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Abstract— Functional magnetic resonance imaging (fMRI)
aims to localize task-related brain activation or resting-state
functional connectivity. Most existing fMRI data analysis tech-
niques rely on fixed thresholds to identify active voxels under
a task condition or functionally connected voxels in the resting
state. Due to fMRI non-stationarity, a fixed threshold cannot
adapt to intra- and inter-subject variation and provide a reliable
mapping of brain function. In this work, a machine learning
method is proposed for a unified analysis of both task-related
and resting state fMRI data. Specifically, the mapping of brain
function in a task condition or resting state is formulated
as an outlier detection process. Support vector machines are
used to provide an initial mapping and refine mapping results.
The method does not require a fixed threshold for the final
decision, and can adapt to fMRI non-stationarity. The proposed
method was evaluated using experimental data acquired from
multiple human subjects. The results indicate that the proposed
method can provide reliable mapping of brain function, and is
applicable to various quantitative fMRI studies.

I. INTRODUCTION

Blood oxygenation level dependent (BOLD) contrast func-
tional magnetic resonance imaging (fMRI) plays an impor-
tant role in advancing the understanding of brain function
under a task condition or resting state. Reliable mapping of
brain function in the task or resting state remains a challenge
because BOLD signals typically exhibit a low signal-to-noise
ratio, especially in the resting state.

Most existing fMRI-based brain mapping tools rely on
statistical approaches such as hypothesis test, which implic-
itly assumes a probability distribution for features/statistics
extracted from fMRI data, and identifies “active” or func-
tionally “connected” brain regions using a predefined sig-
nificance threshold. A voxel is identified as “active” or
“connected” if its task-related signal fluctuation or resting
state statistical measure exceeds the threshold. The selection
of probability distributions and thresholds are usually based
on experience or ad hoc, and no single model or thresholding
approach has been approved to be optimum [1]. Due to fMRI
non-stationarity, fMRI data may exhibit significant intra-
and inter-subject variation even under a same experimental
condition. Consequently, a fixed threshold cannot adapt to
the variation of signal and noise characteristics, and is not
reliable to provide a differentiation between active/connected
and inactive/unconnected voxels [2].
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In our previous study [3], a data driven support vector
machine (SVM)-based method was developed for reliable
mapping of brain activation for individual subjects under dif-
ferent stimuli tasks. The method can explore a true boundary
between active and inactive voxels in a feature space, and
adapt to the intra- and inter-subject variation without using a
fixed threshold for the final decision. Based on the previous
work, we proposed a SVM-based method that unifies the
analysis of task-related and resting state fMRI data into one
framework. The method can be used for various quantitative
fMRI studies.

II. PROPOSED METHOD

A. Problem Formulation

A recent study of brain activation location involving 31724
subjects from 8637 experiments (recorded in the BrainMap
database [4]) shows that functionally connected voxels in a
specific network constitute less than 50% of all brain voxels
[5]. Considering a close correspondence between resting state
networks and active functional networks under different task
conditions revealed in a recent study [6], this observation
applies to both task-related and resting state studies, and
forms the basic assumption of the proposed method. With
this assumption, the mapping of active voxels in a task
condition, or a functional connectivity network in the resting
state, can be considered as an outlier detection process, where
“outliers” correspond to active or connected voxels.

Fig. 1. The block diagram of the proposed method.

Fig. 1 shows the block diagram of the proposed method.
The input fMRI data are first preprocessed to remove subject
movement artifacts and low frequency drift, and filtered
spatially and temporally. Multiple features are extracted from
each voxel. An offline feature selection is performed to select
most representative features to represent each voxel. Based
on the selected features, One-class SVM (OCSVM) is used
to provide an initial mapping. The prototype selection aims
to identify voxels that are correctly classified by OCSVM.
The identified voxels are used to train a two-class SVM
(TCSVM) to reclassify all voxels to obtain a refined activa-
tion/connectivity map. The prototype selection and TCSVM
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reclassification can be repeated multiple times till there is no
more change in the final mapping results.

