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Abstract— Brain-machine interface (BMI) performance has
been improved using Kalman filters (KF) combined with closed-
loop decoder adaptation (CLDA). CLDA fits the decoder pa-
rameters during closed-loop BMI operation based on the neural
activity and inferred user velocity intention. These advances
have resulted in the recent ReFIT-KF and SmoothBatch-KF
decoders. Here we demonstrate high-performance and robust
BMI control using a novel closed-loop BMI architecture termed
adaptive optimal feedback-controlled (OFC) point process filter
(PPF). Adaptive OFC-PPF allows subjects to issue neural
commands and receive feedback with every spike event and
hence at a faster rate than the KF. Moreover, it adapts the
decoder parameters with every spike event in contrast to
current CLDA techniques that do so on the time-scale of
minutes. Finally, unlike current methods that rotate the de-
coded velocity vector, adaptive OFC-PPF constructs an infinite-
horizon OFC model of the brain to infer velocity intention
during adaptation. Preliminary data collected in a monkey
suggests that adaptive OFC-PPF improves BMI control. OFC-
PPF outperformed SmoothBatch-KF in a self-paced center-out
movement task with 8 targets. This improvement was due
to both the PPF’s increased rate of control and feedback
compared with the KF, and to the OFC model suggesting
that the OFC better approximates the user’s strategy. Also,
the spike-by-spike adaptation resulted in faster performance
convergence compared to current techniques. Thus adaptive
OFC-PPF enabled proficient BMI control in this monkey.

I. INTRODUCTION

Brain-machine interfaces (BMI) have demonstrated that
human and non-human primates can use their motor cortical
activity to control computer cursors or robotic arms (e.g., [1],
[2], [3], [4], [5], [6], [7], [8], [9]). BMIs record a subject’s
neural activity, use a decoder to infer from this activity the
subject’s motor intent and control a device, and provide
visual feedback to the subject. Various decoders such as
linear regression, population vector, and Kalman filters (KF)
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have been used in real-time BMIs. In addition to selecting
a decoding model, the model’s parameters need to be found
for each subject. This parameter fitting is often performed
in open loop by recording the neural activity in a training
session while subjects execute or imagine movements, and
then solving for optimal parameter values based on the
observed neural activity in response to movement. However,
recent studies have shown that fitting the decoder parameters
in closed-loop BMI operation can improve its performance
[5], [6]. This is due to the change in neural representations
when subjects control a BMI compared to when they control
their arm [1], [2], [10].

Fitting the decoder parameters in closed-loop is referred
to as closed-loop decoder adaptation (CLDA) [1], [3], [5],
[6], [7], [11]. Recent work has combined CLDA with KF to
develop the ReFIT-KF decoder and achieve proficient BMI
control [5], [6]. In ReFIT-KF, parameters are first initialized
based on arm reaching movements [5], visual feedback of
cursor movements [6], or even arbitrarily [6]. The initialized
KF is then used by the subject to make brain-controlled
movements towards targets on the computer screen. In the
process, KF parameters are refit by collecting batches of
neural activity and inferring the subject’s intended velocity
in these batches. ReFIT-KF finds the intended velocity at
each time by rotating the cursor’s decoded velocity vector
towards the target while keeping its magnitude unchanged,
and by equating it to zero when at the target. This inten-
tion estimation method is termed CursorGoal [5]. Recently,
SmoothBatch-KF [6] that uses ReFIT-KF and CursorGoal
was proposed. In SmoothBatch-KF parameters are adapted
smoothly once every 90 sec and converge to a good solution
even when not initialized using arm movements.

Here we develop a novel closed-loop BMI architecture
termed adaptive optimal feedback-controlled (OFC) point
process filter (PPF) and show that it enables robust and high-
performance spike-by-spike BMI control. The architecture
is developed based on a point process model of spikes
and an optimal feedback control model of brain that we
have proposed previously [12], [13], [14], [8] and used for
joint decoding of target and trajectory in the specific case
of target-directed movements and when decoder parameters
were found in open loop. Here we extend our decoding
framework to develop adaptive OFC-PPF that fits the decoder
parameters in closed-loop and is not specific to target-
directed movements. Adaptive OFC-PPF updates the decoder
parameters with every quasi-spike event (every 5ms) unlike
ReFIT-KF and SmoothBatch-KF that do so on the time-
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Fig. 1. Adaptive OFC-PPF architecture.

