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Abstract— High frequency deep brain stimulation (HF-DBS)
is a pervasive clinical neurostimulation paradigm in which rapid
(> 100Hz) pulses of electrical current are invasively delivered
to the brain. Here, we use dynamical systems analysis to
provide hypotheses regarding the frequency-specificity of the
therapeutic effects of HF-DBS. Using phase oscillator-based
models, we study the relaxation time of a synchronized network
following impulsive stimulation. In particular, by approximating
a standard DBS pulse by a finite-energy (Dirac) delta function,
we show the existence of a minimum bound on the frequency of
stimulation necessary to keep the network in a desynchronized
regime. If, as evidence suggests, pathological synchronization
is central to the pathology in DBS-responsive disorders, then
the analysis gives conceptual insight into why lower frequency
and/or randomized stimulation therapy is less effective, and
provides a way to study alternative design strategies.

I. INTRODUCTION

High frequency deep brain stimulation (HF-DBS) is among
the most established and widely-used forms of therapeutic
neurostimulation, particularly in the treatment of Parkinson’s
Disease (PD). In HF-DBS, rectangular charge-balanced elec-
trical pulses (see Fig. 1) are delivered at frequencies in excess
of 100Hz via an invasively implanted electrode. Significant
research effort has been directed toward understanding the
therapeutic mechanisms of HF-DBS (see, e.g., [1], [2], and
the references therein). In the context of PD in particular,
recent hypotheses point to a putative desynchronization of
neuronal activity [3], [2] as being central to the efficacy of
the treatment. Such a mechanism is supported by evidence
that oscillatory synchrony is tightly associated with the
neuropathology of PD [4], [5].

A persistent question in the clinical implementation of
HF-DBS relates to the selection of the so-called stimulation
parameters (pulse-width, frequency, etc.), which affect the
treatment efficacy and vary between patients. Computational
models have been used as a means to study these param-
eters in biophysically detailed settings [2], [6], [7]. We
note, furthermore, several empirical observations concerning
frequency-sensitivity of the therapeutic effect. First, it has
been shown in DBS studies that low frequency stimula-
tion (< 100 Hz) is therapeutically less effective in treating
symptoms [3], [8]. Similarly, when the stimulation pulse is
delivered according to a Poisson process, efficacy worsens,
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Fig. 1. (A) A standard charge-balanced pulse design used in high frequency
deep brain stimulation (HF DBS) where a short duration large amplitude
cathodic part is followed by a long duration small amplitude anodic part. (B)
Dynamical response of coupled oscillators to a common input in the form
of (A). The impulsive action of the cathodic part in (A) drives the state of
the oscillators to a ‘desynchronized state’. During the relatively mild action
of the anodic part, the oscillators relax from the ‘desynchronized state’ to
the ‘synchronized state’.

even if the mean rate is commensurate with conventional
HF-DBS [9]. In this paper, we present a dynamical hypoth-
esis concerning this frequency-sensitivity through the use
of dynamical systems analysis of underactuated, networked
oscillator models.

Specifically, under the aforementioned assumption that
(de-)synchronization is central to the therapeutic effect of
HD-DBS, we consider the actions of a rectangular pulse
acting as a common input to a network of phase oscillators of
the Kuramoto-form, where each oscillator models a highly-
reduced set of dynamics for a neuron, parameterized to
produce global network synchronization [10], [11]. The pulse
in Fig. 1 (A) can, in the dynamical sense, be understood as
creating two epochs: (i) a brief, temporally punctate forcing
epoch in which the phases of oscillators are driven apart
(Fig. 1 (B)); and (ii) a longer epoch in which the network
is relatively unforced and phases relax to the dynamical
fixed points of the network, i.e., a synchronized state (Fig.
1 (B)). The key idea is that, in order to avoid excessive
synchronization, this relaxation epoch must be sufficiently
brief. By approximating the cathodic part of the pulse as
a Dirac-delta function, we establish an upper-bound for
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the relaxation time, which amounts to a lower-bound of
the frequency at which de-synchronization is maintained.
Thus, we provide a way of conceptually understanding the
degradation in therapeutic efficacy of low frequency and
randomized patterns of stimulation from the perspective of
dynamical systems.

