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Abstract— In the biomedical field, current technology allows
for the collection of multiple data modalities from the same
subject. In consequence, there is an increasing interest for
methods to analyze multi-modal data sets. Methods based on
independent component analysis have proven to be effective in
jointly analyzing multiple modalities, including brain imaging
and genetic data. This paper describes a new algorithm, three-
way parallel independent component analysis (3pICA), for
jointly identifying genomic loci associated with brain function
and structure. The proposed algorithm relies on the use of
multi-objective optimization methods to identify correlations
among the modalities and maximally independent sources
within modality.

We test the robustness of the proposed approach by varying
the effect size, cross-modality correlation, noise level, and
dimensionality of the data. Simulation results suggest that 3p-
ICA is robust to data with SNR levels from 0 to 10 dB and
effect-sizes from 0 to 3, while presenting its best performance
with high cross-modality correlations, and more than one
subject per 1,000 variables.

In an experimental study with 112 human subjects, the
method identified links between a genetic component (point-
ing to brain function and mental disorder associated genes,
including PPP3CC, KCNQ5, and CYP7B1), a functional com-
ponent related to signal decreases in the default mode network
during the task, and a brain structure component indicating
increases of gray matter in brain regions of the default mode
region. Although such findings need further replication, the
simulation and in-vivo results validate the three-way parallel
ICA algorithm presented here as a useful tool in biomedical
data decomposition applications.

I. INTRODUCTION

Biomedical studies tend to collect data from multiple
modalities (such as brain images and genetic data) and from
the same participants. This multimodal data is expected to
provide extensive insights into underlying biological mech-
anisms. However, there are significant challenges associated
with identifying latent variables that capture relationships
across modalities while revealing intrinsic information of the
underlying signals.

Some recent methods that succesfully incorporate relation-
ships among multiple modalities are based on the indepen-
dent component analysis (ICA) model [1], [2], [3]. In ICA
based methods, observed data is decomposed into maximally
independent sources and relationships across modalities are
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derived from the mixing matrices used to reconstruct ob-
servations form sources. In [1], the authors combine multi-
modal observations assuming the same mixing matrix, thus
the same number of sources, for all modalities. A limitation
of this early approach is that it will not be applicable
to modalities that exhibit different numbers of sources or
dissimilar mixing matrices. In [2], the authors present a prob-
abilistic approach based on a modular Bayesian framework.
This method has two configurations, one forces a common
modal map (sources) and the other shares the same mixing
matrix among modalities. Similar to [1], both of the config-
urations impose strong constrains on how the information is
shared among modalities. In [3], the restrictions of [1] were
relaxed by allowing non-perfect correlations and different
number of sources. However, the approach only allows the
analysis of two modalities.

The current paper extends the technique proposed in [3] by
analyzing three modalities as in [4], and formulating a new
multi-objective optimization framework. The work presented
in this manuscript includes:

• Application to three modalities: Beyond [3], the cur-
rent method analyzes three modalities which allows to
detect direct and indirect cross-modal relationships.

• Multi-objective optimization approach: We introduce
a multi-objective optimization framework consisting of
six objective functions: three entropies from source
signals and three cross-correlations between modalities.
Along the Pareto front, we search for solutions that
maximize entropy and adjust certain weighting param-
eters to generate a solution that increases correlation as
to achieve a balance between the objectives.

• Method validation based on a simulation frame-
work: We validate the method through simulations.
We assess dependency of the solution as a function of
effect size (Cohens d measure), SNR (noise added to
observations), dimensionality (number of variables and
observations) and correlation strength among modali-
ties.

• Application to imaging genetics: The proposed
method is applied to a dataset consisting of single nu-
cleotide polymorphism (SNP), structural and functional
MRI modalities, collected from 112 healthy volunteers

The rest of this paper is organized as follows: in section II,
we describe the proposed algorithm, the simulation frame-
work, and the data used in the application; in section III, we
present the results; and in section IV, we discuss our results
and state our conclusions.
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II. MATERIALS AND METHODS

A. Single Modality Independent Component Analysis

To define the independent component analysis (ICA)
method for multiple modalities, let X(i) denote the observed
data matrix for modality i with n subjects (rows) and m(i)

variables (columns). For each modality, we decompose the
observed data matrix as X(i) = A(i)S(i) where [A(i)]n×c(i)
denotes the mixing matrix, [S(i)]c(i)×m(i) denotes the source
matrix, and c(i) denotes the number of sources. The columns
of A represent the subjects’ loading patterns; i.e., how each
component is weighted across subjects, whereas the rows of
S indicate each component, the weighted pattern of variables.