B. Preprocessing

Small subject movement artifacts in fMRI data are first
attenuated using a 2D rigid body registration method [7].
Then the data are spatially smoothed using a wavelet domain
Bayesian noise removal method [8]. For task-related data,
the expected haemodynamic response (HR) is estimated by
convolving the experimental paradigm with the canonical
haemodynamic response function used in SPM [9]. For
resting state data, a low-pass filtering at a cut-off frequency
of 0.1 Hz is performed to extract low frequency fluctuations
of interest in the resting state, and a seed is selected from a
brain region that is part of a network of interest.

C. Feature Extraction and Selection

Based on the expected HR or seed, multiple candidate
features are extracted from each voxel’s time course (TC).
For task-related data, the candidate features include: the
maximum intensity of the TC, p-value of the t-test, the
average, maximum and minimum correlation coefficients (cc)
between the voxel and other voxels within its 2nd-order
neighborhood, the average signed extreme value and delay
of the cross correlation functions (ccf) between them, the cc
between the TC and expected HR, the signed extreme value
and its delay of the ccf between the TC and HR. For resting
state data, the candidate features consist of: the cc between
the seed and voxel, the maximum intensity of the voxel’s TC,
the signed extreme value and delay of the ccf between the
seed and voxel, p-value of the t-test, the average, maximum
and minimum cc between the seed and voxels within the
2nd-order neighborhood, the average signed extreme value
and delay of the ccf between the seed and voxels in the
neighborhood, and the average, maximum and minimum cc
between the voxel and other voxels within its neighborhood.
All features are normalized between 0 and 1. Other features
that could facilitate the SVM learning can also be added to
the analysis.

Not all features contribute to the analysis. An offline
feature selection is performed to identify most representative
features [10]. It measures the contribution of each candidate
feature by quantifying its effect on the construction of the
SVM classification hyperplane in a feature space. Given the
dth candidate feature, its contribution Id is estimated by an
integration of the first derivative of the SVM decision func-
tion fc with respect to the feature xd

i around the hyperplane,
and is approximated by [10]:
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where NSV is the number of support vectors, xi is the ith

support vector, xd
i is the dth feature of xi, yj ∈ {−1,+1}

is the class label of xj , and αj is the Lagrange multiplier
defined in the SVM formulation [11]. K(xj ,xi) is a kernel
defining a dot product between projections of xi and xj in
a feature space [12], and Kd(xj ,xi) is the first derivative

of the kernel regarding the dth dimension evaluated at xi. A
larger Id value indicates a greater contribution to the SVM
learning, and the top r features with the largest Id value are
used to form a feature vector to represent each voxel as the
input to the following step.

D. Initial Mapping

The initial mapping of active/connected voxels is im-
plemented as the outlier detection process via OCSVM.
OCSVM learns a linear classification hyperplane in a feature
space to separate a pre-specified fraction of data with the
maximum distance to the origin [13]. The OCSVM param-
eter ν determines an upper bound of outliers, and is task-,
network-, and subject-dependent. It cannot be accurately set
due to the intra- and inter-subject variation. It is expected
that the proposed method is not sensitive to inaccurate
settings of ν. Based on our previous study [3], the following
strategy is used to set ν: (1) If ν is unknown, ν is set to
be relatively large but less than 0.5 to obtain a sufficient
detection sensitivity. (2) If ν is approximately known a priori
from previous studies, a range of ν is defined and any value
within this range can be used.

Kernel methods can be used to implement nonlinear
OCSVM [12]. In this work, the radial basis function (RBF)
kernel is used that is defined as: K(xi,xj) = e−γ‖x−xi‖

2

, where γ is the kernel width parameter. A large γ value
corresponds to a small kernel width that introduces more
nonlinearity to the analysis than a large kernel width. The
kernel width may significantly affect the classification per-
formance. In practice, γ is either experientially determined
or estimated by cross validation.

E. Prototype Selection

A prototype consists of a feature vector representing
a voxel and its class label (active/connected vs. inac-
tive/unconnected). Due to inaccurate settings of ν, OCSVM
results may contain a significant number of mis-detections.
Prototype selection aims to identify correctly classified vox-
els for the TCSVM training. Since active/connected voxels
are spatially grouped together at multiple anatomic sites, we
may use graph-based spatial domain editing methods to re-
move spatially isolated mis-detections [14]. However, if mis-
detections are also spatially grouped together, spatial domain
operations are not sufficient to remove mis-detections. In
such cases, the feature space distribution of the prototypes
should be considered. In this work, a combined spatial and
feature domain prototype selection is proposed.

