SVM) and kernel methods make them a mainstay as one
of the state-of-the-art techniques for classification [1], [2],
including applications to clinical research, diagnosis and
prognosis [3], [4], [5]. One of the key issues in specifying
an SVM solution is choosing the right kernel for the data
and task, since a wrong choice can have a detrimental and
possibly profound impact on classification accuracy [1], [2],
[6].

The sigmoid kernel was once quite popular for use with
SVMs [7] and it continues to be used in a clinical context
as indicated by ScienceDirect and Google Scholar with
30 and 1,510 hits respectively (2011 through 2014). The
interest in sigmoids or S-curves stems from their success
in classification with neural networks and logistic regres-
sion; their specific properties of linearity, saturation and
dichotomy; and their nature as the cumulative distribution
of a Gaussian. However, the sigmoid kernel is problematic
because it is difficult to choose parameters that ensure that it
is conditionally positive definite (c.p.d) [7]. Some literature
asserts that a c.p.d. kernel is valid [8], [9], while other
literature omits c.p.d. from consideration [2], [10], [11].

A. M. Carrington and P. W. Fieguth are with the Department of Systems
Design Engineering and H. H. Chen is with the School of Public Health and
Health Systems at the University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1 {amcarrin, pfieguth, helen.chen}@uwaterloo.ca

Fig. 1. The sigmoid and Mercer sigmoid kernels are similar in their output
k (x, z) for one-dimensional inputs x and z, for a range of parameter values
(r small, b = 0, per (1), (8)). This similarity behaviour extends to many
dimensions when the former is normalized.

Therefore, as a non-Mercer kernel, the sigmoid kernel is not
necessarily a trustworthy choice for clinical applications.

As part of a clinical classification challenge related to skin
lesions, we created a valid Mercer sigmoid (MSig) kernel,
that is similar to a sigmoid kernel (Fig. 1) since it shares the
same underlying sigmoid function.

In Section II we provide background and discuss related
work. In Section III we define the MSig kernel and discuss its
properties along with the sigmoid kernel and normalization.
Section IV proves that the proposed kernel is a Mercer
kernel, while Sections V and VI show the experiment and
associated results. Finally, Section VII provides conclusions.

II. BACKGROUND AND RELATED WORK

A sigmoid (function) or S-curve is a class or family of
functions that includes the logistic function, the hyperbolic
tangent, the arctangent, the error function, the generalised
logistic function, etc. Formally, a sigmoid function is a
function that is defined for all real inputs, x ∈ R; is bounded
in its range or outputs, f (x) ∈ (p, q) for finite p, q ∈ R;
and has a positive first derivative at all points [12].

Whereas a sigmoid is a function of one input, a kernel
is a function of two inputs that may be used as a measure
of similarity between the inputs. In SVM classification, for
example, a kernel compares an unclassified sample of data
with a support vector (a weighted sample that has been
classified). Formally, a kernel is a function

k (x, z) = 〈φ(x), φ(z)〉

that for all of its inputs x, z ∈ X , has a mapping φ
from X to an inner product (feature) space F [11]. Kernels
commonly found in SVM literature include the Gaussian
RBF kernel, the linear kernel, the polynomial kernel and the
sigmoid kernel [1], [13].
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The sigmoid kernel [2], [7] is based on the hyperbolic
tangent:

kS (x, z) = tanh
(
a · xT z + r

)
a > 0, r < 0 (1)

= tanh

(
a ·

p∑
i=1

{xizi}+ r

)
(2)

with vectors x and z of explanatory variables to be
compared by the kernel (e.g. two patients), with a horizontal
scaling parameter a, and with a central vertical bias r that
changes the height of the kernel’s output for inputs near the
origin.

An important characteristic of kernels is whether or not
they are Mercer kernels or, equivalently, positive semi-
definite, since this ensures that certain assumptions hold for
equations such as the SVM soft-margin objective function in
dual form (3) and its associated constraints (4):

W (α) = −
∑̀
i=1

αi +
1

2

∑̀
i,j=1

αiαjyiyjk (xi,xj) (3)

subject to 0 ≤ αi ≤ C, i = 1, ..., ` (4)∑̀
i=1

αiyi = 0

where xi and xj are vectors of explanatory variables,
yi and yj are the corresponding outcomes, αi and αj are
weight parameters in constrained optimization derived from
Lagrange’s method (which identify the support vectors), and
C is the SVM soft-margin constant [13].

The sigmoid kernel is not positive semi-definite, but it does
meet a weaker condition as a conditionally positive definite
(c.p.d) kernel for a > 0 and 0 < r ≤ r̂ for sufficiently small
r̂, dependent on the dataset [7], however the actual value of
r̂ is difficult to determine. It has been argued that solving the
SVM objective function (3) with a c.p.d. kernel is equivalent
to solving it with an associated positive semi-definite (p.s.d.)
kernel and that c.p.d. kernels are valid for use with SVMs [8],
[9] — but this does not resolve the issue of determining r̂,
and the prevailing literature omits c.p.d. from consideration
[2], [10], [11].