Within each modality, the ICA model assumes indepen-
dent stationary sources following a non-Gaussian probability
density function. The infomax algorithm [5], that solves ICA
for one modality, attempts to maximize the entropy of the
estimated sources in S as given by

maxW (i)

{
H(W (i))

}
where, H(·) denotes the entropy function and W (i)† = A(i),
the pseudo-inverse. The estimated sources are derived from
the observation data matrix using S(i) =W (i)X(i).

B. Three-way parallel Independent Component Analysis Us-
ing Multi-Objective Optimization.

The three-way parallel ICA (3pICA) searches for max-
imally independent sources exploiting relationships across
modalities which are assessed through correlation between
loading matrix columns.

The 3pICA algorithm seeks to solve a multi-objective
optimization problem that maximizes

max(p,q,r),W (1),W (2),W (3){
βT ·

[
H(W (1)), H(W (2)), H(W (3)), ρ1,2p,q, ρ

2,3
q,r , ρ

1,3
p,r

]}
(1)

where β is a scalarization vector that balances entropy and
correlation objectives; p, q, r refer to component indices
matching columns from A(1), A(2) and A(3) for which the
correlation needs to be maximized; W (1),W (2),W (3) refer
to the unmixing matrices from each modality; and ρi,jp,q
denotes the squared correlation between the pth column of
A(i) and the qth column of A(j).

This multi-objective formulation requires a solution that
balances the objectives against each other. We propose solv-
ing this problem by giving preference to the entropy objec-
tives and penalizing cross-modality enhancements whenever
they interfere with the maximal entropy search. In other
words, the algorithm favors the Pareto solution that maxi-
mizes entropy.

An initial estimate is obtained at the first step of each
iteration by using maximally correlated component triplet
to select candidates for the (p, q, r) indices. We then
search the directions that maximize the entropy objectives
H(W (i)), i = 1, 2, 3 and use (p, q, r) to compute correlation

gradients that maximize the ρ-variables in (1). The algorithm
is described in Algorithm 1.

For updating the unmixing matrices, we use the entropy
natural gradient [5] of each modality:

∇W (i) = I + (1− 2Y (i))U (i)T , (2)

where Y = 1
1+e−U , U = WX + W0, and W0 is a bias

term. The algorithm computes the update for each pair of
correlations and adds them into ∇A(i), where

∇ρi,j = (A(j)
q − µ(j)

q −
Cov(A

(i)
p , A

(j)
q )(A

(i)
p − µ(i)

p )

σ2(A
(i)
p )

) (3)

and µ(i)
p denotes the mean of the pth column of A(i). In the

algorithm, we do not update these correlation measures if
they fall below a certain threshold s to avoid over-emphasis
of non-significant correlations among modalities.

In the case of a reduction of entropy due to the cross-
correlation update, we provide a dynamic adaptation of
weights, λi to de-emphasize the correlation objectives in (1).
The algorithm terminates when there is no significant change
in the unmixing matrix updates.

Input: X(1), X(2), X(3), and s
Output: W (1), W (2), and W (3)

Initialization: W (i) ← I , i = 1, 2, 3;
while {||4W (1)||F , ||4W (2)||F , ||4W (3)||F } > ε do

A(1) ←W (1)†, A(2) ←W (2)†, A(3) ←W (3)†;
Solve {p, q, r} ← argmax

{p,q,r}
{ρ1,2p,q + ρ1,3p,r + ρ2,3q,r};

for i = 1, 2, 3, j = 2, 3, 1, x = p, q, r, y = q, r, p do
Compute ∇W (i) using eq. (2);

if
√
ρi,jx,y > s then

Compute ∇ρi,j and ∇ρj,i using eq. (3)
else
∇ρi,j = 0 and ∇ρj,i = 0

end
end
∇A(1) = ∇ρ1,2 +∇ρ1,3, ∇A(2) = ∇ρ2,1 +∇ρ2,3;
∇A(3) = ∇ρ3,1 +∇ρ3,2;
for i = 1, 2, 3 do

if ||4W (i)||F > ε then
W (i) ←

(
(W (i) +∇W (i))−1 + λi∇A(i)

)−1
if Entropy decreases then

λi ← 0.9λi,
end

end
end

end
Algorithm 1: 3pICA optimization procedure. Refer to
subsection II-B for definitions.

