
 

 

 

 

Abstract— a low power, low noise implantable neural recording 

interface for use in a Radio-Frequency Identification (RFID) is 

presented in this paper. A two stage neural amplifier and 8 bit 

Pipelined Analog to Digital Converter (ADC) are integrated in 

this system. The optimized number of amplifier stages 

demonstrates the minimum power and area consumption; The 

ADC utilizes a novel offset cancellation technique robust to 

device leakage to reduce the input offset voltage. The neural 

amplifier and ADC both utilize 700mV power supply. The 

midband gain of neural amplifier is 58.4dB with a 3dB 

bandwidth from 0.71 to 8.26 kHz. Measured input-referred 

noise and total power consumption are 20.7μVrms and 1.90 

respectively. The ADC achieves 8 bit accuracy at 16Ksps with an 

input voltage of ±400mV. Combined simulation and 

measurement results demonstrate the neural recording 

interface’s suitability for in situ neutral activity recording. 

Keywords— Neural signal; low-power low-noise design; Neural 

amplifier; Pipelined ADC; subthreshold operation; smart RFID 

I. INTRODUCTION 

 In the past few decades, the low power, low noise 
integrated multiple neural signal recording systems have been 
developed for understanding and monitoring neural activities. 
Important performance parameters of these recent activities 
are summarized in TABLE I [1, 2, 3, 4]. These systems 
generally consist of low pass filters to amplify small 
biopotentials and reject the high frequency noise; ADC for 
digitizing the spike data and wireless telemetry circuit to 
transmit data from implant body. The amplitude of 
extracellular spike signal ranges from 50 - 500 uV and its 
frequency is on the order of 100Hz- 7 kHz. Hence, there is a 
major design challenge to develop small low-power 
acquisition circuits and at the same time achieve an acceptable 
input-referred noise [5].  
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Figure.1 System Block Diagram 

In this work, we present a two stage neural amplifier and 8 
bit Pipelined ADC operating at 0.7V. A fully differential (FD) 
configuration is utilized to increase the common mode 
rejection, input common mode range, and reduce even order 
harmonic distortion. Section II introduces the optimized 
number of amplifier stages for minimum power and area; the 
1.5 bit/stage multiplying digital to analog converter (MDAC) 
in Pipelined ADC with low Common Mode (CM) offset is 
discussed. The simulation and measurement results are shown 
in Section III and the conclusion is given in section IV. 
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TABLE I COMPARISONS OF NEURAL RECORDING SYSTEM 

Author Supply 

Voltage 

(V) 

Midband 

Gain 

(dB) 

Band 

Width 

(kHz) 

Input 

Referred 

Noise 

(µVrms) 

Total 

Power 

(µW) 

Harrison[1] 3.55 60 5 5.1 135 

Zhiming [2] 0.8 49 6.2 14 20 

Walker [3] 1.2 40 10 2.2 43 

Azin [4] 1.5 51.9-65.6 12 3.12 26.9 

This work 0.7 58.4 8 20.7 5.47 
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II. SYSTEM DESIGN 

A. Two stage neural amplifier 

The schematic of the 1st stage Operational 
Transconductance Amplifier (OTA) including common mode 
feedback (CMFB) is shown in Figure. 3. The geometries of 
the transistors for the first OTA are presented in TABLE II. In 
this application, low power and low area consumption are both 
important. However, there is a tradeoff between the both. This 
makes optimizing the number of amplifier stages important. 
Assuming the OTA of each stage is a folded cascode structure 
with equal gains K, and gain bandwidth product. The total 

power consumption and area product is given [6]: 
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GT is the total gain of amplifier and n is the number of 
stages. Considering that each stage should have a gain greater 

than 10 to ensure noise contributions for following stages is 
negligible, and the total gain requirement GT, is 900, a 2 stage 
amplifier with a gain of 30 per stage was selected. From post 
layout of two stage neural amplifier, the area of 1

st
 stage is 

only 10% larger than that of 2
nd

 stage, which is ensuing our 
previous assumption.        

