
  

 

Abstract— Computer aided diagnosis of medical images can 

help physicians in better detecting and early diagnosis of 

many symptoms and therefore reducing the mortality rate. 

Realization of an efficient mobile device for semi-automatic 

diagnosis of melanoma would greatly enhance the applicability 

of medical image classification scheme and make it useful in 

clinical contexts. In this paper, interactive object recognition 

methodology is adopted for border segmentation of clinical 

skin lesion images. In addition, performance of five classifiers, 

KNN, Naïve Bayes, multi-layer perceptron, random forest and 

SVM are compared based on color and texture features for 

discriminating melanoma from benign nevus. The results show 

that a sensitivity of 82.6% and specificity of 83% can be 

achieved using a single SVM classifier. However, a better 

classification performance was achieved using a proposed 

cascade classifier with the sensitivity of 83.06% and specificity 

of 90.05% when performing ten-fold cross validation. 

I. INTRODUCTION 

Skin cancer has been one of the most common form of 

cancers and melanoma is one of the leading cause of death 

particularly in USA, Australia and New Zealand [1, 2]. 

Melanoma has also risen faster than any of the most 

common cancers among white population [3]. Early 

diagnosis of malignant melanoma significantly reduces the 

morbidity, mortality and cost of the medication [4].  

Computer aided diagnosis (CAD) systems and computer 

vision have been used to help skin cancer specialists for 

better detection of melanoma lesion mainly based on  

ABCD rule (asymmetry, border irregularity, color variation 

and regions with diameter greater than 6mm) and seven-

point checklist. There are several non-invasive methods that 

have been developed on pigmented skin lesion (PSL) 

images. Multi-spectral and hyper-spectral imaging systems 

have led to renewed interest in diagnosis of melanoma [5, 

6]. Dermatological photographs (clinical images) and 

dermoscopy are also non-invasive methods for diagnosis of 

PSLs which have been widely studied in the dermatological 

imaging realm using CAD [7]. 
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In this work a dataset of clinical images that have been 

collected online is formed with the aim of developing a 

handheld embedded vision application. This paper has been 

structured into eight sections: following the introduction the 

image dataset is described, preprocessing and proposed 

method for lesion segmentation are given in section three, 

feature extraction and classification methodologies are 

presented in sections four and five, system development in 

section six and finally, sections seven and eight deal with 

experimental results and conclusion.    

II. DATASET 

A dataset of 370 images collected from web resources 

(Table 1) has been used for developing the algorithms. The 

dataset is divided into two groups: with 175 images of 

Malignant Melanoma (MM) and 195 images of non-

melanoma (benign nevus). Non-melanoma images include: 

Atypical (compound, junctional, dermal, and combined), 

dysplastic, seborrheic keratosis, blue nevus, congenital, 

spitz, halo and neurofibromatosis. 
TABLE.1 LIST OF ONLINE RESOURCES 

Web resource URL 

DermQuest http://www.dermquest.com 

DanDerm http://www.danderm-pdv.is.kkh.dk/atlas/index.html 

DermAtlas http://www.dermatlas.net/ 

DermIs http://www.dermis.net 

DermNetNz www.dermnetnz.org 

III. PREPROCESSING AND SEGMENTATION 

A. Preprocessing 

Presence of artifacts such as hairs, ruler marks and light 

illumination in dermatological images may affect the 

segmentation and therefore imperfect feature extraction 

results [8]. In this work, DullRazor tool was employed for 

hair artifacts removal from lesion images [9]. This tool 

performs three main tasks: 1) Detecting the location of dark 

hairs in the image using morphological filters, 2) Replacing 

the identified hairs by neighboring pixels 3) Applying 

adaptive median filter to smooth the final image. After hair 

artifact removal, all lesion images are cropped manually 

and resized to construct a dataset of unified 512x512 pixel 

images. 

B. Lesion segmentation  

After preprocessing of skin images, lesion segmentation 

(border detection) is performed in order to remove the 

undesirable background skin part from the foreground 
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lesion part. A number of algorithms have been proposed for 

border segmentation of clinical and dermoscopic images 

based on color histogram thresholding (e.g. Otsu and  

thresholding) [7]. A discussion of the accuracy of current 

methods and the performance of these border segmentation 

techniques can be found in the literature [10, 11]. The main 

drawback of applying threshold based 

segmentation/clustering to our dataset was the variation in 

lighting condition (e.g. brightness, contrast and reflection of 

flash light on the skin’s surface) of the images.   

In this study, an interactive object recognition method 

was adopted for lesion segmentation [12]. The proposed 

method consists of the following steps: extracting color 

features from the region of interest by user, applying a 

nearest neighbor search to the specified points on the lesion 

by using color features, applying morphological filters: 

opening, closing and median for smoothing and removing 

the artifacts, labeling connected component on the lesion 

and then preserving the largest part, and finally filling holes 

after creating the binary mask.  