The rest of the paper is organized as follows: In Section
II, we describe the oscillator network model and define
metrics of synchronization. In Section III, we compute the
relaxation time. Then, in Section IV, we establish a bound on
the frequency of stimulation by maximizing relaxation time
between consecutive pulses. The paper ends with Discussion
and Conclusions.

II. PRELIMINARIES

A. Oscillator Network Model

We consider a population of interacting neuronal oscillators,
modeled with the standard Kuramoto formalism as follows:

dθi(t)
dt

= ωi −
K
N

N

∑
j=1

sin(θi(t)−θ j(t))+αiu(t) (1)

Here θi(t)∈ [0,2π] for i = 1,2, · · · ,N represents the phase of
the ith oscillator at time t; N is the total number of oscillators;
ωi is the natural frequency of oscillation of the ith oscillator;
K is the global coupling gain parameter. The parameter αi for
i = 1,2, · · · ,N determines the effect of the common external
input u(t) (i.e., the stimulation input) on the ith oscillator.

We define ϕi(t) = θi(t)− θN(t) as the phase difference
between ith and the Nth oscillator at time t. Clearly, ϕi(t) ∈
[−π,π] for i = 1,2, · · · ,N − 1 and t ≥ 0 is periodic with
a period of 2π . Rewriting Eq. 1 in terms of ϕi(t) for i =
1,2, · · · ,N −1 with ωi,N ≡ ωi −ωN and αi,N ≡ αi −αN , we
obtain

dϕi(t)
dt

= ωi,N − K
N

N

∑
j=1

(sin(ϕi(t)−ϕ j(t))+ sin(ϕ j(t)))

+αi,Nu(t)

(2)

The model (1) is a highly reduced dynamical representa-
tion of interacting neurons, where each neuron is assumed to
be intrinsically oscillating. It is a frequently used model for
tractable analysis of synchronization and other properties of
neuronal networks [11].

Remark 1: The system (1) is an underactuated system,
i.e., the input u(t) is common to all oscillators in the
system and no individual oscillator is addressed with its
own independent input. Underactuation is a property of many
neurostimulation technologies [12].

B. Definitions and Assumptions

Definition 1: The oscillator network defined by Eq. 1 is
said to be:

1) Frequency synchronized if | dϕi(t)
dt | = 0 for all i =

1,2, · · · ,N − 1 and for all t ∈ R where R is the real
one dimensional space.

2) Asymptotically frequency synchronized if
limt→∞ | dϕi(t)

dt |= 0 for all i = 1,2, · · · ,N −1.
3) Desynchronized at time t if | dϕi(t)

dt |> 0 for at least one
i ∈ {1,2, · · · ,N −1}.

Assumption 1: The global coupling gain parameter K in
Eq. 1 is greater than the critical coupling gain parameter Kc
[13] such that the system (1), with u(t) = 0, exhibits a stable
synchronized state (fixed point).

Definition 2: We define Bε(ϕ0) = {ϕ ∈ [−π,π]N−1 : ||ϕ −
ϕ0|| ≤ ε}\{ϕ0} as an arbitrary small ε(> 0) ball centered
around ϕ0 ∈ [−π,π]N−1. Here ϕ = {ϕ1,ϕ2, · · · ,ϕN−1}T .

Definition 3 (Relaxation Time): Let the system (2) have
an initial condition ϕ(0) = ϕ0 that lies within the region of
attraction of the stable fixed point, denoted ϕ s

eq, of Eq. 2. We
define the relaxation time, T , as

T = inf {t ≥ 0 : ϕ(t) ∈ Bε(ϕ s
eq),ϕ(0) = ϕ0}, (3)

i.e., the time it takes for ϕ(t) to enter Bε(ϕ s
eq).

