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Abstract— It has recently been proposed that the epileptic
cortex is fragile in the sense that seizures manifest through
small perturbations in the synaptic connections that render the
entire cortical network unstable. Therefore, one method for
detecting seizures is to detect when the neuronal network has
gone unstable. This is important for implementing a closed-
loop therapy to suppress seizures. In this paper, we consider a
widely used nonlinear stochastic model of a neuronal network,
and assume that spiking dynamics during non-seizure periods
correspond to certain synaptic connections that render its fixed
point stable. We then apply a minimum energy perturbation
theory we recently developed for networks to determine the
changes in the most fragile node’s synaptic connections that
make the same fixed point unstable (our model during seizure).
Then a detector is designed as follows. First a 2-state HMM
is constructed (stable=state 1 and unstable=state 2) with fixed
state transition probabilities, where the output observation is
the firing rate of the most fragile node in the network. The
output density functions are assumed to be Gaussian with
parameters computed using maximum likelihood estimation on
data generated from the nonlinear network model in each state.
Then, to detect a transition from stable to unstable, spiking
activity is simulated in all nodes from the nonlinear model. The
detector first measures the firing rate of the fragile node, and
computes the derivative of the cumulative likelihood ratio of
the observed firing rate from the HMM’s output distributions.
When the derivative exceeds a certain threshold, a transition
to the unstable state is detected. Various thresholds were tested
when firing rate was computed by averaging over a different
number of windows of different lengths. High performance was
achieved and a tradeoff was found between the accuracy of the
detector and the detection delay.

I. INTRODUCTION

Epilepsy is a neurological condition that affects approx-
imately 70 million worldwide [1]. Approximately 20-30%
of the population that has epilepsy suffers from intractable
epilepsy where seizures cannot be controlled through medi-
cations. These patients must consider alternative and more in-
vasive treatments such as resective surgery, deep brain stim-
ulation (e.g., implanted responsive neurostimulators; RNS,
NeuroPace, Mountain View, California) and vagal nerve
stimulation [2]. Closed-loop stimulation systems for epilepsy
rely mainly on early detection of the seizure onset in order to
be able to disrupt the seizure before clinical manifestations
occur [3]. To reliably detect seizure onsets, it is necessary to
understand the electrophysiological dynamics in the cortical
epileptic network.

Seizures are characterized by abnormal electrical activity
in the brain, represented by synchronization of large neuronal
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populations [4]. However, single unit recordings show that
during seizures there exists heterogeneity in neuronal firing
patterns, where firing rate either increases, decreases or
vanishes altogether [5]. It is clear that epilepsy is a network
driven phenomenon in which ultimately the structural con-
nectivity between neurons is altered [6], [7], [8], [9].

We recently constructed a neuronal network model of the
epileptic cortex that qualitatively captured the heterogeneity
in neurons observed in patients [10]. In [10], it is posited that
the epileptic cortex is on the brink of instability such that
small perturbations in the synaptic connections render the
network unstable temporarily. This study envisions epilepsy
as a chronic transitioning phenomenon between a stable state
(non-seizure) and an unstable state (seizure). It is assumed
that the cause of epilepsy is a specific structural change in
the network, which happens to the most fragile node or
neuron in the network. In [10], nodal fragility is defined
as the minimum perturbation in functional connectivity that
renders the network unstable, and the corresponding struc-
tural perturbation (i.e. changes in synaptic weights of the
most fragile node) is computed. The model is a probabilistic
nonlinear neuronal network model that operates at a stable
fixed point during non-seizure mode. That is, if a small
stimulus is applied to the network, after a transient response,
it will return to the fixed point. When destabilized through
synaptic weight perturbations of the most fragile node, the
other nodes become either more or less active and the fragile
node is silenced in response to a small stimulus.

The goal of this study is to build a detector that takes
in spike train measurements from the probabilistic nonlinear
neuronal network model and detects when the network goes
unstable. To do so, we construct a two-state Hidden Markov
Model (HMM) with an unstable state and a stable state. The
output of the HMM is the firing rate of the most fragile
node, which is generated by the network model, and is
characterized by a Gaussian distribution in each state. When
in the stable/unstable state, the network model is simulated in
its stable/unstable mode to generate spike trains that are then
averaged over windows to generate firing rates. The detector
then computes the derivative of the cumulative likelihood
ratio of the fragile node’s firing rate from the HMM’s output
distributions, and when this measure is above a certain
threshold, instability is detected.

