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Abstract— Ventricular fibrillation (VF) is the most serious 

type of heart attack which requires quick detection and first aid 

to improve patients’ survival rates. To be most effective in using 

wearable devices for VF detection, it is vital that the detection 

algorithms be accurate, robust, reliable and computationally 

efficient. Previous studies and our experiments both indicate 

that the time-delay (TD) algorithm has a high reliability for 

separating sinus rhythm (SR) from VF and is resistant to 

variable factors, such as window size and filtering method. 

However, it fails to detect some VF cases. In this paper, we 

propose an extended time-delay (ETD) algorithm for VF 

detection and conduct experiments comparing the performance 

of ETD against five good VF detection algorithms, including TD, 

using the popular Creighton University (CU) database. Our 

study shows that (1) TD and ETD outperform the other four 

algorithms considered and (2) with the same sensitivity setting, 

ETD improves upon TD in three other quality measures for up to 

7.64% and in terms of aggregate accuracy, the ETD algorithm 

shows an improvement of 2.6% of the area under curve (AUC) 

compared to TD. 

I. INTRODUCTION 

Wearable health-monitoring systems have attracted much 
attention due to their high potential in healthcare as 
cost-effective solutions for real-time healthcare monitoring, 
early detection of diseases, and improving treatment of 
various medical conditions [1]. While these systems show 
much promise for increasing quality of living, for practical 
usage, there are several challenges that need to be overcome, 
specifically, in areas such as reliability, multifunctionality, 
energy efficiency and minimizing obtrusiveness [1].  

Ventricular fibrillation (VF) is one of the most serious 
life-threatening cardiac arrhythmia diseases. Once a patient 
has suffered a VF attack, accurate detection and quick first aid 
treatment are essential for improving the chance of survival. 
Weaver et al. [2] report that the survival rate of a patient, who 
experiences a VF attack outside the hospital, varies from 7% 
to 70%, depending on how quickly the patient receives first 
aid. Thus, solving the problem of a quick and reliable 
detection is an emergent research topic. 

There have been many studies focused on evaluating VF 
detection algorithms for applying proper electrical therapy in 
automated external defibrillators (AEDs) [3-15].  According 
to previous research [4-6, 12] and our own experiments [16], 
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the time-delay (TD) algorithm [12] has a high reliability for 
separating sinus rhythm (SR) from VF compared to other 
algorithms. It is also robust to factor impacts, such as different 
filtering methods and window sizes (4 and 8 seconds). 
However, there are weaknesses such as (1) it undercounts the 
density value of phase space and thus miss-judges some VF 
cases, (2) it cannot properly detect ECG signals with a  
changing baseline and (3) it operates with a fixed delay time 
and thus fails to detect ECG signals with variable heart rates.  

In this paper, we propose an extension of the TD 
algorithm, called ETD, to improve the detection accuracy. We 
conduct experiments comparing the performance of ETD 
against five other detection algorithms, including TD, in terms 
of popular quality measures using the Creighton University 
(CU) database. The remainder of this paper is organized as 
follows. Section II reviews the logic of the TD algorithm and 
its weaknesses. Section III describes the proposed extended 
time-delay (ETD) algorithm and why it can correct the 
weaknesses of TD. Section IV describes the experiments and 
reports the evaluation results. Section V provides the 
discussion and conclusions of this study. 

II. TIME DELAY (TD) ALGORITHM 

A. The TD Algorithm 

The TD algorithm uses a 40×40 square two-dimensional 
phase space reconstruction (PSR) diagram to analyze ECG 
signals for identifying a dynamic low or random behavior 
[12]. By plotting the signal data X(t) on the x-axis against the τ 
time-delay data X(t + τ) on the y-axis (where τ = 0.5 seconds), 
the plot shows the number of visited boxes.  

Figure 1 depicts the actual ECG signals and the patterns 
from time-delay plotting of TD and ETD. Figure 1(a) shows a 
normal ECG signal with obvious QRS complex and Figure 
1(d) shows a clear case of VF attack. Since the normal ECG 
signal mainly consists of baseline and QRS complex, these 
two features will be visually shown as two lines in the phase 
space plot (see Figure 1(b)). In a clear VF signal case, the 
visited boxes over the phase space plot will appear visually as 
uniformly distributed boxes (see Figure 1(e)). 