III. MAXIMUM RELAXATION TIME

We now proceed to characterize an upper bound on the
relaxation time.

A. Two Oscillator Systems

We consider the system (2) with N = 2. By writing ϕ1(t)≡
ϕ(t), we obtain

dϕ(t)
dt

= ω1,2 −K sin(ϕ(t))+α1,2u(t) (4)

We analyze the system (4) with u(t) = 0 for t ≥ 0, where,
without loss of generality, we assume that ω1,2 > 0. As stated
in Assumption 1, we also assume that K > Kc = ω1,2, such
that the system exhibits the stable and unstable fixed points,
ϕ s

eq = sin−1 ω1,2
K and ϕ u

eq = π −ϕ s
eq, respectively. In this case,

the space Rs = [−π,π]\{π −ϕ s
eq} is the region of attraction

of ϕ s
eq.

We consider a ball Bε(ϕ s
eq) (see Definition 2) around ϕ s

eq.
Clearly, any trajectory starting outside Bε(ϕ s

eq), but within
Rs will reach Bε(ϕ s

eq) in finite time. The following result
characterizes the maximum relaxation time in the system (4)
with u(t) = 0, t ≥ 0.

Lemma 1: The relaxation time is maximum for the system
(4) with u(t) = 0, t ≥ 0 if ϕ(0) ∈ Bε(ϕ u

eq).
Proof: Note, first, that the system (4), with u(t) = 0,

K > ω1,2, is bounded and no periodic orbit exists. Now, let
ϕ(0) ∈ Bε(ϕ s

eq) and consider the evolution of the system in
negative time. It follows that, as t → −∞, ϕ(t) approaches
ϕ u

eq, i.e., in negative time, the trajectory approaches the
unstable fixed point asymptotically. Thus, for ϕ(0)∈ Bε(ϕ u

eq)
the relaxation time (3) increases as ε decreases, and the result
follows.

The meaning of the result is rather intuitive. The longest
relaxation time, i.e., the time it takes for the system (4)
to synchronize, occurs when the initial states lie near the
unstable fixed point (excluding the degenerate case when
ϕ(0) = ϕ u

eq and (3) not defined).
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B. Three Oscillator System

Now, let us consider the system (4) with N = 3:

dϕ1(t)
dt

= ω1,3 −
K
3
(sin(ϕ1(t)−ϕ2(t))

+2sin(ϕ1(t))+ sin(ϕ2(t)))+α1,3u(t)
(5a)

dϕ2(t)
dt

= ω2,3 −
K
3
(sin(ϕ2(t)−ϕ1(t))

+2sin(ϕ2(t))+ sin(ϕ1(t)))+α2,3u(t)
(5b)

We first analyze the system (5) for ω1,3 = ω2,3 = 0
and u(t) = 0 for all t ≥ 0. Under these conditions,
the system (5) possesses one stable fixed point ϕ s

eq =

(0,0), two unstable fixed points ϕ u+
eq = (2π/3,−2π/3)

and ϕ u−
eq = (−2π/3,2π/3) and eight saddle fixed points

(±pi,±pi),(±pi,∓pi),(±pi,0),(0,±pi), for all K > 0.
Moreover, the space [−π,π]2, excluding the unstable fixed
points, the saddle fixed points and the stable manifolds of
the saddle fixed points, is the region of attraction of ϕ s

eq.
Consider the ball Bε(ϕ s

eq) around the stable fixed point.
Clearly, any trajectory starting outside Bε(ϕ s

eq), but within
the region of attraction of ϕ s

eq will reach Bε(ϕ s
eq) in finite

time. A result analogous to Lemma 1 now follows.
Lemma 2: The relaxation time is maximum for the system

(5) with u(t) = 0, t ≥ 0 and ω1,3 = ω2,3 = 0 if ϕ(0) ∈
Bε(ϕ u+

eq )∪Bε(ϕ u−
eq ) except the stable manifolds of the saddle

fixed points.
The proof of Lemma 2 is identical to the proof of Lemma

1, except that there are two unstable equilibrium points in
this case. We note that, while the above specification was
made for analytical purposes, the conclusion of Lemma 2
remains unchanged when ω1,3 ̸= ω2,3.