scale of minutes. Moreover, it allows subjects to issue neural
commands and receive feedback at a faster rate (every 5ms)
compared to KF (typically every 50–100 ms). Finally, unlike
CursorGoal, it models the brain in closed-loop BMI control
as an infinite-horizon optimal feedback-controller to infer
velocity intention during adaptation and to devise an assisted
training paradigm for consistent parameter convergence. We
compare performance across different decoders within the
same monkey in a self-paced center-out movement task with
8 targets. We show that spike-by-spike adaptation results in
faster performance convergence compared to current batch-
based methods. Our preliminary data from this monkey also
suggests that adaptive OFC-PPF results in higher perfor-
mance compared to SmoothBatch-KF. We show that this
improvement is due to both the PPF’s fast rate of control
and feedback and to the OFC intention estimation suggesting
that it better approximates user’s strategy.

II. METHODS

We develop a new closed-loop BMI architecture, adaptive
OFC-PPF (Fig. 1), based on an optimal feedback control
model of the brain and a point process model of the spikes.
We first build the OFC and the PPF models and then show
how to combine them to develop the architecture.

A. Infinite-horizon OFC model for CLDA

A BMI system can be modeled as an optimal feedback
control system [12], [13], [14], [8]. When controlling the
BMI, the brain (controller) decides on the next neural com-
mand based on the current state of the cursor and the task
goal to reach the desired target. Hence we can build an
optimal feedback control model of the brain to predict its
control commands. This model can be constructed by defin-
ing an approximate forward dynamics model, quantifying
the task goals as cost functions, and modeling the visual
feedback. Our BMI architecture uses this OFC design to
infer subject’s intended kinematics in the presence of poor
parameter estimates and to adaptively update these estimates.

We denote the sequence of kinematic states by x0, · · · , xt
and assume that they evolve in the linear dynamical system

xt = Axt−1 + But−1 + wt−1. (1)

This is the forward dynamics model with parameters A and
B that we fit based on manual trajectories. Here ut is the
control command at time t that the brain (i.e., controller)
issues, and wt is a zero-mean white Gaussian state noise
with covariance matrix W. We denote the decoded cursor
kinematics, which is rendered on the screen at time t, by

xt|t. We assume that the subject can perfectly observe xt|t
(i.e., noiseless visual feedback). We also implicitly assume
that the brain has formed an internal forward model of the
dynamics of movement in response to control commands
ut in the task [8]. Studies using motor control tasks [15]
and more recently using BMI tasks [16] have suggested the
existence of such an internal model.

To predict the brain’s intended control command and con-
sequently the intended kinematics, we form a cost function
that quantifies the task goal, and minimize it over ut. Target-
directed trajectories during proficient control are dependent
on the desired movement duration. Hence in our work for
decoding of target-directed movements when decoder param-
eters were known [12], [14], [8], we formed a finite-horizon
cost function and decoded the trajectory by jointly estimating
the movement kinematics and its horizon (i.e., duration) from
neural activity. In CLDA, however, parameter estimates are
poor initially and hence control is not proficient. Hence, we
cannot estimate the intended horizon from neural activity.
Moreover, targets may not be reached during the initial
trials because of poor control. Thus instead of forming
a finite-horizon cost function and decoding the horizon,
we formulate an infinite-horizon cost function to develop
adaptive OFC-PPF as a CLDA method. Recent motor control
studies suggest that an infinite-horizon formulation could be
an alternative to finite-horizon models [17].

We define the state as xt = [dt, vt]′ where the components
represent position and velocity in the two dimensions and
denote the target position by d∗. We form the cost function

J =

∞∑
t=1

‖ dt − d∗ ‖2 +wv ‖ vt ‖2 +wr ‖ ut ‖2 (2)

where the three terms in the sum enforce positional accuracy,
stopping condition, and energetic efficiency, respectively, and
the weights wr and wv are selected appropriately based on
experimental movements. Given the linear Gaussian state-
space model (1) and the quadratic cost function (2), the
optimal ut is given by the standard linear-quadratic-regulator
(LQR) solution. Specifically, ut at each time is a linear
function of the controller’s (brain’s) estimate of the state
at that time [18]. Given the assumption of noiseless visual
feedback, the controller’s (brain’s) estimate of the state at
each time is equal to the displayed state on the screen, xt|t,
and hence OFC-PPF finds the intended control as

ut = −L(xt|t − x∗), (3)

where x∗ = [d∗,0]′ is the target state for position and
velocity, and L is the steady-state solution to the algebraic
Riccati equation found recursively and offline [18].

