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Abstract— In this paper we describe a novel method for
sensor placement identification, and demonstrate the effec-
tiveness of this method on an upper limb neuroprothesis for
tremor suppression under a variety of tasks. Our objective is
to facilitate long-term tremor monitoring; tremor is the most
prevalent movement disorder. Two assumptions are made: 1)
movement and tremor demonstrate an additive effect further
down the kinematic chain; 2) most applications have chained
or fixed sensor locations. These assumptions justify obtaining
absolute location through identifying relative location and thus
to allow us to simplify the classification algorithm. Seventeen
tasks were performed by patients suffering from essential
tremor or Parkinson’s disease. Ten features were found that
resulted in 98.30% average accuracy (min: 92.31%; max:
100%) for the best configuration, irrespective of the task being
performed. The method presented here is an important step
towards more user-friendly and context-aware neuroprostheses
for tremor suppression and monitoring, and facilitates the use
of wearable sensors by non-trained personnel.

I. INTRODUCTION

Pathological tremor is the most common movement dis-
order [1], and encompasses all types of tremors that impair
motor performance (e.g., parkinsonian tremor and essential
tremor [2]). Patients suffering from pathological tremor ex-
perience severe functional disability; 65 % [3] of tremor
patients report serious difficulties performing activities of
daily living (ADL) [1], [2], [4]. In this article we refer
to pathological tremor as tremor. To enable the long-term
monitoring of tremor patients, and to increase the adaptabil-
ity of neuroprosthetics we need to be aware of the context
and facilitate the donning and doffing. Context awareness
would enable us to monitor both the evolution of the therapy,
with or without the interaction with a neuroprosthetic, and
the evolution of the tremor. Lately several researchers have
demonstrated the ability to use wearable sensors for long-
term data collection [5] and to quantify symptom severity
in parkinsonian patients [6]–[10]. MIMUs (Magnetic and
Inertial Measurement Units) have been proposed for use
in tele-health and telerehabilitation solutions over the last
decade, but have not yet been able to reach the end-consumer
in great numbers. Weenk et al. argued that facilitating the

The work presented in this paper has been carried out with the financial
support from the Commission of the European Union, within Framework 7,
under Grant Agreement ICT-2011.5.1-287739, “NeuroTREMOR: A novel
concept for support to diagnosis and remote management of tremor; and the
financial support from the Spanish Ministry of economics and competitiv-
ity,under Consolider project HYPER CSD2009-00067.”

1S. Lambrecht, E. Rocon and J.L. Pons are with the Bioengineering
Group, Consejo Superior de Investigaciones Cientı́ficas, CSIC, Arganda del
Rey, Madrid, Spain, e-mail: s.lambrecht@csic.es.

2J.P. Romero and J. Benito-León are with the Hospital Universitario 12
de Octubre, Servicio Madrileño de Salud

donning and doffing could in part resolve this issue [11].
To our knowledge, little or no research has been done to
automatically identify sensor locations on the body. We could
only find one study [12] that looked at sensor placement
identification in tasks other than walking. They reported 85
% accuracy in determining sensor location of 4 sensors,
and needed a 6 minute data window to achieve this, in
healthy subjects. The majority of ADLs however are shorter
in duration, and it is unlikely that a patient will repeatedly
endure such a lengthy calibration period. Other studies
predominantly focused on sensor placement on the lower
limbs and started from the hypothesis that the subject would
be walking [11]–[14] . All this work has been based on
accelerometer data. In an attempt to make their algorithm less
dependent on sensor location and orientation, Weenk et al.
were the first to complement accelerometers with gyroscopes
[11]. They did so under the assumption that the body is a link
of rigid body segments and that angular velocity is invariant
of location on a rigid segment. Weenk et al. furthermore
took advantage of the specific characteristics of walking and
made assumptions related to the linearity of the direction of
travel. The latter was subsequently used to transform from
local to global sensor orientation. Unfortunately, no upper
limb tasks exist that contain similar stable and repetitive
characteristics, nor can it be expected of patient populations
to always perform a certain motion in a standardized manner.
Movement disorders can severely disrupt task execution to
the extent that dominant direction is concealed by involuntary
movement. Here we present a novel method to automatically
identify relative sensor location on the upper limb. Because in
many health and biomechanics applications sensors are used
in chains or on fixed locations, we focus on relative sensor
location. We start from the hypothesis that movement and
tremor are more pronounced distally. We demonstrate that
a basic classification method, that does not require training,
can identify sensor location with high accuracy over a wide
variety of tasks. Using orientation data we are thus able to
identify sensor location, enabling us to later derive context
information or biomechanical and physiological parameters
with minimal bandwidth.

II. MATERIALS AND METHODS

A. Subjects

A group of 13 patients affected by essential tremor and
Parkinson disease was recruited for this study. The patients
were diagnosed by the neurological personnel of the Hospital
12 de Octubre and continued taking their regular medications
at the time of the recordings. Informed consent was obtained
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from all patients prior to starting data collection. Approval
for this study was obtained through the Ethics committee of
the Hospital 12 de Octubre, granting its accordance to the
Declaration of Helsinki.