C. N > 3 Oscillator Systems

In higher dimensions (N > 3), the analytical development
made above is more challenging. Nevertheless, the results
are, fundamentally, generalizable. Specifically, we can state:

Lemma 3: Under Assumption 1, the relaxation time (3) of
the system (2) is maximized when the initial condition lies
within Bε(ϕ u

eq), where ϕ u
eq is any unstable fixed point.1

Under the hypothesis that desynchronization is the thera-
peutic mechanism of HF DBS, the conclusion of Lemma 3
provides a minimum bound on the frequency of HF DBS.
We examine this further in the next section.

IV. MINIMUM FREQUENCY OF STIMULATION

In the context of the model, the temporally punctate cathodic
pulse in Fig. 1 (A) will serve to impulsively distribute
the phase of neurons quasi-randomly in the state space of
the system. The subsequent, longer, anodic part provides
minimal input and, as described in the introduction, the
system effectively relaxes, with a relaxation time in the sense
of (3). With this observation, for simplicity, we approximate
a single pulse of the classical HF DBS by a finite intensity

1To be technically complete, this assumes that ϕ u
eq exists and Bε (ϕ u

eq) is
within the region of attraction of the stable fixed point of the system.

impulse (Dirac-Delta) function, δ (t), and define the input
u(t) in (1) as u(t) = hδ (t − t j). Here, t j is the time at which
an impulse is delivered. Then, the system (2) can be rewritten
as

dϕi(t)
dt

= ωi,N − K
N

N

∑
j=1

(sin(ϕi(t)−ϕ j(t))+ sin(ϕ j(t))) (6)

with ϕi(t j) = ϕi(t−j )+αi,Nh. Here, ϕi(t−j ) is the phase differ-
ence between the ith and the Nth oscillator at the time just
before the arrival of the impulse at t = t j.

A. Two oscillator system

We return to the system (6) with N = 2. Without loss
of generality, we assume that α1,2 > 0 and ω1,2 > 0. We
define R = Bε(ϕ s

eq)× {ϕ s
eq,ϕ u

eq}\{ϕ s
eq − ε,ϕ s

eq + ε} as the
pathological (synchronized) regime of the system, where
ϕ s

eq = sin−1 ω1,2
K and ϕ u

eq = π −ϕ s
eq are, again, the stable and

the unstable fixed points of the system (6), respectively. That
is, if ϕ1(t) ∈ R at time t, the system is synchronized.

Now, suppose that ϕ1(0) = ϕ s
eq+ε , such that the system is

initially close to synchronized. Furthermore, suppose that the
intensity of the impulse is bounded such that h ∈ (0,hmax)

where hmax =
π−2ϕ s

eq−ε
α1,2

, such that a single impulse produces,
at most, one oscillation. Then, in order to keep the system
desynchronized, an impulse u(t) = hδ (t−t1) must be applied
to the system at t = t1 = 0. From (6), this impulse results in
ϕ1(0+) = ϕ s

eq + ε +α1,2h. With this, we compute the time
T it takes the system to return to ϕ1(T ) = ϕ s

eq + ε (on the
boundary of Bε(ϕ s

eq)), i.e., the relaxation time. Solving the
system (6) with ϕ1(0) = ϕ s

eq +ε +α1,2h and ϕ1(T ) = ϕ s
eq +ε

results in
T = t1 + f (ϕ1(T ))− f (ϕ1(0)) (7)

where

f (x) =
1√

K2 −ω1,2
log[

ω1,2 tan x
2 −K −

√
K2 −ω1,2

ω1,2 tan x
2 +K −

√
K2 −ω1,2

].

