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Abstract— The successful application of noninvasive brain-
computer interfaces (BCI) to neurological rehabilitation re-
quires examination of low frequency movement artifacts and
development of accurate new methods for their correction. To
this end, this study applies an adaptive trend extraction method
to electroencephalogram (EEG) signals recorded during active
and passive center-out reaching tasks. Distinct patterns are
discovered, which correlate to arm kinematics, but are shown
to be largely artifactual in nature. Notably, these patterns are
found to be similar to features currently used for discrimination
of movement direction, indicating a necessity for caution and
precise signal processing methods when utilizing low frequency
content of EEG signals in such applications.

I. INTRODUCTION
In recent years, significant progress has been made toward

successfully decoding the direction of human arm movement
from neural signals acquired by noninvasive means, such
as magnetoencephalography (MEG) and electroencephalog-
raphy (EEG). Such capabilities would prove exceedingly
advantageous in a wide variety of brain-computer interface
(BCI) applications.

One such application, which has thus far received little
attention, is neurological rehabilitation. People who have
been affected by stroke or other traumatic brain disorders
might regain some degree of motor function through the
proper application of BCI technology. A BCI could aid
in activity-dependent brain plasticity by providing neural
feedback to the user, reinforcing desirable neural activity,
and discouraging abnormal activity [1], [2].

Because motor recovery is the goal, movement of the
subject is desired. EEG is plagued by artifact contamination,
and typical methods for reducing the effect of artifacts are
by minimizing any movement, and discarding trials which
contain movement artifacts [3], [4], [5]. Clearly this is not
practical in such a motor learning application, necessitating
deeper examination of the nature of such artifacts, and
improved methods for correcting them.

Of particular interest are low frequency (< 1Hz) move-
ment artifacts, due to the fact that many of the more
successful methods of discriminating arm kinematics utilize
event-related potentials (ERP) and similar features derived
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from low frequency bands [6], [7], [8], [9]. Digital filters are
often employed in EEG processing to reduce noise in this
frequency range. However, in order to attenuate such slow
trends, a finite impulse response (FIR) filter must be of such
a high order that it causes significant group delay. (In testing,
a 50th order FIR filter was found insufficient.) Alternatively,
the phase distortion of an infinite impulse response filter can
be corrected by zero-phase filtering, but such methods are
noncausal and cannot be implemented online.

For these reasons, a single parameter least mean squares
(LMS) adaptive filter is proposed as a tool for extraction
and examination of low frequency movement artifacts in
EEG signals. This method is applied to a center-out reaching
task, similar to those performed with joysticks [6], [8], touch
screens [9], arrays of tactile buttons [10], and the same robot
system utilized in this study [2], [1], [7].

II. METHOD

A. Preprocessing

Prior to processing, each trial was visually inspected,
and those possessing extreme artifacts (signifying temporary,
drastic changes in electrode impedance) were removed. No
other preprocessing was performed, in order to examine
the true effects of motion artifacts on raw EEG signals.
The adaptive filtering described below is intended as an
online preprocessing step for various feature extraction and
classification algorithms.

B. LMS Algorithm

The LMS algorithm is considered a standard among
adaptive filters, and possesses a simplicity that makes it a
very efficient method for minimizing the mean squared error
(MSE) cost function. It recursively updates filter weights,
based on the gradient of the performance surface (the MSE
in the weight space). At each time step, the instantaneous
gradient is estimated from the output of the filter at the
previous time step, and the current reference input. Thus, the
weights are updated in the opposite direction of this gradient
using the following equation:

Wk+1 = Wk + µεkXk (1)

Where W is the weight vector, µ is the step size parameter,
ε is the error, and X is the input signal at the last M time
steps (where M is the filter order) [11]. The error ε is the
difference between the reference signal and the output of the
filter at the previous time step:
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εk = Dk − WT
k Xk (2)

Where D is the reference signal at the last M time steps.
In exchange for its favorable properties, the LMS algo-

rithm incorporates a free parameter µ, which is known as
the step size, and controls the speed of adaptation. This
parameter must be carefully selected for the application, with
attention to the compromise between speed of adaptation and
misadjustment, the amount by which the iterative solution
varies from the optimal solution.

C. Adaptive Trend Extraction

The LMS algorithm may be further simplified for the
purpose of adaptive trend extraction, as shown in Fig. 1 [12].