Different thresholds and different scenarios were consid-
ered for computing the firing rate of the fragile node, until we
found a set of high performing (i.e., minimal number of false
positives and small delays between the seizure onset and its
detection [11]) detectors. We found a clear tradeoff between
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detection accuracy and detection delay. This work sets the
stage for the design of a feedback control design that first
detects instability and then applies an input (e.g. electrical
stimulation) to the most fragile node in the network to return
it to its stable fixed point.

II. METHODS

A. Neuronal Network Model

We considered a probabilistic network model as the one
proposed in [12]. The model consists of a set of inter-
connected neurons (nodes), where each connection has a
weighted edge that represents the synaptic strength between
the two nodes. The internal activity of each node depends on
its synaptic inputs and its current state. Let node i be a neuron
that at some time t is either active (xi(t) = 1) or quiescent
(xi(t) = 0). The transition between active and inactive states
evolves as a Markov process with rate constants for a small
time interval dt. The state probability is given by:

Pr {(xi(t+ dt) = 0;xi(t) = 1)} = αdt (1)

Pr {(xi(t+ dt) = 1;xi(t) = 0)} = f(si(t))dt (2)

An active node represents the duration of a neuron’s action
potential including its refractory period. A node’s activation
propensity depends on its total synaptic input, represented
by si(t) defined below. The inactivation propensity is fixed,
therefore a neuron on average is active for a period of α−1.
f(•) is a non-linear response function that represents the
firing rate of a node when quiescent. For simulation purposes,
a clamped hyperbolic tangent was used as in [10]. From (1)
and (2), the probability of a neuron i being active at any time
t, evolves according to the following nonlinear rate equation:

ṙi(t) = −αri(t) + f(si(t))[1− ri(t)] (3)

The network of N nodes is parameterized by the struc-
tural connectivity matrix, W = [wij ]. Each element in W
describes the effect of node j on node i. Positive values
represent excitation, negative values represent inhibition and
a zero value means there is no connection between nodes
j and i. The input to node i, si, depends on the state of
the nodes that are connected to node i, the weight in its
connections and an external input, hi. If node j is active the
synaptic input on node i is increased. Synaptic input is given
by:

si(t) =

N∑
j=1

wijxj(t) + hi (4)

A stable fixed point exists in this model where r̂ ∈ <N

is a steady state probability that satisfies g(r̂; W) = 0 and
represents the baseline behavior of the network. It is shown
in [10] that r̂ can be computed through a gradient descent
algorithm that iterates candidate solutions to minimize a cost
function.

Note that (3) estimates the functional activity of the
network given some network structure, W. By linearizing
equation (3) around the fixed point, we obtain the functional

connectivity matrix, A. Then A has eigenvalues λ1...N ∈ =
where <{λ1} ≥ ... ≥ <{λN}. The functional connectivity
matrix captures how the probability of any node being active
affects the probability of node i being active. Since r̂ is a
stable fixed point then, <{λi(A)} < 0. In [10] the minimum
energy functional perturbation needed to produce instability
was determined and then the structural changes that would
produce this functional perturbation were derived.

The minimum energy perturbation is done by applying a
row perturbation ∆ to A. This represents a change in the
inbound effect of the network on that node. The minimum
perturbation takes <{λ1(A + ∆)} = 0 where the system
would be on the brink of instability. In [10], it is shown how
∆ is computed using least squares.

To build the model of a neuronal epileptic network we
used the connectivity matrices that were derived in [10].
In this study, we use one functionally stable structural
matrix (Ws) and two functionally unstable structural ma-
trices (Wu0,Wu200). Where, <{λ1(Wu0)} = 0 Hz and
<{λ1(Wu200} = 200 Hz. An inter-ictal stable state is
simulated by using Ws in (3), and an ictal unstable state
is simulated by using either Wu0 or Wu200

The network simulated here has 6 nodes, each a single
neuron, and 14 connections. The model simulation follows
the Gillespie stochastic algorithm [13].