Clearly, T is the maximum time (or 1/T is the minimum
frequency) at which the next impulse input u(t) = hδ (t − t2)
must be applied to the system in order to prevent the system
from synchronizing. If t2 > T then the system will enter R
and reside there for the duration t2 − T , as shown in Fig.
2. In this sense, the period T corresponds to the minimum
frequency of stimulation required to keep the two oscillator
system desynchronized.

1) Low Frequency Stimulation: It is clear from Fig. 2 that
if the frequency, f , of a periodic pulse based stimulation is
less than 1

T , the oscillators will synchronize between consec-
utive pulses. That is, low frequency stimulations will fail in
keeping the two oscillator system entirely desynchronized,
i.e., in the non-pathological regime.

2) Randomized Patterns of Stimulation: Suppose that
stimulation is delivered using randomly timed impulses of
constant intensity (h), with a mean frequency of ≥ 1

T . Clearly,
the probability of having two consecutive impulse inputs with
a time difference greater than T is greater than zero and the
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Fig. 2. Minimum frequency of constant-intensity, impulsive stimulation
necessary to keep a two oscillator system in the desynchronized (non-
pathological) regime: (A) Impulsive input with frequency sufficient to keep
the oscillators in the desynchronized (non-pathological) regime defined by
ϕ1(t)∈ [ϕ s

eq+ε,2]. (B) System trajectory (i.e., ϕ1(t)) of two globally coupled
Kuramoto oscillators in response to input in (A). The trajectory never enters
the synchronized regime, noting that the phase difference ϕ1(t)= ϕ s

eq (shown
by partially broken line (red)) is the stable fixed point of the oscillators. (C)
Impulsive input as in (A), but with slower frequency. (D) System trajectory
corresponding to input in (C), where we see that the system enters the
sychronized regime between consecutive impulses.

system will enter R for nontrivial durations of time. Thus,
random patterns of stimulation will fail in keeping the two
oscillator system desynchronized.

B. N > 2 Oscillators Case

For the system consisting of more than two oscillators, it
is difficult to derive closed-form expressions analogous to
(7). However, the conclusions of the above analysis for two
oscillators remain applicable for such systems. In particular,

Hypothesis 1: Assuming desynchronization is involved in
the therapeutic mechanism of HF DBS, the neuronal ac-
tivity associated with the pathology resynchronizes during
the relaxation time between two consecutive pulses. Thus,
resynchronization is prevalent during low frequency and
random stimulation patterns, which makes these strategies
less therapeutically effective.

Remark 2: Obviously, the actual dynamics of a neuronal
network are immeasurably more complex than the model
(2). Nevertheless, we suggest that the dynamical insight
suggested here is physiologically meaningful. Specifically,
we posit that the mechanisms of phase quasi-randomization
via a cathodic pulse, followed by relativey-unforced (anodic)
relaxation, will occur under the assumption that the network
in question exhibits (pathological) synchronization.

V. CONCLUSIONS

In this paper, we have studied the inter-pulse relaxation time
of a system of globally coupled Kuramoto oscillators with
impulsive stimulation as a common forcing input. Such a
system is a low-dimensional model for a network of synchro-
nized neurons actuated through pulsatile neurostimulation.
We have shown that the relaxation time is maximum when
the initial states of the oscillators lie in an arbitrarily small

neighborhood of an unstable fixed point of the system.
Based on this characterization, we then showed the exis-
tence of a minimum bound on the frequency of stimulation
required to keep the oscillators desynchronized, i.e., in a
non-pathological regime. In particular, we hypothesize that
the neuronal populations associated with DBS-responsive
disorders remain excessively synchronized (i.e., pathological)
for low and random stimulation patterns, due to the interpulse
interval being longer than the relaxation time. By altering the
shape of the DBS pulse, it may, in principle, be possible
to steer the state of the system to precisely control the
relaxation time [14], [15]. Issues of design for underactuated
and uncertain neuronal populations in this context may be
considered in future work.
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