
  

 

Abstract— High data dimensionality poses a major challenge 

for imaging genomic studies. To address this issue, a semi-blind 

multivariate approach, parallel independent component 

analysis with multiple references (pICA-MR), is proposed. 

pICA-MR extracts imaging and genetic components in parallel 

and enhances inter-modality correlations. Prior knowledge is 

incorporated to emphasize genetic factors with specific 

attributes. Particularly, pICA-MR can investigate multiple 

genetic references to explore functional interactions among 

genes. Simulations demonstrate robust performances with 

Euclidean distance employed as a metric for reference 

similarity, where components pointed by the same references 

are reliably identified and the detection power is significantly 

improved compared to blind methods. 

I. INTRODUCTION 

Imaging genomics is a maturing field which studies 
associations between genetic variables and neuroimaging 
traits. While this strategy holds the promise to reveal genetic 
underpinnings of neuronal functions, novel computational 
methods are desired to efficiently mine the complex high-
dimensional data. One of the most challenging problems is 
that correction for the huge number of statistical tests in 
univariate models makes it difficult to identify any small or 
moderate genetic effect within a practical sample size, as 
observed in complex polygenic mental disorders [1]. To 
address this issue, a number of multivariate approaches have 
been developed to simultaneously assess many variables for 
an aggregate effect, including principal component 
regression [2], sparse reduced-rank regression [3], sparse 
partial lease square [4], parallel independent component 
analysis (pICA) [5] and sparse canonical correlation [6].   

While the aforementioned approaches have shown 
improved detection power compared to univariate models, 
their performance could be further advanced through taking 
prior information into account. For instance, some genes are 
known to participate in a biological pathway critical to a 
disease, and they may help elicit a set of genes contributing 
in a coordinated way to a larger network relevant to the 
disease. In light of this, we designed a semi-blind 
multivariate approach, named parallel ICA with reference 
(pICA-R) [7], where imaging and genomic components are 
estimated in parallel and inter-modality correlations are 
enhanced. Particularly, the data decomposition is partially 
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guided by a genetic reference, such that the resulting 
components highlight the reference variables and other 
covarying variables. 

The application of pICA-R to real imaging genomic data 
involving one million or so variables has been demonstrated. 
However, the original design investigates only one single 
genetic reference. In complex disorders, the capability to 
simultaneously assess multiple references is desired, given 
that multiple genes can potentially converge their functional 
influences on neurobiological traits. To better delineate the 
underlying genetic architecture, we extended the pICA-R 
approach to accommodate multiple references.  

II. METHOD 

In the proposed parallel ICA with multiple references 
(pICA-MR), the selected references are organized into a 
matrix r. Each row represents a reference vector comprising 
a group of reference loci likely in linkage disequilibrium 
(LD). The interrelationship among reference vectors is to be 
investigated in a data-driven manner. The mathematical 
model for pICA-MR is shown below. 
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The observed data X (sample × feature) is decomposed 
into a linear combination of the underlying independent 
components, or sources, as in (1). S, A and W denote the 
component, mixing and unmixing matrices, respectively. 
The subscript d runs from 1 to 2, denoting the data modality. 
The unmixing matrices W1 and W2 are iteratively updated to 
optimize the objective functions F1, F2 and F3, as in (2). F1 
is the Infomax [8] objective function to maximize the 
independence of components in modality 1. The inter-
modality association function F3 maximizes the correlations 
computed over the columns of the loading matrices A1 and 
A2. F2, the objective function for modality 2, is modified 
based on Infomax so that components are not only 
independent but closely resemble the reference matrix r. 
Specifically, pICA-MR determines the closest component 
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for each reference vector ri (i
th

 row of r) and then calculates 
the Euclidean distance between the reference vector and the 
matched component only for the reference loci  ̃ , a 

subvector of   . This distance, (‖| ̃   |   ̃ ‖ 
 
), is further 

minimized, where  ̃    represents a subvector of the 

constrained component      (the ki
th

 row of S2), computed by 

    
 (the ki

th
 row of W2) multiplying  ̃  (a submatrix of 

X2). ||·||2 represents the L2-norm Euclidian distance, and λ is 
the weight parameter. Through this design, reference loci 
will be highlighted in the resulting components and non-
reference loci will show their own importance driven by the 
data. Different genetic references may constrain the same 
component and then be associated with the same imaging 
trait, suggesting functional convergence. The three objective 
functions are optimized using gradient maximization and the 
update functions are similar to [7]. 