The Gabriel graph can be used to describe a voxel’s
spatial relationship to its neighbourhood [14]. Given n

points Z = {z1, z2, · · · , zn} in a q-dimensional feature
space Rq, a Gabriel graph G(V,E) is a proximity graph
with a set of vertices V = Z and edges E, such that
(zi, zj) ∈ E if and only if the triangle inequality: d(zi, zj) ≤
√

d2(zi, zk) + d2(zj, zk) is satisfied, where zk ∈ Z , and
d is the Euclidean distance in Rq. When Z is the spatial
coordinates of a voxel, q is equal to 2. Given the 2nd-
order neighborhood of zi, if its label is not dominant in
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the neighborhood, the ith voxel will be excluded from the
training data based upon the Gabriel graph’s 1st-order graph
editing technique with voting strategy [14].

After this operation, all voxels remaining in the training
data are examined in the feature space. If si is the feature
space distance between the ith voxel and the OCSVM
classification hyperplane, when si < 0, the voxel is classified
as active/connected, and when si > 0, it is identified as inac-
tive/unconnected. If so < 0 denotes the maximum distance
of active/connected voxels to the hyperplane, and sm > 0
is the maximum distance of inactive/unconnected voxles
to the hyperplane, the following feature space prototype
selection procedure is proposed: If the voxel is classified
as active/connected and

si ≤ (1.0− e−ην)so, (2)

or it is classified as inactive/unconnected and

si ≥ (1.0− e−λν)sm, (3)

where η and λ control the fraction of voxels that are close
to the hyperplane and should be removed, then this voxel
is highly possible to be correctly classified and selected
for the TCSVM training. The values of η and λ can be
experimentally determined.

F. TCSVM Training and Classification

The selected prototypes are used to train a TCSVM to
reclassify all voxels and obtain a refined activation/network
map. TCSVM is a supervised learning tool that aims to
estimate a linear classification hyperplane in a feature space
so that two classes can be maximally separated [11]. The
TCSVM training allows training errors with a parameter C
controlling a tradeoff between the hyperplane complexity and
training errors. The RBF kernel can be used to implement
nonlinear TCSVM. The TCSVM output can be transferred
to probability measures [15]. If poi and pmi indicate the
probability of the ith voxel to be active/connected and
inactive/unconnected, then if poi > pmi , the voxel is classified
as active/connected, and if pmi > poi , then it is classified as
inactive/unconnected. To favor a high generalization perfor-
mance, the TCSVM parameters are carefully set with a large
RBF kernel width and small C values.

III. EXPERIMENTS

The proposed method was evaluated using experimental
fMRI data acquired from task-related and resting state ex-
periments. A task-related experiment was performed on a
healthy adult using a 3 Tesla GE system at Duke University
Medical Center. Four data sets were acquired from the
subject on the same day using T ∗

2
-weighted parallel echo

planar imaging (EPI) with an acceleration factor of 2, while
the subject was performing a right finger-tapping motor task
with a blocked-design paradigm, which consisted of four
25 s task blocks and five 25 s off blocks. EPI parameters
included a repetition time (TR) of 2 s, an echo time (TE)
of 30 ms, and a flip angle of 90◦. 30 axial-slices were
collected for each volume with 4 mm slice thickness and

1 mm gap, field of view (FOV) was 24 cm×24 cm, and
image matrix was 120×120. The resting state experiments
were implemented using the same scanner and head coil.
Two data sets were collected from two subjects using a T ∗

2
-

weighted EPI sequence with SENSE acceleration factor of
2 while the subjects were instructed to look at a crosshair.
The scan time for each run was 4 min, with a TR of 2 s

and a TE of 25 ms. 35 axial-slices were collected for each
volume with 3 mm slice thickness. FOV was 24 cm× 24
cm, and image matrix was 64×64. The experiments were
compliant with the standards established by the Institutional
Review Boards of Duke University.

IV. RESULTS

A. Task-related Experiments

Fig. 2 shows the activation maps overlaid on an individual
slice generated for the motor task stimulation using the
proposed method with ν=0.25, 0.28, and 0.35, respectively.
There are 2127 voxels in this slice involved to the analysis.
The increase of ν is 10%, but only 5 more voxels (0.2% in-
crease) were identified to be active, indicating approximately
50 times less dependence on ν than OCSVM.