C. Simulation Framework

Based on the ICA model, we first designed a total of six
random sources for each modality drawn from Laplacian
(µ = 0, b = 1), Uniform (−1, 1), Exponential (λ = 1),
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TABLE I: Simulation settings.

Variable Measure Range Step Default

Effect Size Cohen’s d as in eq. (4) [0, 3] 0.5 2
Correlation ρ1,2p,q = ρ2,3q,r = ρ1,3p,r [0, 0.6] 0.1 0.4
Noise level SNRdB [0, 10] 2 10
Dimensionality log10

#V ariables
#Subjects

[1.5, 4] 0.25 1.68

Gaussian (µ = 0, σ = 1) and Student-t (µ = 0, df =
2) distributions, and the last one drawn from a bimodal
Gaussian distribution.

The latter was specially designed to emulate the effect
size in a component as measured by the Cohen’s d, which is
reflected in the distance between bimodal distribution peaks
(e.g., in brain imaging data, the smaller peak is the mean
activation of brain regions responding to stimuli, while the
large peak is the mean of brain background activation).
Then, we generated three random mixing matrices drawn
from a zero mean and unit variance multivariate Gaussian
distribution. These matrices are further projected using a
singular value decomposition method to enforce the designed
cross-modality correlation. We set the bimodal source to be
linked among modalities. Through multiplying the mixing
matrix (n × c) with the sources (c × m), we obtained the
observation data matrix (n×m), for each modality. Finally,
we added Gaussian noise with variance σ2

η to the data matrix.
We adjusted the effect size by tuning the mean of the

smaller peak in the following probability density function

f(x) =
1√
2π

(
0.99e−x

2/2 + 0.01e−(x−d)
2/2
)
, (4)

where d implies the Cohen’s d effect size measure. From the
noisy observation matrix X̂(i) = X(i) + η, we measured its
signal to noise ratio (SNR) based on σ2

X and σ2
η . To simulate

high dimensionality effects, we adjusted the ratio between the
number of variables to the number of subjects and computed
the base 10 logarithm of the ratio (log-ratio).

Overall, we simulated three data modalities with 6 com-
ponents and default settings as in Table I. It is important to
note that in the dimensionality test, we increased the number
of variables from the default settings (see column 5 of Table
I) to 100,000, in order to test a wider range of log-ratios.
We then changed one parameter of interest at a time while
fixing all others to the default value and evaluated the effect
of each parameter on the algorithm performance.

D. Dataset based on sMRI, fMRI, and SNPs

A total of 112 right handed healthy subjects between the
ages of 18 and 58 (31.88±10.86) with no history of traumatic
brain injury or other illness were drawn from the multisite
Mind Clinical Imaging Consortium (MCIC) schizophrenia
study [6]. A total of 68 participants were male and 44 female.

The dataset consists of three modalities: sMRI, fMRI, and
SNPs. A T1-weighted sMRI was acquired at each site using
an oblique axial gradient echo sequence (More detail in
[7]). The fMRI data were collected using a block sensori-
motor response task, and DNA was extracted from blood

samples. Genotyping for all participants was performed at
the Mind Research Network using the Illumina Infinium
HumanOmni1-Quad assay covering 1,140,419 SNP loci. Af-
ter a standard pruning procedure, it resulted in 777,635 SNP
loci. The number of SNPs was further reduced by removing
SNPs not within 200 bps of 15,908 gene transcription
sites extracted from annotation data in the UCSC genome
database. After this additional data reduction 65,492 SNP
loci remained and were used in the analysis. For additional
details on fMRI and SNP collection refer to [8].

III. RESULTS

A. Simulation Results

We present the simulation results in Fig. 1. We measure
component accuracy and link estimation error as summarized
in the caption of Fig. 1. For each parameter setting, we
conducted 3pICA and separate ICAs for each modality.
Median accuracy (dots in Fig. 1) and uncertainty level, in
the form of inter-quartile ranges (whiskers in Fig. 1), were
calculated after repeating the analysis 20 times.