Two kernels have been created by other authors [14], [15]
to emulate the sigmoid kernel and mitigate its limitations,
however neither of them is Mercer.

III. DESCRIPTION AND ANALYSIS

We begin with a kernel defined in inner-product form:

k (x, z) , 〈Φ (x) , Φ (z)〉 x, z,Φ ∈ Rp, k ∈ R (5)

where Φ (x) =
[
φ (x1) φ (x2) ... φ (xp)

]T
(6)

We can choose a hyperbolic form for φ,

φ (x) =
1
√
p

tanh

(
x− d
b

)
φ, x, b, d ∈ R, p ∈ N (7)

with a horizontal scaling parameter b, a horizontal shift
parameter d, and a normalization parameter p that represents
the dimensionality of the input vectors x and z. Leading to
the proposed Mercer sigmoid (MSig) kernel,

kM (x, z) ,
1

p

p∑
i=1

tanh

(
xi − d
b

)
· tanh

(
zi − d
b

)
(8)

whose parameters have the same meaning as in (7).
Normalization by p in (8) is applied for ease of interpretation
and comparison.

A. Similarity

The most fundamental question, then, is the degree of
similarity between the MSig and sigmoid kernels, to gain
insight into the MSig behaviour and determine whether it
can replace the function of the sigmoid kernel.

If we consider the sigmoid kernel (2) in one-dimension,
with a = 1, r = 0, then

kS (x, z) = tanh (xz)

Similarly the MSig kernel (8) in one-dimension with a =
1, b = 1, d = 0 corresponds to

kM (x, z) = tanh (x) tanh (z)

The normalized root mean squared deviation (NRMSD) be-
tween the two kernels kS , kM is 3.24% for x, z ∈ (−1, +1);
that is, the two kernels are arguably similar.

We can also compare the sigmoid kernel (2) with the
MSig kernel (8) in general, provided that we use a similar
horizontal scale a ≈ 1

b2 , and the same horizontal shift (i.e.
let d = 0), and provided that the dot products in the two
kernels are both normalized by dimensionality (or both not)
for comparison.

The dot product in the MSig kernel is already normalized
by 1

p , but the dot product in the sigmoid kernel is not

kS (x, z) = tanh
(
a · xT z + r

)
so we scale the inputs,

kS

(
x
√
p
,
z
√
p

)
= tanh

(
a

p
· xT z + r

)
to normalize the dot product by the same amount 1

p and
call this a normalized sigmoid kernel (SigN).

This normalization does not just enable comparison, it
should yield a better result because the values of input data
should influence how the tanh function behaves, not the
dimensionality of the input. Without normalization, the dot
product as an input to the tanh function will grow as the
input dimensionality of x and z grows, causing saturation
in the tanh output increasingly because of dimensionality
rather than the values of the input data. Our results confirm

6398



Fig. 2. The Normalized Root Mean Squared Deviation (NRMSD) between
the sigmoid kernel (Sig) and the Mercer sigmoid kernel, and between
the normalized sigmoid kernel (SigN) and the Mercer sigmoid kernel, for
different values of b, and for r = −0.1, i.e. the value of r with the highest
NRMSD.

that the SigN kernel has improved accuracy relative to the
sigmoid kernel, on average and in four out of six data sets.

We then find that the MSig and SigN kernels are similar
with NRMSD≤ 10.073% (Fig. 2) for sufficiently small r
as required for the Sig and SigN kernels to be c.p.d. (we
selected −0.1 ≤ r < 0). Without normalization, the NRMSD
between MSig and Sig increases with dimensionality, and it
is higher than the normalized comparison for all p > 1 (Fig.
2).

Our normalization technique appears to be novel as we
did not find it in the literature [1], [2], [16], [11]. It may be
considered for any kernel of the form k

(
xT z

)
, i.e. the class

of dot-product kernels or zonal kernels, not just a sigmoid
kernel.

B. Linearity and Dichotomy

A function or kernel saturates if it produces a bounded
output range, for inputs that are unbounded [17]. The sigmoid
and MSig kernels saturate with horizontal asymptotes k =
±1 at the outermost corner of each quadrant (or orthant),
for one dimensional (or n-dimensional) inputs (Fig. 1). For
inputs near the origin the sigmoid and MSig kernels act
linearly, while other inputs are dichotomized to an output
value of −1 or +1.