B. Protocol

Patients were asked to perform 5 repetitions of a series
of activities of daily living (ADL) at self-chosen speed, in
the same manner as they would execute them at home. The
tasks were identified from the literature of functional analysis
in both healthy subjects [15] and tremor patients [16]. In
addition to the ADLs patients were also requested to perform
a set of functional movements that have been used in sensor-
to-body calibration [17]–[19]. A 40 second resting trial was
also recorded (task 13). An overview of the tasks is provided
in Table 1.

C. Instrumentation

We used 4 MIMUs (Tech MCS, Technaid S.L., Madrid,
Spain) incorporating tri-axial accelerometers, gyroscopes,
and magnetometers to measure upper limb kinematics
(11x26x36 mm; sampling rate: 100 Hz). Double sided hypo-
allergenic tape was used to attach the sensors to the hand, dis-
tal forearm, proximal forearm (near the olecranon process),
and distal humerus. An onboard extended Kalman fusion
algorithm provided the orientation data. Proper alignment
between sensor axes and anatomical axes was ensured upon
placing the MIMUs. The four sensor configuration is based
on the current design of the neuroprothestic presented in [20].
In addition to this configuration, we also tested two subsets
more commonly used in biomechanics with only one sensor
per segment (hand, forearm, and humerus). Two three sensor
configurations were adopted: one where the distal forearm
sensor is preserved; and one where the sensor is placed
proximally on the forearm.

D. Data analysis

The orientation data from the MIMUs is decomposed
using the Poisson equation to extract the angular velocity
[θ̇] [21]:

[θ̇] = [Ṙ][R]−1 (1)

where [Ṙ] represents the rate of change of the direction
cosines and [R]−1 corresponds to the body attitude. Based

TABLE I
ADLS AND FUNCTIONAL TASKS PERFORMED BY ALL PATIENTS

1. Answering a phone 9. Elbow flexion
2. Buttoning a coat 10. Wrist circumduction
3. Brushing teeth 11. Opening and closing a food container
4. Combing hair 12. Pronation-supination
5. Cutting a steak 14. Drinking
6. Dialing a phone number 15. Signing a form
7. Wrist flexion 16. Reading a book
8. Eating with a fork 17. Opening and closing the door

TABLE II
CANDIDATE FEATURES FOR CLASSIFICATION OF SENSOR LOCATION

Feature Feature base
Disp. Vel. Acc.∑

(Max(|x|, |y|, |z|)) 1 5 9∑
(RMS(|x|, |y|, |z|)) 2 6 10√
RMS(|x|, |y|, |z|) 3 7 11∑
(var(|x|, |y|, |z|)) 4 8 12∑
(Eigenvalues of covariance Matrix) 13 15 17∑
(Principal component coefficients) 14 16 18

on pilot work on a mechanical mockup and healthy subjects
[22] we selected 18 candidate features (Table 2). To ensure
robustness against incorrect placement, the selected features
are orientation invariant; we rectified the sensor data and
combined information across all axes (|x|, |y|, |z|). To en-
hance robustness across various intensities of tremor (from
absent to severe) we used ranked values, at the cost of
sacrificing the distance between the raw values. The basis
of our approach is the assumption that the kinematic chain
comprises an additive effect of movement on individual
segments, i.e. movement of proximal segments is to an
extent embodied in more distal segments. This pattern is also
observed in tremor, often being more noticeable at distal than
at proximal segments.

We use ranking as a classifier, instead of more complex
structures that would require training. Ranking has a very
low computational cost, making it ideal for integration in
portable electronics. An additional advantage is that the chain
of sensors can be modified without the need for retraining
or changing between classifiers. The only requirement when
using ranking is that the configuration (segments at which
sensors will be attached) is known beforehand. Classification
accuracy is expressed as the ratio of on-diagonal elements
in the confusionmatrix to the total number of sensors.
Values range between 1 and 0, with perfect classification
corresponding to 1.

III. RESULTS

Fig. 1 summarizes the results of the various features for
the three configurations tested; results are grouped over all
tasks, excluding the resting trial. A cutoff was made at 90
% accuracy, since lower levels of accuracy were deemed not
useful in practice. Ten features remained (marked in bold
in Table 2), which where subjected to a one-way anova to
identify if there was a significant difference between them.
No significant difference was observed between these ten
features, when grouping the tasks for each configuration used
(p > 0.01). Therefore, in what follows, we present average
performance across the ten selected features.