Besides, the result of above mentioned method was 

compared with the histogram segmentation approach using 

the following algorithm: 1) converting the preprocessed 

image to HSV color space, 2) applying median filter to 

smooth the image, 3) applying Otsu’s thresholding method 

on each color channel, 4) labeling connected components on 

the binary mask and finally 5) removing small objects 

(remained artifacts).  

 

Fig. 1.  Results of border segmentation: (a) original image, (b) after 

preprocessing and hair removal, (c) border segmentation using 

histogram thresholding on HSV color space, (d) border segmentation 

using adopted interactive object recognition. 

Fig. 1 shows the results of preprocessing and border 

segmentation phases. It indicates that using the proposed 

method border of the lesion is well detected (Fig. 1 d) 

compared with threshold based segmentation on HSV color 

space (Fig. 1 c).  

IV. FEATURE EXTRACTION 

This section describes how the feature attributes were 

extracted from the segmented lesion of clinical images. 

While shape analysis can improve the performance of 

melanoma detection significantly, we only performed 

general color and feature analysis for this study and left the 

shape analysis for future development. 

A. Color Features 

Color analysis is one of the most important methods for 

analyzing medical images. In the skin image analysis 

realm, typically original RGB image is transformed to 

different color domains in order to measure corresponding 

color information from color channels. Although RGB 

images can be transformed to various color spaces, other  

image formats  might be superior for a specific application 

[13]. In this paper, color analysis is performed on RGB and 

HSV color spaces by measuring the average, standard 

deviation, skew and entropy of each color channel.  

B. Texture Features 

Texture analysis is a technique for extracting shape 

attributes and spatial structure of images. There are various 

commonly used texture analysis methods. In this paper, 

texture attributes were extracted from the gray level co-

occurrence matrix (GLCM) [14]. The GLCM is calculated 

from the RGB segmented lesions and created by averaging 

different orientations matrices (angles of 0, 45, 90 and 135 

degree). Then the following features were calculated from 

the average matrix: energy, entropy, correlation, inverse 

different moment, and inertia. 

V. CLASSIFICATION 

 In this study, five classification algorithms were used in 

order to assess their performance using the extracted 

features from the dataset by Weka tool [15]. KNN (k=10), 

Multi-Layer Perceptron (MLP), Naive Bayes (NB), Random 

Forest (RF) and Support Vector Machine (SVM) using 

LibSVM (c=14, Radial Base Function, γ=0.08) were used 

and the accuracy of each classifier was compared [16]. In 

bioinformatics applications, overfitting is one of the 

fundamental issues for supervised learning classification. 

This phenomena occurs when training set is adopted by a 

fixed set of data rather than learning from the trend;  

therefore, the accuracy would be too optimistic [17]. In 

order to overcome this issue, ten-fold cross validation was 

applied for training and testing of all input images. After 

performing classification, specificity and sensitivity of each 

classifier was calculated for performance analysis. 

Furthermore, the following five feature sets were extracted 

in order to find the best features and a proper classifier: 

1- Combination of RGB color and  texture features 

(25 feature columns), 

2- Combination of HSV color and texture features 

(25 feature columns), 

3-  RGB color attributes (15 feature columns), 
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TABLE II. ACCURACY COMPARISON OF KNN, MLP, NB, RF AND SVM (SE is Sensitivity and SP is Specificity). 

 
RGB + TEXTURE HSV + TEXTURE RGB  HSV TEXTURE 

Classifier SE SP SE SP SE SP SE SP SE SP 

KNN 79 74.5 86.3 69.1 76 77.1 83.3 66 80.4 53.7 

MLP 76.6 77.7 78.6 78.9 77.2 81.4 73.8 79.8 88.7 51.6 

NB 89.2 51.6 89.9 59.6 89.2 47.9 85.7 58 51.6 58 

RF 73.1 80.6 78.8 83.7 77.8 76.1 78.9 82.4 68.5 70.7 

SVM 82.6 83 84.5 76.6 75 79.9 82.2 81.9 82.8 67.9 

 

4-  HSV color attributes (15 feature columns), 

5-  Texture only features (10 feature columns). 

VI. SYSTEM DEVELOPMENT 

 By using massively parallel hardware features, an 

effective and responsive stand-alone system can be created 

even on commodity hardware. Interestingly, there is ample 

evidence of how compute-intensive tasks in medical 

imaging can be solved successfully by taking advantage of 

GPU architectures, which leads to generous speed-ups [18]. 