III. SIMULATIONS 

pICA-MR was evaluated with simulated functional 
magnetic resonance imaging (fMRI) and single nucleotide 
polymorphism (SNP) data for its detection power, 
particularly in the genetic modality. The simulated data 
consisted of 200 samples. Eight independent vectors (8 × 
200) were randomly generated from normal distributions to 
form a mixing matrix for the fMRI data. Eight diagnosis 
patterns were then generated through thresholding the linear 
transformations of the fMRI mixing vectors with random 
Gaussian noises superimposed. The diagnoses would then be 
used in PLink [9] for simulating the SNP data. In this way, 
associations were built between fMRI and SNP modalities.     

The fMRI data had a feature dimension of 40K voxels. 
Eight non-overlapping brain networks were simulated using 
the SimTB toolbox ([10], http://mialab.mrn.org/software) to 
serve as the fMRI components. The fMRI data matrix was 
then obtained as the product of the mixing and component 
matrices with random Gaussian noises superimposed onto 
each sample. The SNP data were simulated via PLink [9] 
with varying SNP dimensionality and causal loci effect size 
to assess the performance of pICA-MR when components 
accounted for different amounts of variance in the data. Each 
component involved 150 causal loci. The dimensionality 
ranged from 50K to 500K, resulting in the sample-to-SNP 
ratio from 0.004 (200/50K) to 0.0004 (200/500K). The eight 
SNP components consisted of 4 pairs, where each pair 
comprised two components whose causal loci were given the 
same diagnosis pattern across samples. Note that PLink does 
not generate SNPs in LD. Thus through linking two 
components to the same diagnosis pattern, we obtained two 
groups of independent SNPs associated with the same 
diagnosis and fMRI loadings. A two-sample t-test showed 
that correlations among SNPs linked to the same diagnosis 
were not significantly different from those among randomly 
generated SNPs (p = 0.35). PLink yielded random effect 
sizes, ranging from 0.0037 to 0.1926 for individual causal 
loci when evaluated with explained variances of diagnoses.  

We already compared pICA-R with other competing 
approaches in [7], thus the key point for pICA-MR lies in 
whether it is able to reliably identify linked references 
contributing to the same component. We first investigated 

out of 100 runs, what would be the ratio for pICA-MR to 
correctly detect the references contributing to the same SNP 
component and fMRI trait, denoted as linked reference 
matching ratio (LMR) in the following text. Specifically, a 
reference matrix was generated, with each vector harboring a 
set of reference loci derived from one of the two groups of 
causal loci that were linked to the same diagnosis pattern. 
The evaluation started with two accurate references, each 
spanning 20 true causal loci. Then references spanning 40 
loci of accuracies from 0 to 0.5 were tested to investigate the 
performance boundary. Corresponding to LMR, we also 
evaluated the ratio for pICA-MR to falsely constrain the 
same component for two isolated references, denoted as 
isolated reference mismatching ratio (IMR). For this 
purpose, the reference matrix was generated to consist of 
two references derived from two groups of causal loci that 
were linked to distinct diagnosis patterns. Again, the 
tolerance of reference accuracy was assessed. For proof-of-
concept, we conducted the simulations with two references 
imposed. However, the algorithm is able to deal with more.  

Besides LMR and IMR, accuracies of components, 
loadings, and inter-modality linkages, as well as reference-
imposed false discovery rate (RFDR) were also evaluated. 
SNP component accuracy was assessed with sensitivity, 
which was the ratio of correctly identified causal loci to the 
built-in true causal loci. Loading accuracy was reported as 
the absolute value of the correlation between the diagnosis 
pattern and the extracted loadings. The correlation between 
the SNP and fMRI components most resembling the ground 
truth was calculated and compared with the built-in 
correlation to reflect link accuracy. RFDR assessed the 
overfitting by evaluating how many random reference loci 
were falsely identified as causal. In addition, when testing 
two isolated references, we compared the performance 
between a pICA-MR run with two references and two 
separate pICA-R runs. Due to the computation burden, we 
conducted this combined versus separate comparison only 
for one dataset with a SNP dimensionality of 50K and 
median effect size of 0.059. 