The decay rate, α, is set to 100 Hz, which caps the
neuronal firing rates at that value. Both Wu0 and Wu200

have a row perturbation at a DC frequency on node 4,
an inhibitory neuron. Therefore when the unstable neuronal
network is simulated the firing rate of this neuron decreases,
thus inhibiting less, which increases firing activity in the
network. All simulations were done using MATLAB.

B. HMM Representation of Epileptic Network

A two state HMM is constructed to represent an epileptic
neuronal network. Fig. 1 shows a schematic of the HMM.

Fig. 1. HMM schematic with two states (zk = 1) and (zk = 2) and
observable output pk . qz(pk) is the probability function of pk in state
z ∈ {1, 2} and ρ is the probability of transition from state 1 to state 2.

The output observation is pk, which is the firing rate
of the most fragile node in the original nonlinear network
described above, and it is obtained at discrete time steps
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k = 0, 1, 2, . . . The network is in one of two states at each
stage k; an inter-ictal stable state (zk = 1) and an ictal
unstable state (zk = 2). We assume that the network initial
state is always stable, that is, z0 = 1 and it transitions to the
unstable state with a fixed probability ρ = 0.01. Since we are
only interested in detecting this transition, the HMM does not
transition back to a stable state. The output density functions
q1 and q2 are assumed to be Gaussian, and the parameters for
these functions were computed using a maximum likelihood
estimation from a 100 sec simulation of each state from the
original nonlinear model.

C. Instability Detector

The input to the detector is pk, which is obtained every
time step from the spike train of the most fragile node. This is
computed by retrospectively counting the number of spikes in
an immediate fixed time-length window, M , that shifts with
every time step by dt. Values for M are in msec. The number
of spikes is then divided by the maximum number of spikes
for that window size (M ), thus obtaining the firing rate. The
maximum number of spikes for each window length was ob-
tained from a 100 sec simulation of the network in the stable
state. Finally, the firing rate is averaged for a fixed number
(n) of the most recent windows. In this study, the detector
parameters that are varied are the window size, M , and the
number of windows that are averaged, n. These parameters
take the following values: M = {25, 50, 100, 150, 200, 250},
n = {25, 50, 100, 150, 200, 250}.

The performance of the detector is thus analyzed in 72
scenarios; each scenario is a combination of a window
size (M ) with the number of windows averaged (n) and a
unstable structural matrix that is used for the simulation of
the unstable state (Wu0 or Wu200). The architecture of the
detector that is proposed has two components: a cumulative
likelihood generator and a threshold classifier described next.

1) Cumulative Likelihood Generator: From the measure-
ments of pk and the HMM emission distributions, the like-
lihood ratio is computed as follows: LRk ≡ q2(pk)/q1(pk).

When LRk > 1, pk is more likely to belong to q2 and
hence the network is more likely to be unstable.

Once LRk is computed, we then compute its cumulative;

grk =

k∑
n=1

LR(n)

The cumulative sum captures if pk has been more likely
to belong to q2 (LRk >> 1). If this is the case, grk will
significantly increase. In order to determine if grk is showing
a rapid increase, we take its derivative (dgrk/dt), and detect
if there is a sudden change indicating that pk is generated
from q2.

2) Threshold Classifier: Detection occurs when the
derivative of the cumulative likelihood ratio exceeds a thresh-
old. Fig. 2 shows a successful instability detection and illus-
trates the behavior of the detector components. A threshold
for each of the 72 scenarios is obtained from the mean
average value of the (dgrk/dt) over a 60 sec simulation of a

unstable state network Wu0 or Wu200. The computed thresh-
olds for each scenario are tested to find the combination of
parameters for the detector that show a higher performance.
Receiver Operating Characteristic (ROC) curves are obtained
for each scenario. Each ROC curve captures the performance
of 8 sub-thresholds that are obtained from each threshold.
Sub-thresholds are a percentage of the computed threshold
for a scenario, (e. g. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 of
mean average of (dgrk/dt) over a 60 sec simulation). In
order to obtain the ROC curves we simulate the epileptic
neuronal network for 10 sec where transition to unstable state
might or not happen. For each sub-threshold 100 simulations
were classified, in 50 of them transition to unstable state
occurred. Sensitivity and fall-out were then computed for
each parameter combination scenario for all simulations.