B. Point process model of the spikes

Adaptive OFC-PPF enables subjects to send control com-
mands and receive feedback with every spike event and at
a much faster rate compared to KF. Moreover, it enables
the BMI to adapt the parameters with every spike event in
contrast to the time-scale of minutes in current methods. To
achieve these goals, OFC-PPF incorporates a point process
observation model of the spiking activity in closed loop.
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We denote the neural observations of the ensemble of C
neurons by N1, · · · ,Nt where Nt = (N1

t , · · · ,NC
t ) is the

binary spike events of the C neurons at time t. Assuming
conditional independence among neurons given the state, the
point process observation model is given by [19], [20]

p(Nt|xt) =
∏
c

(λc(t|xt)∆)
Nc

t e−λc(t|xt)∆ (4)

where ∆ is the time bin taken to be small enough to
contain at most one spike (5 ms here) and λc(t|xt) is the
instantaneous firing rate of neuron c. We use a modified
cosine tuning model of the motor cortex [21] to write
λc(t|xt) for each neuron as a log-linear function of velocity
in the two dimensions

λc(t|xt) = exp(βc + α′cvt) (5)

where φc = [βc,αc] are the decoder parameters for neuron
c that need to be estimated in the CLDA (see Section II-C).

C. Spike-by-spike control and adaptation using OFC-PPF
We combine the OFC and PPF models to develop adaptive

OFC-PPF. During the process of adaptation, we use the
infinite-horizon OFC model to perform intention estimation
as in (3). We develop one recursive Bayesian decoder for the
kinematics and one decoder for each neuron’s parameters. A
recursive Bayesian decoder consists of a prior model on the
states and an observation model relating the neural activity to
these states. The observation model for both the kinematics
and the parameters is the same and given by (4).

We construct the prior model of the parameters for each
neuron using a random-walk state-space model given by

φc(t) = φc(t− 1) + qt, (6)

where qt is white Gaussian noise with covariance matrix Q.
To enable consistent parameter convergence despite poor

initial performance, we devise a combined CLDA and as-
sisted training paradigm by using the OFC state-space model
(see (1) and (3)) as the prior in the kinematics decoder.
This allows the kinematics decoder to explore the space
even with poor initial parameters and moreover keeps the
subject engaged during the adaptation process. Given the
prior and the observation models for the kinematics and the
parameters, we can find the recursions of the decoders.

For the kinematics decoder, let’s denote the one step
prediction mean by xt|t−1 = E(xt|N1:t−1), the prediction
covariance by Wt|t−1, the minimum mean-squared error
(MMSE) estimate that is displayed to the subject by xt|t, and
its covariance by Wt|t. Combining (3) and (1), the prediction
step of OFC-PPF for the kinematics is found as

xt|t−1 = (A−BL)xt−1|t−1 + BLx∗ (7)
Wt|t−1 = (A−BL)Wt−1|t−1(A−BL)′ + W (8)

The decoder update step as we have derived previously [8]
is given by (see also [20] for the general case)

W−1
t|t = W−1

t|t−1 +

C∑
c=1

α̃cα̃c
′λc(t|xt|t−1)∆ (9)

xt|t = xt|t−1 + Wt|t

C∑
c=1

α̃c(N
c
t − λc(t|xt|t−1)∆) (10)

where α̃c = [0,αc]
′ (since the observation model assumes

no position tuning). Hence adaptive OFC-PPF decodes the
kinematics using (7)–(10).

For the parameters of each neuron, we similarly build an
additional point process decoder with the prior model in
(6). Hence the prediction step for each neuron’s parameter
decoder can be obtained as in (7), (8) but by setting B = 0,
A = I, W = Q, and the update step can be obtained as
in (9), (10) but by reversing the role of φc and xt (see (5))
and setting C = 1 (i.e., estimating the parameters of each
neuron only based on its own neural activity). Note that we
do not perform joint estimation of parameters and kinematics
[20]. Instead, given the poor initial parameters, we rely on
the OFC model to provide the intended kinematics to each
neuron’s parameter decoder using (3) and (7) (Fig. 1).