The presented cascade classifier relies mainly on 

operations such as image denoising and segmentation, 

which are realized by applying a sequence of highly data-

parallel image operations. Thus, it is expected that an 

efficient GPU implementation can perform both the 

preprocessing and lesion detection phases in merely a 

fraction of a second. Similarly, the feature extraction 

procedures involve RGB to HSV color transforms as well as 

the computation of a number of statistical measures over 

different color channels, which again give good 

opportunities to exploit the embedded fine-grained data-

parallelism. The SVM training phase is the most time-

consuming part, but fortunately this is an offline 

computation; it can be run once, and then the results are 

simply used to classify the extracted feature vectors, which 

is a very efficient operation. 

Therefore, to enable more extensive testing and further 

progress, a natural next step would be to implement an 

efficient parallel version of the proposed cascade classifier 

on a modern handheld device with a powerful GPU, a high 

quality camera, and a suitable display for user interaction. 

Currently, two different types of hardware setups are 

considered. First, smart phones, and in particular iPhone or 

iPad running iOS, as they are widely available and have the 

necessary features. Unfortunately, general-purpose GPU 

computations through a standardized Application 

Programming Interface (API) such as OpenCL is not yet 

publicly available, but access to the GPU is still possible 

through, e.g., OpenGL ES shaders and CoreImage. Second, 

a heterogeneous high-performance research platform, called 

GIMME3+, is currently under development. It comes with 

an AMD quad core CPU with up to 16 GB DDR3 RAM, an 

integrated GPU sharing the CPU memory, and 12 Mgate 

FPGA with >256 MB, DDR2 memory, and a high quality 

stereo camera. The system fits in 70 x 70 mm2 board and it 

can deliver up to 1 TFLOPS at 30 W maximum. This 

system offers much more flexibility in terms of 

reconfigurability and programmability [19]. 

VII. EXPERIMENTAL RESULTS 

Table II illustrates comparison of five classifiers in terms 

of specificity and sensitivity based on different feature 

selection. The first set of features is a combination of RGB 

color and texture attributes (RGB + TEXTURE). The 

results show that the sensitivity of NB is the highest 

(89.2%) but it has the lowest specificity of 51% among the 

selected group. Therefore, the high true positive rate 

(melanoma images were correctly classified) of NB is 

compromised by its relatively low false positive rate (half of 

the benign nevus images were classified as melanoma). In 

the selected group, SVM with the sensitivity of 82.6% and 

specificity of 83% shows a better performance.  

The next set of results compares the same classifiers 

using HSV color attributes and texture features (HSV + 

TEXTURE). Table II, shows that the sensitivity of all 

classifiers is slightly improved specially for KNN (from 

79% to 86.3%) and SVM from (82.6% to 84.5%) but the 

specificity of KNN is reduced from 74% to 69.1% and 83% 

to 76.6% for SVM. Therefore, no significant improvement 

can be observed for these sets of features. The third and 

fourth sets demonstrate the comparison of the selected 

classifiers using solely RGB and HSV color features 

(separate analysis for each set). The NB classifier ranked 

the highest sensitivity but low specificity for both features. 

In the selected group, RF and SVM achieved the highest 

specificity of 82.4% and 81.9% for HSV attributes, 

respectively. Finally, the accuracy of classifiers was 

compared based on texture only features as shown in Table 

II. In this category, accuracy of SVM ranked the first with 

sensitivity of 82.8% and specificity of 67.9%; while NB 

ranked the last with sensitivity of 51.6% and specificity of 

58%. 

To further improve the performance of classification and 

diagnosis, we propose a cascade classifier (Fig. 2) 

consisting of two SVM stages with the following details: 

1)  The input images are divided into two dataset1 and 
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dataset2 using a threshold filter; the filter controls 

only two HSV color feature values; i.e. if either the 

entropy of S and V channels is less than zero. 

Therefore, dataset1 would have more non-melanoma 

images (86 benign and 15 melanoma images) and 

dataset2 contains more melanoma images (109 

benign and 169 melanoma images). 

2)    A SVM classifier (SVM #1) using normalized HSV 

color features (-1, 1) is applied to dataset1 to classify 

images into melanoma and non-melanoma. (HSV 

features were ranked the most effective features 

among other features for SVM #1).  

3)    A second SVM classifier (SVM #2) using a 

combination of color and texture features is applied 

to dataset2. At this stage, correlation-based feature 

ranking method (CFS) is used in order to find the 

most effective features and nine features were 

selected out of 40 features (2 RGB, 2 texture and 5 

HSV features). 

Fig. 2.   Classification using proposed cascade classifier 

Using the proposed cascade classifier, we achieved 

sensitivity of 83.06% and specificity of 90.05%. It was 

found that by employing the proposed cascade classifier, the 

accuracy of the diagnosis system increased. Furthermore, 

the cascade classifier was tested using a new set of data (26 

benign and 16 melanoma images) and achieved the 

sensitivity of 89.28% and specificity of 100%. Moreover, 

the execution time was remarkably improved after applying 

normalization on the data set. 