In Fig. 1a, the size effect performance test suggests good
estimations for 3pICA, median accuracy above 0.95 and link
estimation error below 0.05, across the whole range of size
effects. The performance of ICA was comparable to 3pICA
for effect sizes higher than 3. In Fig. 1b, a cross-correlation
above 0.3 was needed for 3pICA to yield better results
than ICA. ICA exhibited invariance in its performance with
this parameter. The flat trend reported in Fig. 1c suggested
noise invariant properties for both methods. Finally, 3pICA
required a dimensionality lower than 2.25 (at least one
subject per 177 variables) to yield almost perfect results,
but performed above ICA for dimensionality lower than 3
(at least one subject per 1000 variables). A significant drop
on performance was observed for high dimensionality in the
simulated data.

B. Experimental Results on fMRI, sMRI, and SNP

We applied 3pICA setting 7 components for functional
MRI, 15 from structural MRI and 55 for SNP data and
detected an average correlation of 0.4 for the resulting
component triplet. The spatial contents of functional and
structural components intersect revealing parts of the default
mode network (frontal gyrus, anterior cingulate, precuneus,
and cingulate). The genetic component highlighted genes
including PPP3CC, KCNQ5, and CYP7B1 which are directly
associated with brain function or mental disorders. PPP3CC
is involved in the downstream regulation of dopaminergic
signal transduction, KCNQ5 is a member of the KCNQ
potassium channel gene family that is differentially expressed
in subregions of the brain, and CYP7B1 is involved in
neurosteroid metabolism,[9, chapter 18].

IV. DISCUSSION AND CONCLUDING REMARKS

As we expected, 3pICA used information from all modal-
ities to provide a solution that reveal connections among
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Fig. 1: Simulation results from varying (a) effect size, (b) cross modality correlation, (c) SNR and (d) dimensionality. The
upper plots show the accuracy of component estimation measured as the correlation between estimated and ground truth
components. The lower plots show the absolute value of the difference between the estimated and designed correlations.
The dots represent the median accuracy across 20 repetitions, and the whiskers indicate the inter-quartile range.

them. The simulation results suggested that 3pICA outper-
forms ICA in most scenarios or otherwise provides com-
parable performance. Results from the imaging genetics
application example yielded reasonable results.

Performed simulations provided understanding of the algo-
rithms behavior under the tested parameters. The effect size
invariant property of 3pICA suggests that the estimation of
one modality’s sources can benefit from shared information
contained on the other two modalities. Results indicate that
shared information helped 3pICA overcoming the impact of
effect size on the data better than regular ICA. The step-
like behavior of 3pICA accuracy in Fig. 1b as a function
of the cross-modality correlation is a clear indicator of the
threshold s set to avoid overemphasis of correlation. Given
200 subjects we set a conservative threshold of 0.2 to attain a
significance level of 0.01

3 . This behavior occurs since 3pICA
behave as three separate ICAs below the threshold s. To in-
vestigate the performance boundary on noise robustness, we
further tested negative SNRs and observed a significant drop
in performance for both methods below -15 dB. However, the
researcher should question data acquisition or pre-processing
pipeline when the dataset presents such high levels of noise.
Regarding the dimensionality test, the multi-modal method
was affected by the reduced sample size because it has a
direct impact on the correlation inference and likely affects
the estimation accuracy. In case of log-ratios higher than 3,
we recommend to consider variable pruning prior to 3pICA.

Finally, we used a real dataset application as a proof
of concept, where results obtained from healthy subjects
suggest a connection between gray matter concentrations and
the subject’s ability to focus as indicated by a suppression of
the default mode network. The 3pICA uncovered additional
association with a genetic component. Within this compo-
nent, SNPs located at relevant genes exhibited noticeably

larger weights and present expressions through the brain.
In summary, we comprehensively evaluated 3pICA under

various scenarios. Simulation results suggested that the novel
multi-modal method was insensitive to effect sizes from 0 to
3 and SNRs from 0 to 10 dB, but mainly affected by the
dimensionality of the problem, performing best when the
dataset holds at least one subject per 1,000 variables. The
application results confirm that relevant information can be
extracted by jointly analyzing three modalities.
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