Unfortunately, most real-world cases are mixed with noisy 
data and it is difficult to judge the results visually.  To 
objectively distinguish QRS complex from VF cases, TD 
counts the density of boxes visited (d) and compares it with a 
prescribed threshold value (d0). If d < d0, the ECG signal is 
considered a normal sinus rhythm (SR); otherwise, it is 
classified as a VF case.  Using Figure 1 as an example, the 
threshold value of d0 for a 4 second window segment is set as 
0.08 based on an algorithm proposed for optimized threshold 
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determination [16]. In Figure 1(b), d = 0.03 < 0.08, so the 
signal is classified as a normal SR and the signal in Figure 1(e) 
is recognized as VF because d = 0.10 > 0.08. 

  
(a) SR Signal at 52s - Patient 1 (d) VF Signal at 350s - Patient 1 

  
(b) TD plot (d = 0.03 < 0.08, SR) (e) TD plot (d=0.10 > 0.08, VF) 

  
(c) ETD plot  (E = 203<450, SR) (f) ETD plot (E = 468>450, VF) 

Figure 1. Phase space reconstruction plots of TD and ETD (CUDB patient 1 
with 4 second window size) 

B. Weaknesses of TD 

Although the TD algorithm performs quite well in clear SR 
and VF cases, there are three weaknesses that impact its 
overall performance: 

   TD counts all overlapped visit boxes as one; thus, it 

may undercount the density value and misclassified 

some VF cases. For example, if there is no QRS 

complex in one window segment of ECG signal, TD 

may undercount the numbers of visited boxes as a small 

density number. This results in the signal being 

classified as normal, when it is in actuality abnormal.  

   TD cannot properly detect signals with a changing 
baseline. For example, Figure 2(a) has a signal with a 
baseline moving up and down, which may be caused by 
patient movement and electrode attachment. Although 
the signal was annotated as a normal signal by the ECG 
experts, the phase space plot shows boxes distributed in 
a wide area (as seen in Figure 2(b)) due to the baseline 
drift or shift. Also, because it reduces the overlap 
count, which increases the d value (d = 0.09 > d0 (= 
0.08)), the TD algorithm misclassifies it as a VF case.  

   TD uses a fixed delay time (τ = 0.5 seconds) to plot 
phase space, which may cause misclassification of 
changing heart rates. Although using a fixed delay time 
allows for minimizing the number of overlapping 
visited boxes for stable heart rates, the overlapped area 
of the plot will shift if the heart rate is changed (often in 
one window segment) which will cause a classification 

error. For example, Figure 2(d) shows the actual ECG 
signal, which has irregular heart rates. As can be seen 
in Figure 2(d), the interval of QRS complexes varies so 
that the number of visited boxes is increased. Figure 
2(e) shows the corresponding phase space plot which 
looks like a weak VF case. Since in this case, d (= 0.08) 
is larger than typical ECG (d = 0.03), it was 
misclassified as a VF case, despite it being a normal SR 
with variable heart rate. 

  

(a) SR signal at 402s -Patient 2 (d) SR signal at 142s - Patient 26 

  

(b) TD plot (d = 0.09>0.08, VF) (e) TD plot (d = 0.08=0.08, VF) 

  

(c) ETD plots  (E = 345<450, SR) (f) ETD plots  (E = 426<450, SR) 

Figure 2. Phase space reconstruction plots of TD and ETD (CUDB patient 2 
and patient 26 with 4-second window size) 

III.  EXTENDED TIME-DELAY ALGORITHM 

Listed below are the variables used in the ETD algorithm: 

 x(t): Position of x-axis 

 x(t + τ): Position of y-axis 

 N(x(t), x(t + τ)): The number of overlapped boxes at {x(t), x(t 
+ τ)} (Position of z-axis)  