Adaptive OFC-PPF stops assisted training once non-
assisted performance exceeds a desired level (Fig. 2). This
condition is evaluated by testing the subject’s non-assisted
performance in short intervals using a random-walk PPF for
kinematics in which B is set to 0. Once assistance stops, the
subject keeps using this random-walk PPF as the decoder.

D. Closed-loop BMI experiments

Variability in recordings and task designs make across-
study comparisons difficult, so here we compare performance
across different decoders within the same subject with a
self-paced center-out movement task consisting of 8 targets
(detailed in [6]). We recorded from 17–20 multiunits in the
primary motor cortex of one rhesus monkey. The subject
initiated a trial by moving the cursor to the center target.
Once the cursor entered the center, one of 8 peripheral targets
appeared followed by a go cue (that changed the center
target’s color). After the go cue, the subject moved the cursor
towards the displayed target. To be successful, subjects had to
reach the correct target and hold it for 250 ms. If the cursor
left the target before the 250 ms, the trial was considered
unsuccessful and the subject was not given the chance to
correct this hold error unlike some prior tasks (e.g. [5]).
Subjects had to return the cursor to the center and hold there
to initiate the next trial. We use success rate, i.e., the number
of successful trials per minute, as the performance measure
and also calculate the movement error and the reach time.

III. RESULTS

Here we present the performance of adaptive OFC-PPF
and SmoothBatch-KF on the self-paced center-out task.

A. Spike-by-spike adaptation vs. batch-based adaptation

We compared adaptive OFC-PPF that adapts the param-
eters with every spike event (every 5ms) with a version
of OFC-PPF that did so every 90 sec using SmoothBatch
adaptation [6]. In the latter case, we still used the OFC to
infer velocity intention, however, we collected 90 sec batches
of neural activity and the corresponding intentions, and refit
the decoder parameters within each batch using generalized-
linear-model (GLM) maximum-likelihood techniques. Fig. 2
shows the monkey’s performance in two consecutive days,
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Fig. 2. Performance convergence over time for adaptive OFC-PPF and
SmoothBatch OFC-PPF run on two consecutive days and starting from the
same initial parameters. Vertical lines show the time point where assistance
stops as the subject’s non-assisted success rate exceeds the desired level of
5 after that point. Success rate is calculated in sliding 2 min windows.

one with adaptive OFC-PPF and one with SmoothBatch
OFC-PPF. Both decoders started from the same initial pa-
rameters. Adaptive OFC-PPF resulted in faster convergence
of performance to its steady-state value. This result held on
average across days. Looking at 6 days of convergence with
SmoothBatch OFC-PPF and 6 days with adaptive OFC-PPF,
performance converged in the former case within 18.1±11.1
minutes and in the latter case within 7.4± 2.9 minutes.

B. Steady-state: OFC-PPF vs. SmoothBatch-KF

We compared adaptive OFC-PPF with SmoothBatch-KF
in closed-loop experiments across days. OFC-PPF outper-
formed SmoothBatch-KF, improving success rate by 32%
in this monkey. Movement error and reach time were also
improved by 14% and 18%, respectively. We also examined
the contribution of the OFC and the PPF components to the
observed improvement. To dissociate the two effects, we first
implemented a SmoothBatch-KF that, instead of using Cur-
sorGoal, used the OFC intention estimation. We compared
the steady-state performance of this OFC SmoothBatch-KF
with OFC-PPF and found that success rate in the latter was
30% higher than the former, demonstrating that PPF’s faster
control and feedback rate was necessary for performance
improvement. We then implemented a PPF that used Cursor-
Goal intention estimation during adaptation and compared
that to OFC-PPF. We found that OFC-PPF improved the
success rate by 27% compared to this CursorGoal-PPF,
indicating that OFC intention estimation was essential for
performance improvement and better approximated the user’s
strategy.

IV. CONCLUSIONS

We have developed a new closed-loop BMI architecture,
adaptive OFC-PPF. Adaptive OFC-PPF allows subjects to
control the BMI with every spike event, enables the BMI
to adapt the parameters with every spike event, and uses an
infinite-horizon OFC model of the brain to infer user’s inten-
tion during adaptation and to design a new assisted training
technique. Preliminary data from one monkey suggests that
spike-by-spike adaptation results in faster performance con-
vergence compared with current techniques, that OFC-PPF
outperforms SmoothBatch-KF, and that both the OFC and the
PPF models are necessary for this performance improvement.
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