pICA-MR requires selection of the component number. In 
the simulations, the fMRI component number was set to 8, 
the true component number for the simulated data. For the 
SNP modality, a true component does not necessarily yield 
optimal results [11]. This is because a principal component 
analysis (PCA) data reduction is usually applied before ICA 
to capture the largest variances in the data. However, genetic 
components may account for small variances such that the 
related information can be discarded by PCA. In this work,  
we chose to set the SNP component number to be 50 given 
our observation that the semi-blind pICA-R model tends to 
be robust to over-estimation [7].  

IV. RESULTS 

Overall, pICA-MR successfully captured the reference 
structure when two references were assessed simultaneously. 
Given references spanning 20 true causal loci (accuracy = 
1), the LMR was 1 based on 100 runs, regardless of the 
causal loci effect size or SNP dimensionality, as in Fig. 1. 
And the resulting component, loading and link accuracies 
were consistent with those observed for pICA-R [7], which 
had been shown to yield significant improvement compared 
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to blind methods such as ICA and pICA. Obviously, pICA-
MR showed robust performances under various scenarios. 
The component accuracy remained around 0.5 when the 
median causal loci effect size decreased to 0.03 with a 
sample-to-SNP ratio of 0.004; as well as when the sample-
to-SNP ratio decreased to 0.0004 (200/500K) given a 
median casual loci effect size below 0.06.  

As expected, LMR was significantly affected by reference 
accuracies. In Fig. 2, given 40-loci references, when the 
accuracy was below 0.2, the LMR was around 0.2, 
indicating that for 80 out of 100 runs, pICA-MR did not 
constrain the same SNP component for the two references. 
Meanwhile, a dramatic improvement was generally observed 
at the reference accuracy of 0.3, where LMR reached 0.9. 
With the reference accuracy further increased to 0.5 (20 true 
causal loci), a LMR of 1 was achieved regardless of the 
causal loci effect size or SNP dimensionality, consistent with 
that previously observed. The performance of pICA-MR in 
component accuracy (measured with sensitivity) was 
comparable to those of pICA-R when the reference structure 
was correctly identified given relatively high accuracies (≥ 
0.3). On the other hand, larger performance deviations were 
observed for lower reference accuracies; however the RFDR 
was not significantly affected, remaining below 0.05 for all 
the tested scenarios.  

When two isolated references were combined and 
assessed with pICA-MR, the IMR was no greater than 0.05 
for all the tested reference accuracies, as in Fig. 3. Also, the 
combined run with pICA-MR yielded comparable 
component accuracies to those obtained from pICA-R for 
reference A, while degraded accuracies were observed for 
reference B. Meanwhile, no significant difference in RFDR 
was observed between combined and separate runs. 

 

Figure 1: pICA-MR tested with linked 20-loci references of 

accuracy 1. Left: varying effect sizes when the sample-to-SNP ratio 

was controlled at 0.004; Right: varying dimensionality from 50K to 

500K. The median effect sizes were 0.059, 0.057 and 0.060, 

respectively. The error bars reflect mean ± SD based on 100 runs. 

 

Figure 2: pICA-MR tested with linked 40-loci references of 

accuracies from 0 to 0.5. Left: varying different effect sizes when 

the sample-to-SNP ratio was controlled at 0.004; Right: varying 

dimensionality from 50K to 500K, the median effect sizes were 

0.059, 0.057, and 0.060, respectively. The error bars reflect mean ± 

SD based on 100 runs. 

 

Figure 3: Isolated 40-loci references of different accuracies 

assessed with pICA-MR (combined) and pICA-R (separate), 

respectively. The tested dataset had a sample-to-SNP ratio of 0.004 

and a median effect size of 0.059. IMR was reported for combined 

runs. The error bars reflect mean ± SD based on 100 runs. 