Fig. 1. Modified LMS adaptive filter for trend extraction. Input X is a
constant value, and reference Dk is the raw EEG signal.

In this special case, the input of the adaptive filter is set
to a constant value, ideally 1 for convenience. Because the
filter includes only one coefficient, and the input is equal to
1, the output is simply the filter coefficient. Thus, Eq. (1)
can be rewritten as:

Wk+1 =Wk + µ(Dk −Wk) (3)

Because the input is a constant 1, the output Yk is simply
the current weight Wk, and the frequency response from the
reference to the extracted trend is defined as follows:

Y (ejω)

D(ejω)
=

µ

ejω − (1− µ)
(4)

This enables analysis of filter performance as a function of
step size µ. This single free parameter controls the speed of
adaptation, which in this case effectively controls the cutoff
frequency of the filter.

For this study, a step size of µ = 0.02 is selected, low
pass filtering the raw signal with a 3dB cutoff frequency of
0.8Hz to produce the trend, and subtracting that trend from
the EEG signal.

III. EXPERIMENT

For this study, EEG data was recorded from human
subjects at the Brain Rehabilitation Research Center (BRRC)
of the Malcolm Randall VA Medical center, located in
Gainesville, Florida. A protocol was developed to guide
subjects in a center-out reaching task, during which each
subject moved his or her dominant hand in eight different
directions, as prompted by a visual display.

A. Setup

For each subject, an appropriately sized Electro-Cap In-
ternational (ECI) Electro-Cap was used, which incorporated
58 pure tin electrodes, distributed over the entire scalp. The
cap was secured in place using a chest strap, and referenced
to the left earlobe. Recordings were performed using a 64
channel NeuroScan SynAmps RT EEG amplifier, sampling
at 250 Hz, with 24 bit analog to digital conversion.

The tasks and recordings were coordinated using BCI2000
software, which communicated by local network with the
InMotion ARM Interactive Therapy System (also known as
the MIT-Manus robot). The ARM system recorded kinematic
data in parallel with EEG, including position, velocity, and
force of the end effector.

Each subject was secured in an upright, seated position
with a chest harness. Each subject’s forearm was secured
to, and supported by the end effector of the ARM system.
Movements were performed in a horizontal plane, extending
in a 15 cm radius from the center point. The screen, which
provided visual prompts, was placed 60 cm from the tip of
the subject’s nose. This configuration is shown in Fig. 2.

Fig. 2. Subject performing center-out reaching task with ARM system, as
prompted by visual display.

B. Task 1: Active Movement

The initial task was intended to record EEG signals during
volitional movements of engaged subjects. At the beginning
of each trial (t = 0s), a target was presented on screen in
one of eight directions (North, Northeast, East, Southeast,
South, Southwest, West, and Northwest). While the target
was displayed, the subject moved his or her hand slowly and
continually in the direction of the target. After five seconds
(t = 5s), the target was removed from the screen. At this
time, the subject moved his or her hand back to the center
point and rested there, waiting for the next target to be
presented after five seconds (t = 10s). The timeline of a
single trial is shown in Fig. 3. Movement of the hand was
represented on screen as a yellow cursor, providing visual
feedback to the subject.
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Fig. 3. Timeline of a single trial, with target display at top. The subject
moves slowly toward the target for five seconds, then returns quickly to
center and rests until the beginning of the next trial, five seconds later.

Four healthy subjects participated in this study: three male,
and one female. All were at least 50 years old, and all used
the right (dominant) hand. Three of the subjects performed
224 total trials each, and the fourth performed 160. An
equal number of trials were performed in each of the eight
directions, and were presented in a pseudorandom order.

An additional set of 32 trials was performed by one subject
while the electrode cap was secured beneath the chin (as
opposed to the chest strap), in order to explore the effects of
the chest strap on signal quality during movement. The same
subject also performed the passive movement task described
below.

C. Task 2: Passive Movement

In order to investigate the causes of motion artifacts, a
second task was designed to record EEG signals during
passive movement. This task was organized similarly to the
first, utilizing the same timeline. However, the visual display
was not presented on screen to the subject, and the subject
did not engage in (or imagine) active movement. Instead,
the subject relaxed, gazing straight forward, and passively
allowed his hand to be pulled in each direction by the ARM
system. In this manner, it was possible to record motion
artifacts comparable to those found in the active movement
condition, but devoid of neural signals representing motor
planning or intent, and free of extraneous electrooculogram
(EOG) artifacts.