 β: The maximum value along the z-axis 

 W: Window size 

 F: Sampling frequency 

 Ε ( β, W): Total ETD value for detecting decision 

We observe that a typical VF signal produces a sine curve 
type of ECG, which fills the 2D phase space area in an 
irregular way with a low number of overlapped boxes. The 
curve is almost uniformly distributed over the 40×40 grid, 
with relatively few overlaps. For a normal sinus rhythm (SR), 
however, the curve in the phase space diagram shows a regular 
structure which fills only small parts of the total area, and the 
curve is concentrated in a limited part of the plot with a large 
number of the overlaps within a small number of boxes. 
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The extended time delay algorithm (ETD) is based on a 3D 
plot which consists of the same 2D phase space reconstruction 
as TD on the x and y axes but adds the number of overlapped 
boxes (i.e., N(x(t), x(t + τ))) on the z axis to address the problem of  
undercounting visited boxes. Because ETD analyzes signals 
not only to identify a dynamic low or random behavior but 
also to count the number of overlaps due to changes in heart 
rates and baselines, it can properly remedy the above 
mentioned weaknesses of TD algorithm.  

Figure 3 shows how the ETD algorithm works. We 
determine the area of the plot filled by the curve and the 
density of the visited boxes. To achieve this, we produce a 
40×40 grid ranging from 0 to the maximum value of the 
investigated raw ECG signal (β).  

 
Figure 3. 3D Phase space reconstruction plots of ETD (CUDB patient 1) 

 
 The areas with high peaks indicate the existence of 

baseline from SR. The decision criterion of the ETD value, E, 
is calculated by summing all visits as:  

E = Σall (N(x(t), x(t + τ)))               (1) 

Where N(x(t), x(t + τ)) is from 0 to β (0 < N(x(t), x(t + τ)) < β; β = 5). 
If Ε is higher than a prescribed threshold Ε0, we classify the 
corresponding ECG segment as VF. We choose τ = 
0.5seconds and the threshold Ε0 = 450 according to an optimal 
threshold value algorithm proposed in [16].  

Algorithm 1 shows the detailed pseudo code of the ETD 
algorithm: 

Algorithm 1:  An algorithm for ETD 

Determine Integer Array E [40, 40],  β = 5, W = 8s, F = 62.5 Hz, τ 

= 0.5 sec 

1: for ECG [i] from 0 to W×F by 1  

2:    if (i > τ) 

3:       then x(t + τ) = Scaled ECG [i] 

4:                x(t) = Scaled ECG [i - τ] 

5:                Increment E [x(t + τ), x(t)] 

6:                if ((E [x(t + τ), x(t)] > 0 ) && (E [x(t + τ), x(t)] <= β)) 

7:                   then Increment Ε (β, W); 

8:                end-if 

9:   end-if 

6: end-for 

 
Let us use the same examples in Figures 1 and 2 for 

illustration. Figure 1 (c), (f) and Figure 2 (c), (f) are the 
corresponding 3D plots from ETD for the same data 
respectively. If the tested ECG signal is clear (without noise) 

as in the case of patient 1, both TD and ETD can easily 
distinguish between normal SR and VF attack. However, for 
the two ambiguous cases with the changing baseline (patient 
2) or changing heart rates (patient 26), TD cannot detect the 
right result as shown in Figure 2(b) and (e). On the other hand, 
the patients are considered normal by ETD because the 
algorithm keeps track of overlapped values on the z-axis 
(Figure 2(c) and (f)). Also, the corresponding E values, 345 
and 426, are smaller than the threshold value (450); thus, they 
are correctly classified as normal signals.  

IV. PERFORMANCE EVALUATION 

We first conduct comparative analyses over six VF 
detection algorithms: Threshold Crossing Intervals algorithm 
(TCI) [13], VF filter algorithm (VFF) [14], Pan and Tompkins 
algorithm (TOMP) [15], Threshold Crossing Sample Count 
algorithm (TCSC) [8], TD [12] and ETD. All six algorithms 
are analyzed in terms of common quality metrics -- sensitivity 
(Sn), specificity (Sp), positive predictivity (Pp), accuracy 
(Acc) -- and a receiver operating characteristic (ROC) curve 
using the popular Creighton University (CU) VT databases 
[17] with an 8 second window and filtering.m method [18]. 
For better comparison between TD and ETD, we set similar 
sensitivity results for both methods, so that the other three 
measures can be fairly compared. We then provide an in-depth 
analysis between the TD and ETD algorithms using the same 
quality measures and an aggregate measure, the area under 
ROC curve (AUC).  