Fig. 2. Activation maps generated for the motor task paradigm by the
proposed method with (a) ν=0.25, (b) ν=0.28, and (c) ν=0.35.

B. Resting State Experiments

Fig. 3 shows part of default mode network (DMN) iden-
tified from one data set acquired from the resting state ex-
periment. A 2×2 voxels seed was manually identified in the
ventral anterior cingulate cortex (VACC) region. Fig. 3 (a)-
(d) are the DMN maps detected using the proposed method
with ν=0.31, 0.37, 0.39, and 0.41, respectively. 2031 voxels
were used in the processing, and only 10 more voxels (0.49%
increase) were identified as part of DMN when ν increased
from 0.31 to 0.41, indicating approximately 20 times less
dependence on ν than OCSVM. The method was compared
with the correlation analysis using the false discovery rate
(FDR) control and independent component analysis (ICA)
methods. The comparison was made under a comparable
level of detection sensitivity in a predefined 10×6 voxels area
in VACC, as shown in the encircled region in Fig. 3 (c). For
comparison, the thresholds of correlation analysis and ICA
were adjusted to detect the same number of voxels in this
region. In the ICA analysis, all independent components (IC)
were visually inspected and those corresponding to the DMN
were combined to form the network map. Fig. 3 (e) and (f)
show the network maps identified by the correlation analysis
and ICA. It was observed in Fig. 3 (e) that connected voxels
in the right inferior parietal cortex were under-detected by
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the correlation analysis. Significant over-detections were also
found around the medial prefrontal cortex identified by ICA,
as shown in Fig. 3 (f).

Fig. 3. Part of DMN detected from a subject in the resting state experiment
using the proposed method with ν = (a) 0.31, (b) 0.37, (c) 0.39, (d) 0.41,
and using (e) the correlation analysis with the FDR control and (f) ICA. The
encircled rectangular region in (c) indicates a 10×6 voxels area in VACC.
The thresholds of correlation and ICA methods were adjusted to detect all
voxels in this region.

Fig. 4. Part of SMN detected from the same subject as shown in Fig. 3
using the proposed method with ν = (a) 0.25, (b) 0.29, (c) 0.31, (d) 0.35,
and using (e) the correlation analysis with the FDR control and (f) ICA.
The encircled region in (c) indicates a 4×4 voxels rectangular area in M1.
The thresholds of correlation and ICA methods were adjusted to detect all
voxels in this region.

Fig. 4 shows part of sensorimotor network (SMN) detected
from the same data but a different slice as that shown in
Fig. 3. Fig. 4 (a)-(d) are the network maps identified by
the proposed method using ν =0.25, 0.29, 0.31, and 0.35,
respectively. There are 1356 voxels in this slice involved to
the analysis. Only 12 more voxels (0.88%) were detected as
part of SMN when ν increased from 0.25 to 0.35, indicating
about 11.36 times less dependence on ν than OCSVM. The
encircled rectangular region in (c) is a 4×4 voxels area in
the primary motor cortex (M1). The thresholds of correlation
analysis and ICA were changed to identify the same number
of voxels in this region. Fig. 4 (e) and (f) show the SMN
maps detected using the correlation analysis and ICA. The
results of the correlation analysis and proposed method are
close to each other. An under-detection in the supplementary

motor cortex was observed from the map generated by ICA.
This under-detection is not because of a missing of SMN-
related ICs, but is due to the thresholding of ICs to generate
the same detection sensitivity in M1 as the proposed method.

V. CONCLUSIONS

A SVM-based method was developed for a unified analysis
of task-related and resting state fMRI data. The innovation
is to formulate the mapping of active/connected voxels as
an outlier detection process, based on which the analysis of
task-related or resting state data is performed using the same
machine learning framework. The method does not reply on
a threshold for the final decision, and can adapt to intra-
and inter-subject variation of fMRI data. The experimen-
tal results indicate that the method can provide consistent
mapping of active/connected voxels, and comparable or
better results than the correlation and ICA methods. It is
applicable to various quantitative fMRI studies. The future
work will be focused on the method evaluation using more
experimental data, and the extending of the method to the
activation/functional connectivity detection at group level.
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