B. Pipelined ADC 

The system block diagram of a pipelined ADC is shown in 
Figure. 4. The 8 bit 16 kSps pipelined ADC is comprised of a 
2.5 bit front end followed by five 1.5 bit stage MDACs. A FD 
configuration with Correlated Double Sampling (CDS) 
techniques is utilized to alleviate the nonlinear distortion but 
with increased power consumption [7]. Of all the errors 
hindering ADC performance;  noise, limited bandwidth, and 
DC gain, The voltage offset caused by mismatch is the more 
significant errors in the Pipeline ADC, followed by capacitor 
mismatch.  Especially voltage offset from the first stage 
MDAC. As  the offset voltage will propagate and be amplified 
by the gain of the following stages [8]:  
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where VOS, Total is the total offset voltage of Pipeline ADC, 
VOS, MDAC is the offset voltage of MDAC, and n is the number 
of stages. The 1.5 bit MDAC architecture is shown in Figure 
5. During PH1, the inputs of OTA are shorted to the outputs to 
CM voltage. During PH2, the SW 1 and 2 turn off but the 
leakage current through the two switches causes the sampled 
offset voltage at the inputs of OTA to drift, which further 

TABLE II GEOMETRIES OF FIRST STAGE OTA. 

Devices W/L(µm) 

M1a&M1b 40/1.6 

M2a&M2b 24/4.4 

M2c&M2d 26.4/2.4 

M3a&M3b 40/1.6 

M4a&M4b 96/2.2 

M5 238.08/1.6 

M6a&M6b 39.68/1.6 

M7a&M7b 
M8a&M8b 

9.92/1.6 

M9&M10 8/4.4 

M11a&M11b 8.8/2.4 
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Figure 4. Block Diagram of Pipelined ADC. 
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Figure 2.  Plot of normalized power area product for different number of 

stages. 
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Figure 3. Schematic diagram of stage one OTA with its common mode 

feedback circuit. 
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affects the offset voltage of CM nodes A and B. To reduce the 
leakage current through the switches, SW 5 and 6 are added to 
isolate the CDS capacitors from switch leakage present from 
output to input.  

III. SIMULATION AND MEASUREMENT RESULTS 

The neural amplifier and Pipeline ADC was fabricated in 

a 0.18-μm CMOS process and designed to operate on a 

700mV supply. Figure 6 shows the combined neural amplifier 

frequency response. The midband gain is 58.4dB with a 

bandwidth of 710Hz to 8.26 kHz. The neural amplifier 

operates with 1.2V to 0.7V supplies consuming less than 1.90 

μW at 700mV.  

 The transient response of neural amplifier is shown in 

Figure 7. Large signal behavior of neural amplifier in cascade 

is validated with an input 0.5mV pulse 1.5ms in duration. The 

resulting 114mV differentiated output with rise/fall equal 

750us. Given 
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 From (3) and (4) 1/RC equals 4.2*10^3, confirming the 

lower 3dB frequency. 

 

 

 

 

 

 
Figure 6. Simulated and Measured Frequency Response of neural 

Amplifier 

 

 
Figure 7. Neural Amplifier Transient Response 

Figure 5.  

 
Figure 8. Simulated ADC Output FFT Spectrum Input@2.1kHz  
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Figure 5. 1.5 bit MDAC Architecture 
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TABLE III PERFORMANCE SUMMARY OF NEURAL AMPLIFIERS  

 
Midband 

Gain 
f_low_3dB f_high_3dB 

Input 

referred 

noise 

Output 
SNDR 

Power 

Consumption 
Power 

Supply 

Stage 1 30dB 565Hz 11.8kHz 13.7uV 46.5dB 0.77uW 0.7V 

Stage 2 30.2dB 202Hz 10.9kHz 62.6uV 45.2dB 0.77uW 0.7V 

Two Stages 

Simulated 
58.6dB 560Hz 8kHz 10uV 48.1dB 1.81uW 0.7V 

Two Stages 
Measured 

58.4dB 710Hz 8.26kHz 20.7uV 44.7dB 1.90uW 0.7V 

 

The performance of previous neural amplifiers designs 

are summaried in TABLE III. The simulated ADC output 

FFT spectrums is shown in Figures 8. The resulting  

SNDR is 49.64dB with ENOB of 7.95bits. The total 

power consumption of the ADC including analog and 

digital part is 3.57uW with performance summarized in 

the TABLE IV as below. 

IV. CONCLUSION 

The low power, low noise two stage fabricated and 
tested neural amplifier and an 8 bit low power pipelined 
ADC were presented. Optimal stages for power, gain and 
area ensure both low power and area efficiency. A low 
CM and differential offset ADC suitable for multi-channel 
neural recording application was also presented. The 
functionality of the proposed neural recording system has 
been verified via extracted simulations and measurement 
results. 
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TABLE IV ADC PERFORMANCE 

Parameters Simulation 

Supply Voltage (V) 0.7 

Input Range (V) 0.8Vpp 

ENOB (bit) 8 

Sampling Frequency (KHz) 16 

Power Consumption (uW) 3.57 

DNL&INL (LSB) ±0.5 

FOM=Power/(2ENOB*fs) 0.87pJ/step 
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