Fig. 2. Shows a 5 second simulation of the network. The network is
initially stable and at t = 2.5 msec it is perturbed, taking λ1 to 200 Hz. (A)
Raster plots for all nodes in the network. The black arrow marks when
the perturbation was done, the red arrow marks when it was detected.
(B) Likelihood ratio of the observation distributions over time. (C) The
cumulative function gr of the likelihood ratio over time. (D) The derivative
of the cumulative function over time.

III. RESULTS

In this study, we assume that we have access to the spike
trains of the network for both stable and unstable state.
This is needed in order to compute the parameters of the
HMM’s emission distributions and the detector’s threshold.
In more realistic conditions, the degree of instability of the
network that is being observed is unknown. Thus, we analyze
the robustness of the detector’s performance by analyzing
the ROC curves results for the different unstable scenarios
as if they were obtained from the same network. In order
to analyze the results from the ROC curves, we collapsed
the information from all the scenarios into 4 classes. These
classes include in one scenario the ROC curve results for
both unstable matrices, reducing the number of scenarios
analyzed to 36.
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0) : The scenario has FPr > 0.05 AND TPr < 0.95.
1) : The scenario has FPr > 0.05 AND TPr > 0.95.
2) : The scenario has FPr < 0.05 AND TPr < 0.95.
3) : The scenario has FPr < 0.05 AND TPr > 0.95.
Considering that a perfect classifier is defined as having

FPr = 0 AND TPr = 1, a detector with parameters that
fall into class 3 could be considered high performancing. Fig.
3 shows the results for the 36 different scenarios that were
analyzed. In these scenarios, the detector parameters M and
n are varied. From Fig. 3, it is clear that high performance
was only obtained when using a window length of 250 msec.

For the detector proposed in this study, we encounter
two types of delays; a detection delay, defined as the time
between the actual transition to unstable and the detection
time, and an initial delay due to window averaging when
computing the firing rate of node 4. This is the time at the
beginning of the simulation that the detector needs before
being able to detect a transition. Both delays depend on the
parameters M and n that are being used.

Fig. 3. Shows the class classification for each combination of the detector
parameters, the colormap shows the color-class relation

In Table 1, detection and initial delays are shown for two
class 1 detectors and for the three class 3 detectors. It is clear
from these data that, M and n, independently affect both the
detection and the initial delay. That is, when either M or n
increase, the delays also increase. However, by comparing
the delay values between detectors [100, 250] and [250, 25],
we can conclude that the detection delay is mainly affected
by M and the initial delay is mainly affected by n.

It is then reasonable to assume that if the window length
were to be > 250 msec, the detection delay would be greater
than the one found for class 3 detectors. This is not desirable
since we aim to minimize the detection delay without com-
promising its performance, which is already achieved by the
three class 3 detectors that were found. Therefore scenarios
with bigger values of M were not considered. Results
show that a detector with a window length of 250 msec
that averages 25 windows has the best performance from
the scenarios analyzed in this study. The optimal seizure-
onset detector minimizes detection delay and maximizes the
detection performance, in this study we derived a method to
search for such high performance detector.

TABLE I
DETECTOR DELAYS

Detector [M , n] Detection Delay [msec] Initial Delay [msec]
[100, 50] 116 ± 37.5 157.6 ± 0.69
[100, 250] 281 ± 24.6 376.3 ± 1.73
[250, 25] 370 ± 100.2 279.9 ± 0.62
[250, 200] 468 ± 43.9 471.6 ± 1.77
[250, 250] 459 ± 29.5 526.3 ± 1.89

IV. CONCLUSIONS

The detector proposed in this study requires obtaining the
firing rates in each state a priori. However, the detector
showed high performance for seizure-onset detection of a
stochastic neuronal network model. This study sets the stage
for the design of a feedback control design that implements a
high performance detector that then turns on or off a control
input (e.g. electrical stimulation) to the most fragile node in
the network to return it to its stable fixed point.
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