If the sigmoid or MSig kernel fits the data such that the
region of saturation mitigates the effect of outliers or large
values in SVM classification/optimization then the signal-to-
noise ratio (SNR) of true data is improved. For this purpose,
applying dichotomization (tanh) within each dimension, as in
the MSig kernel (8), is preferred to applying it once overall,
as in the sigmoid kernel (2).

Dichotomization within each dimension suits binary data
and nominal data that are converted to binary data; and our

clinical data sets have heterogeneous data types that include
binary and nominal data.

C. Covariance

Genton analyzed machine learning kernels from a statistics
perspective and remarked that kernels are covariances [18],
presumably because Mercer kernels must be a dot product
(implictly or explicitly) of basis functions in x and z. We
examine the sigmoid and MSig kernels from this perspective.

The dot product in the sigmoid kernel (2), but not the
kernel itself, is a sum of covariances xizi for each dimension
i of the input space; whereas for the MSig kernel, if we let

x′i = φ (xi) from (7)

then the kernel can be re-written as

kM (x, z) =

p∑
i=1

x′iz
′
i from (7), (8)

which is a sum of covariances x′iz
′
i, where x′i and z′i are

the axes for each dimension i of the feature space. For every
Mercer kernel there exist such feature space axes x′i and z′i,
implicitly or explicitly. Finally, we note that the two sums
of covariances, are traces of the cross-covariance of x with
z, and x′ with z′, respectively.

IV. MERCER COMPLIANCE

From [19] and [18] a valid kernel, a kernel that is
positive semidefinite and symmetric, and a Mercer kernel,
are equivalent. To prove Mercer compliance, we therefore
prove that the kernel is valid.

From [11]:
• k(x, z) = f(x)f(z) is a valid kernel for real-valued
f (·) on X , X ⊆ Rp (9), and

• k (x, z) = k1 (x, z) + k2 (x, z) is a valid kernel if k1
and k2 are valid kernels (10).

Let f (xi) = 1√
p tanh

(
xi−d
b

)
, where all of the variables

and parameters are real-valued except for p ∈ N (11).
From (9) and (11), k (xi, zi) = 1√

p tanh
(
xi−d
b

)
·

1√
p tanh

(
zi−d
b

)
is a valid kernel (12).

From (10) and (12), kM (x, z) =
p∑
i=1

k (xi, zi) =

p∑
i=1

1√
p tanh

(
xi−d
b

)
· 1√

p tanh
(
zi−d
b

)
is a valid kernel; which

is our proposed kernel.

V. EXPERIMENTAL DATA AND METHOD

This paper is written in the context of melanoma research
using a skin lesion data set that consists of sixty sequential
cases from Dr. Eric Ehrsam’s dermatology blog [20]. We
also tested our proposed kernels with two other clinical data
sets from the machine learning repository at the University
of California at Irvine [21], the Statlog Heart data set and
the Pima Indians Diabetes data set; and with three non-
clinical data sets, the Mushrooms data set (using a subset
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TABLE I
HYPERPARAMETERS FOR THE KERNELS (2) (8) AND SVM WERE

GENERATED FROM A UNIFORM DISTRIBUTION WITH LOWER AND UPPER

LIMITS DERIVED FROM LITERATURE [1], [7] AND EXPERIENCE. WE

DENOTE ε = 10−15 AND log AS THE BASE 10 LOGARITHM.

Kernel SVM
Poly RBF Sig MSig

Limit d log σ a r b d logC kkt

Lower 2 -1 ε -5 1√
a

-2 -1 0
Upper 7 3 10 -ε +2 3 1

TABLE II
DATA SET SUMMARY

Instances 10-fold Separate Numeric
Data Set Training Test CV Test Only Source

Skin Lesion 57 57 yes no no [20]
Heart 270 270 yes no no UCI
Diabetes 512 256 no yes no UCI
Mushrooms 200* 200* no yes no UCI
Ionosphere 176 175 no yes yes UCI
Sediment 1413 471 no yes yes UCI

*200 instances were used for training (101..200 and 4101..4200) and testing (201..300
and 4201..4300). These two ranges were arbitrarily selected.

of 400 points), the Ionosphere data set and the Sediment
data set. These data sets range from a few features (< 10) to
many features (> 100) and include both heterogeneous and
homogeneous data types.

We use 10-fold cross-validation for the skin lesion and
Statlog Heart data sets, while other data sets are split into
disjoint training and validation sets as summarized in Table
II. The data sets are centered and normalized such that the
two-sided third standard deviation becomes ±1 following
guidance in the literature [1]. There are eight hyperparam-
eters which are generated as random variables [22] with a
uniform distribution (Table I) as opposed to grid search. In all
iterations or folds we test with sixty sets of hyperparameters.
Our implementation also calculates class-specific soft-margin
parameters C+ and C− from C to achieve a balanced success
rate with imbalanced data [1].