Table I shows the comparative results in terms of the four 
quality measures across the six VF algorithms, where the top 
two best results are highlighted and the worst results for each 
measure are in red color or italic style. As shown, VFF 
performs the best in terms of Sp, Pp and Acc; however, it 
performs the worst in terms of Sn; thus, it cannot be 
considered as a good method. On the other hand, both TD and 
ETD have good performance in all four measures, with ETD 
slightly better than TD. 
 

TABLE I. COMPARISON OF PERFORMANCE FOR SIX VF 
ALGORITHMS 

Algorithms Sn (%) Sp (%) Pp (%) Acc (%) 

TCI 69.64 62.39 38.31 64.21 

VFF 36.23 99.67 97.16 84.44 

TOMP 73.50 54.85 34.63 59.43 

TCSC 63.24 81.29 51.9 76.92 

TD 80.52 81.83 55.85 81.54 

ETD 80.52 85.90 61.98 84.71 
 

Figure 4 compares the ROC curve of the six algorithms.  
These results also clearly support the conclusion that both 
ETD and TD outperform the other four algorithms, with ETD 
slightly better than TD, as well as the fact that VFF did not 
perform well in terms of Sn.  Across the 35 data sets used, TD 
and ETD obtained the same results for 8 data sets.  Thus, we 
removed these data sets from further analysis. Table II 
summarizes the average results from this differential analysis. 
As shown, under equal sensitivity, ETD performs better than 
TD in terms of Sp, Pp, Acc, and AUC by 5.19%, 7.64%, 
4.06% and 2.60% respectively. 
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Figure 4. Comparison of ROCs for six VF detection algorithms (fm: 

filtering.m) 

TABLE II. COMPARISON OF PERFORMANCE BETWEEN ETD AND 
TD ALGORITHMS BASED ON SELECTED PATIENTS  

Algorithms Sn (%) Sp (%) Pp (%) Acc (%) AUC (%) 

ETD 77.18 85.78 60.08 83.91 81.48 

TD 77.18 80.58 52.44 79.84 78.88 

Deviation 0 5.19 7.64 4.06 2.60 

V. CONCLUSION AND DISCUSSION 

In this paper, we proposed an extension of the time delay 
algorithm, called ETD, which uses a 3D phase space plot to 
address the weaknesses of the TD algorithm for VF detection. 
Our comparative analyses show that under equivalent 
conditions (i.e., same filtering method, window segmentation, 
optimized threshold values, data sets and system) both TD and 
ETD perform better than the other four algorithms in the 
comparison in terms of common quality measures and ROC 
curve. Our study also shows that with the same sensitivity 
setting, ETD improves upon TD performance in three other 
quality measures by up to 7.64%. In terms of aggregated 
accuracy, the ETD algorithm shows an improvement of 2.6% 
of the area under curve (AUC) compared to TD.  

In particular, with the extension, the performance of ETD 
was quite robust as it was not much impacted by signal noise 
such as baseline drift and changing heart rate. This can be seen 
from the results in Figure 2, where the two unclear cases, 
baseline wave and the variable interval of QRS complexes, are 
shown. These cases were problematic for the TD algorithm, 
because they prevented accurate discrimination of SR from 
VF.  

Although the 3D plot of ETD slightly improves on 
detection accuracy, problems with baseline wave and R-peak 
interval still need to be resolved. The baseline wave moves the 
hot-spot area of the phase space plot so that it disrupts the high 
peak of the ETD plot. Since this issue is closely related to 
baseline tracking and the scaling process in the ETD 
algorithm, the adaptive process approach, which makes the 
baseline of ECG signal stable so that the hot-spot area is 
concentrated in the same spot, may be able to resolve the 
issue. Moreover, the R-peak interval problem affects uniform 
positioning of two lines in the phase space plot. As a result, it 
increases the 2D plot area in the number of visited boxes. This 
issue is also connected to using a fixed τ time delay. 

Compared to common performance metrics, the AUC is a 
better way to judge the performance of different algorithms by 
one single value. However, similar to how the four 
performance metrics are decided by the threshold value, the 
threshold value we selected also affects the value of the AUC. 
Because we use ECG signals from 35 patients in the CU 
database, any given threshold may not be a proper decision 
value for some datasets.  For more accurate evaluation, a 
dataset-specific threshold values may be able to enhance the 
validity of VF detection algorithms.             
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