Fig. 2 demonstrates the ability to identify the sensor
location with respect to the task being performed. The
various tasks are shown on the horizontal axis, the average
accuracy of the features is depicted on the vertical axis.
In rest (task 13) the accuracy is around 50 %, as can
be expected. Other tasks with lesser performance (average
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Fig. 1. Accuracy of each feature across all tasks and configurations.
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Fig. 2. Average performance of 10 selected features for each task.

accuracy of at least one configuration < 90 %) are turning
a doorknob (task 17), opening and closing a Tupperware
container (task 11), cutting a steak (task 5), combing hair
(task 4) and buttoning a coat (task 3). Average accuracy of
the ten features over all tasks, excluding the resting trial, are
91.77 % for the four MIMU configuration, 98.30 % for the
three sensor configuration excluding the proximal forearm
sensor, and 90.83 % with three sensors, where the forearm
sensors was placed near the elbow. When the tasks with
poorer performance (tasks 3,4,5,13,17) are all excluded, the
average accuracy increases to respectively 94.13 %, 99.19 %
and 93.55 %. The average maximal accuracies over the 12
remaining tasks are between 94.44 % and 100 % depending
on the configuration.

IV. DISCUSSION

We have proposed a method to identify sensor location
that constitutes a first step towards a more intelligent neu-
roprosthesis, and facilitates the use of wearable sensors for
long-term monitoring. We estimated relative sensor location

in a population of both tremor and Parkinson patients over a
variety of tasks. Using three different configurations we fur-
ther demonstrate the strength and flexibility of the presented
method. Average accuracies of up to 99.19 % are reported for
the configuration with three MIMUs, with the forearm sensor
placed distally. Using four MIMUs and thus multiple sensors
per segment we were still able to attain an average accuracy
91.77 % over all motion trials. Using orientation data we
can thus determine sensor location and in the future extract
context information with minimal bandwidth requirements.

The literature on identifying sensor location focuses on
absolute location on the body. However, many applications
require that sensors are placed in a chain or on a specific
segment(s). Using this information enables us to deduce
absolute position of each sensor from their relative position
in the chain. Relative sensor location assumes that the
segments on which sensors are going to be placed, the
configuration, are known beforehand.The benefit of relative
versus absolute sensor location is that it drastically simplifies
the classification and classifier. We demonstrated that using
ranking we can achieve a comparable [11] or higher [12]
accuracy than reported in the literature, with the advantage
of flexibility to alterations in or between configurations.

We have focused on a unilateral setup, starting with the
neuroprosthesis presented in [20] in mind. Previous work
has used as many [13] [12], or more sensors [11]. Our work
is the first considering the use of various sensors on the
same segment, and the first to focus on the upper limb.
Our results indicate that it is possible to distinguish be-
tween sensors placed on the same segment using orientation
data.The method presented here can easily be modified to
have less/more sensors or segments, as shown in the different
configurations adopted in the present work. This is also
supported by our previous work on healthy subjects; where
the trunk was added as a fourth segment [22].

Kunze et al. were the first to attempt to identify sensor
location based on arbitrary data. They used a four sensor
setup and reported an 82 % accuracy when 6 minute periods
were used [12]. Under the hypothesis that movement can be
considered additive further down the kinematic chain, and
using relative rather than absolute location, we achieved con-
siderably better results. Our task set consisted of both gross
motor and fine motor tasks. We achieved average accuracies
ranging from 91.77 % to 98.30 % over all tasks, with a
maximal accuracy of 100 % being reached in several tasks as
shown in Fig. 2. We hypothesize that the lesser performance
of some tasks (3,4,5,13,17) is due to the excessive movement
of soft-tissue they provoked.

In recent work by Weenk [11] an attempt has been made
to investigate the sensitivity of location of the sensor on the
segment. Previous work has exclusively relied on accelerom-
eter data but Weenk et al. were the first to use gyroscopes
as an additional sensor. A slight drop in performance was
reported but they still achieved 97.2 % accuracy. In our work
we rely exclusively on orientation data. Our algorithm thus
only uses gyroscope and accelerometer data indirectly. To
further assess the influence of sensor location we included
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two configurations with 3 MIMUs (i.e. one MIMU per body
segment), where the sensor of the forearm was placed distal
or proximal. Under the 4 sensor configuration we achieved
an average accuracy of 91.77 %, with an increase up to 98.30
% when the only forearm sensor was placed distally. Using
the proximal forearm sensor we achieved a slightly worse
result. We assume that the decrease in performance between
the latter configurations is due to impacts with the elbow
(and sensor) on the table. Considering this limitation and
given the nature of our features, and the results obtained
over the various configurations, we conclude that our method
is location and orientation invariant. We did however place
the sensors on ideal locations, attempting to limit soft tissue
artefacts, to enable extraction of tremor characteristics.

V. CONCLUSION

We foresee that the work presented in this paper will
enable the long-term monitoring of (tremor) patients and
will facilitate the use of wearable sensors, in particular in
telemedicine applications. We have introduced a method to
automatically identify relative sensor location and validated
it on a mixed patient population and over a variety of
ADLs. This is the first task independent location detection
algorithm based on orientation data that only requires upper
limb movement and does not need any training, and only
the second location detection algorithm to be tested on a
patient population. In the future we will apply this algorithm
to further our understanding on tremor, and to assist in task
identification.
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