Popular kernels are selected for comparison with Mercer
sigmoid (MSig) kernel: the linear (Lin), polynomial (Pol),
Gaussian RBF (RBF) and sigmoid (Sig) kernels [13]. We
also produce results for the normalized sigmoid (SigN)
kernel. Our implementation solves the SVM using Quadratic
Programming (QP) unless it takes too many iterations to
solve, in which case it switches to Sequential Minimal
Optimization (SMO). SMO is used as the default for the
MSig kernel.

VI. RESULTS

We report the results of our classification experiments on
clinical data (Table III) and non-clinical data (Table IV) in
terms of the highest classification accuracy with at least 50%
sensitivity and specificity. The experiments have 60 iterations
to cover 60 sets of hyperparameter; and for cross-validated
heart and skin data, these iterations are multiplied by five,
since five different sets of ten-folds were chosen. These

TABLE III
CLINICAL DATA CLASSIFICATION ACCURACY WITH AT LEAST 50%
SENSITIVITY AND 50% SPECIFICITY. THE TOP RESULT PER ROW IS

HIGHLIGHTED IN BOLD FONT.

Accuracy by Kernel (*Non-Mercer)
Data Set Lin Pol RBF Sig* SigN* MSig

Skin Lesion 85.0 71.3 88.7 90.0 88.3 90.7
Heart 85.3 81.5 85.0 85.0 85.3 85.2
Diabetes 80.5 81.2 81.2 82.0 83.6 82.8
Average 83.6 78.0 85.0 85.7 85.7 86.2
Difference -2.6 -8.2 -1.2 -0.5 -0.5 0

TABLE IV
NON-CLINICAL DATA CLASSIFICATION ACCURACY WITH AT LEAST 50%

SENSITIVITY AND 50% SPECIFICITY. THE TOP RESULT PER ROW IS

HIGHLIGHTED IN BOLD FONT.

Accuracy by Kernel (*Non-Mercer)
Data Set Lin Pol RBF Sig* SigN* MSig

Mushrooms 99.5 98.5 99.5 98.5 99.5 100
Ionosphere 88.6 90.9 95.4 90.3 93.1 93.7
Sediment 85.8 85.6 88.5 85.4 85.4 84.7
Average 91.3 91.7 94.5 91.4 92.7 92.8
Difference -3.2 -2.8 0 -3.1 -1.8 -1.7

experiments are repeated 25 times (i.e. n = 25 or n = 30)
[23] so that the statistical significance of the best result can
be evaluated.

With clinical data the median accuracy of the Mercer
sigmoid kernel is significantly better (α = 5%) than all of the
other kernels. With non-clinical data the median accuracy of
the Mercer sigmoid kernel is significantly worse (α = 5%)
than the Gaussian RBF kernel and the normalized sigmoid
kernel. Over all of the data sets, the Mercer sigmoid kernel
consistently classifies some points correctly that the Gaussian
RBF kernel does not: 3.6% of test instances, on average.

We note that the Mercer sigmoid kernel’s better perfor-
mance on clinical data versus non-clinical data appears to
be correlated with the heterogeneity of the data. That is,
the Mercer sigmoid kernel outperforms the Gaussian RBF
kernel on all three clinical data sets and one non-clinical
data set (Mushrooms) where multiple data types are present:
real numbers, counts, binary values and categorical/nominal
values. Whereas the other two data sets consist only of real
numbers (Table II).

The Mercer sigmoid kernel uses less support vectors (SV)
than the Gaussian RBF kernel with the six data sets: 197
versus 229 SV for the best results; and 200 versus 236 SV on
average; while the sigmoid kernel uses 138 SV on average.
The Mercer sigmoid also had the smallest average execution
time of 291ms (with a 2.3GHz Intel quad core i7 computer)
which is not surprising given that we use SMO to solve
the SVM, whereas the Gaussian RBF kernel took 551ms on
average using QP.

VII. CONCLUSIONS

A Mercer sigmoid kernel that is similar to the (normalized)
sigmoid kernel (when the shift parameter d = 0), is now
available for classification in clinical applications, free of the
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limitations and concerns that encumber the sigmoid kernel
and thereby fulfilling interests expressed in the literature.
While it has not been investigated in other contexts such
as with genomic data or with big data, it is a separable
kernel with lower storage complexity which is crucial for
big data[18].

Detecting melanoma with heterogeneous skin lesion data
is one of our primary interests and importantly the Mercer
sigmoid kernel has better median accuracy than other kernels
with that data set and with two other clinical data sets in
our experiments. With the three non-clinical data sets in our
experiments, the Mercer sigmoid kernel performs worse than
the Gaussian RBF kernel and the normalized sigmoid kernel.
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