V. DISCUSSIONS AND CONCLUSIONS 

The simulation results demonstrated that pICA-MR is able 
to capture the embedded reference structure in a non-
parametric manner. As in Fig. 1, given completely accurate 
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linked references, the algorithm always correctly recognized 
that they contributed to the same component and applied the 
constraint. The resulting component, loading and link 
accuracies were comparable to those previously observed in 
pICA-R and thus significantly outperformed blind ICA or 
pICA. In particular, reliable performance was achieved at a 
low sample-to-SNP ratio (200/500K) given a median effect 
size below 0.06, confirming the feasibility of applying 
pICA-MR to imaging genomic studies involving a million or 
so variables provided that hundreds of subjects are available.  

Reference accuracy played an important role in the 
performance of pICA-MR regarding LMR. As shown in Fig. 
2, for a reference accuracy below 0.2, the LMR was around 
0.2. This is not surprising, since when random loci are 
incorrectly selected to be references, the distance between 
the reference vector and the true component is smeared and 
no longer distinguishes itself from those randomly observed. 
On the other hand, it’s encouraging to observe a dramatic 
improvement of LMR to around 0.9 at the reference 
accuracy of 0.3, which is likely to achieve when using the 
strategy of deriving a more homogeneous reference based on 
moderate LD loci [7]. 

Besides reference accuracy, causal loci effect size also 
affected the performance of LMR. As in Fig. 2, degradation 
was observed for data with lower causal loci effect sizes 
(0.029), where the LMR only reached 0.5 at a reference 
accuracy of 0.3. Interestingly, the performance was less 
vulnerable to the increase of SNP dimensionality. This might 
be due to the design of the model. Recall that the Euclidean 
distance is calculated between the component and the 
reference vector specifically for reference loci. Thus, an 
increased SNP dimensionality simply results in an increased 
number of non-reference loci, which might not significantly 
affect the estimated distance metric. Instead, decrease in 
effect sizes is expected to increase the distance between the 
reference vector and the true component, such that other 
components might by chance be closer to the reference 
vector and selected for constraint, resulting in in a low LMR.   

In contrast, IMR was less affected by reference accuracy, 
remaining below 0.05 when two isolated references were 
assessed simultaneously, as shown in Fig. 3. Note that when 
the reference accuracy was 0, the two isolated references 
essentially consisted of random loci, which was equivalent 
to the situation when LMR was evaluated for two references 
of accuracy 0. In both cases, the chance was below 5% for 
the algorithm to constrain the same component for the two 
tested references, as consistently observed in Fig. 2 and 3. 
When the reference accuracy was increased for the two 
isolated references, the added true causal loci of one 
reference were essentially recognized as random loci by the 
other reference. Consequently, the IMR remained below 
0.05, regardless of reference accuracy. 

When two isolated references were combined and 
assessed with pICA-MR, the resulting performances might 
have been affected by the PCA data reduction. It can be seen 
in Fig. 3 that, comparable component accuracies were 
observed between combined and separate runs for reference 
A, while degradation was observed for reference B. In our 
simulation, the median causal loci effect size was 0.059 for 
component A and 0.057 for component B. Thus, more 

variances related to component A might have been included 
in PCA when both were assessed together, which resulted in 
the higher sensitivity. 

In summary, pICA-MR is able to assess multiple 
references simultaneously while the interrelationships are 
not known. Compared to pICA-R, the extended approach is 
more flexible in dynamically constraining components for 
multiple references and allows some extent of heterogeneity 
in references. Simulation results demonstrated high LMR 
and low IMR, confirming the validity of Euclidean distance 
serving as a metric for the assessment of reference structure. 
Meanwhile, some cautions need to be exercised when 
conducting a pICA-MR analysis. First, it is recommended to 
maximize the chance for an accurate reference. A practical 
strategy is to derive individual references based on LD 
blocks of genes. In general SNPs in LD are more likely 
associated with the same trait of interest, hence contributing 
to the same component. Second, the performance can be 
affected by PCA data reduction, depending on how much 
variance in the data is explained by the mechanism of 
interest. Overall, pICA-MR is suitable for assessing the 
architecture of genes which, although previously implicated 
in the same biological mechanism, still await investigations 
on their homogeneous or heterogeneous functional 
influences on neurobiological conditions.  Here we focus on 
introducing the new method and demonstrating its capability 
via simulation, and we will present a real data application in 
depth in an upcoming paper.  
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