One subject performed 32 trials of this task, evenly divided
among eight directions, presented in a pseudorandom order.

IV. RESULTS AND DISCUSSION

The proposed adaptive algorithm successfully extracts the
previously noted low frequency trends, enabling specific
experimentation to determine their source. Selection of the
LMS step size presents a compromise between completely
extracting trends that may be artifactual, and retaining use-
ful neural information. Fig. 4 shows the raw EEG signal,
detrended EEG, and the extracted trend over the course
of several continuous trials. Particular attention is paid to
electrode C3, which is located over the area of primary motor
cortex that corresponds to movements of the right arm/hand.

When averaged over trials and compared by direction,
patterns become obvious. While there is some variance
among subjects, most exhibit a decrease in amplitude near

Fig. 4. Results of LMS detrending filter on channel C3, subject C03: (1)
Raw EEG signal (with timing of target presentation to the subject in red),
(2) Detrended EEG signal, (3) Extracted trend.

the onset of movement, followed by a gradual increase as
movement continues. For subject C04, shown in Fig. 5,
these patterns appear insubstantial for the Northeast and East
directions (predominantly humeral external rotation, which
can be executed for this task with little humeral motion in the
sagittal or coronal planes). But for the remaining directions,
C04 shows distinct patterns, which are potentially associated
with humeral motion in the sagittal or coronal planes. This
same general pattern was observed for the group. These
observations led to the development and study of separate
active and passive movement tasks.

Fig. 5. Low frequency trend of channel C3 for each of eight directions,
averaged over trials. Subject C04 moves toward the target from time t = 0s
to t = 5s, then returns to center and rests.

Active and passive movement tasks, along with the active
movement task that forewent the use of the chest strap, are
juxtaposed in Fig. 6. Comparison of the active and passive
tasks seems to support the theory that these trends are, in fact,
artifactual. During the passive movement task, the subject
was not engaged in movement, but conspicuously similar low
frequency trends were recorded. Clearly they do not signify
neural signals of motor planning or intent.

Comparison of the two active movement tasks reinforces
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the hypothesis that the chest strap, which is designed to
secure the electrode cap in place, causes movement artifacts
when used during experiments that require subject move-
ment. Removal of the chest strap reduces the appearance of
these artifacts significantly (though not entirely).
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Fig. 6. Low frequency trend of channel C3 for West direction, averaged
over trials. Active movement with and without chest strap and passive
movement are shown. Subject moves toward the target from time t = 0s
to t = 5s, then returns to center and rests.

This topic is complicated by evidence that neural infor-
mation relevant to the direction of arm movement may be
encoded in this frequency band, or in adjacent frequen-
cies [6], [7], [8], [9]. For example, [7] present features that
are notably reminiscent of the low frequency trends discussed
herein. One must take particular care in such studies of EEG-
based neural feedback applications, as motion artifacts that
are correlated with direction of movement could precipitate
erroneously positive discrimination results.

Various methods that have been applied to remove ocular
and electromygraphic (EMG) artifacts could conceivably be
adapted to this task. However, autoregressive and adaptive
filter based methods tend to require one or more artifact
reference channels, which are not available in this case [13],
[14]. In contrast to approaches based on independent com-
ponent analysis (ICA) or other source separation methods,
the proposed method does not rely on spatial models or
assumptions of independence or uncorrelation, and does not
require a minimum set of EEG channels. It is also simpler
and less computationally expensive than methods based on
template matching or wavelet decomposition, utilizing only
one previous sample at a given time step, which makes it
ideal for online implementation [15].

An adaptive method similar to the one proposed in [16]
might also prove effective in such applications by taking
advantage of the kinematic information recorded by the
ARM system. However, this data is not currently available
online during task execution.

V. CONCLUSION

The presented adaptive filter method proves an effective
tool for the extraction and examination of low frequency
movement artifacts in EEG signals. These trends display dis-
tinct patterns that are correlated with direction of movement,
but are shown to be largely artifactual in nature. In addition,
they demonstrate that the securing of an electrode cap with
a chest strap during center-out reaching tasks is inadvisable.

This method may be employed as an online preprocessing
step for various EEG feature extraction and classification
methods. Adopting a correntropy-based cost function (as

opposed to squared error) might serve to further reduce
sensitivity to impulsive noise.
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