VIII. CONCLUSION 

This paper reports on preprocessing, feature extraction, 

design and evaluation of classifiers in order to discriminate 

melanoma from non-melanoma lesions. Five different 

classifiers were selected to determine their diagnosis 

accuracy based on color and texture features of clinical 

images. In addition, an interactive object recognition 

method was adopted for optimal lesion border 

segmentation.  Experimental results show that although the 

combination of color and texture may result in more optimal 

classification performance than separate color and texture 

features analysis, the overall performance of the classifier is 

still insufficient for an accurate discrimination. Therefore, 

we proposed a cascade classifier using SVM which achieved 

sensitivity of 83.06% and sensitivity of 90.05% for more 

accurate diagnosis. To implement an efficient parallel 

version of the proposed cascade classifier, two options of 

using smart phones and GIMME3+ platform are being 

considered. 

REFERENCES 

 

[1] T. Diepgen and V. Mahler, "The epidemiology of skin cancer," 

British Journal of Dermatology, vol. 146, pp. 1-6, 2002. 

[2] A. W. Kopf, T. G. Salopek, J. Slade, A. A. Marghoob, and R. S. 

Bart, "Techniques of cutaneous examination for the detection of 

skin cancer," Cancer, vol. 75, pp. 684-690, 1995. 

[3] A. Jemal, S. S. Devesa, P. Hartge, and M. A. Tucker, "Recent 

trends in cutaneous melanoma incidence among whites in the 

United States," Journal of the National Cancer Institute, vol. 93, 

pp. 678-683, 2001. 

[4] L. A. Goldsmith, F. B. Askin, A. E. Chang, C. Cohen, J. P. 

Dutcher, R. S. Gilgor, et al., "Diagnosis and treatment of early 

melanoma," JAMA: The Journal of the American Medical 

Association, vol. 268, pp. 1314-1319, 1992. 

[5] A. Sahu, C. McGoverin, N. Pleshko, K. Sorenmo, and C.-H. Won, 

"Hyperspectral imaging system to discern malignant and benign 

canine mammary tumors," in SPIE Defense, Security, and 

Sensing, 2013, pp. 87190W-87190W-8. 

[6] S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. 

Goto, et al., "New method for detection of gastric cancer by 

hyperspectral imaging: a pilot study," Journal of biomedical 

optics, vol. 18, pp. 026010-026010, 2013. 

[7] K. Korotkov and R. Garcia, "Computerized analysis of pigmented 

skin lesions: A review," Artificial intelligence in medicine, 2012. 

[8] Q. Abbas, M. E. Celebi, I. Fondón García, and M. Rashid, "Lesion 

border detection in dermoscopy images using dynamic 

programming," Skin Research and Technology, vol. 17, pp. 91-

100, 2011. 

[9] T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, 

"Dullrazor®: A software approach to hair removal from images," 

Computers in Biology and Medicine, vol. 27, pp. 533-543, 1997. 

[10] M. E. Celebi, G. Schaefer, H. Iyatomi, and W. V. Stoecker, 

"Lesion border detection in dermoscopy images," Computerized 

medical imaging and graphics: the official journal of the 

Computerized Medical Imaging Society, vol. 33, p. 148, 2009. 

[11] P. Wighton, T. K. Lee, H. Lui, D. I. McLean, and M. S. Atkins, 

"Generalizing Common Tasks in Automated Skin Lesion 

Diagnosis," Information Technology in Biomedicine, IEEE 

Transactions on, vol. 15, pp. 622-629, 2011. 

[12] G. Friedland, K. Jantz, and R. Rojas, "Siox: Simple interactive 

object extraction in still images," in Multimedia, Seventh IEEE 

International Symposium on, 2005, p. 7 pp. 

[13] M. Faal, M. Baygi, M. Hossein, and E. Kabir, "Improving the 

diagnostic accuracy of dysplastic and melanoma lesions using the 

decision template combination method," Skin Research and 

Technology, vol. 19, pp. e113-e122, 2013. 

[14] M. A. Sheha, M. S. Mabrouk, and A. Sharawy, "Automatic 

Detection of Melanoma Skin Cancer using Texture Analysis," 

International Journal of Computer Applications, vol. 42, 2012. 

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. 

H. Witten, "The WEKA data mining software: an update," ACM 

SIGKDD explorations newsletter, vol. 11, pp. 10-18, 2009. 

[16] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support vector 

machines," ACM Transactions on Intelligent Systems and 

Technology (TIST), vol. 2, p. 27, 2011. 

[17] D. de Ridder, J. de Ridder, and M. J. Reinders, "Pattern 

recognition in bioinformatics," Briefings in bioinformatics, vol. 

14, pp. 633-647, 2013. 

[18] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, "Medical 

image processing on the GPU–Past, present and future," Medical 

image analysis, vol. 17, pp. 1073-1094, 2013. 

[19] C. Ahlberg, J. Lidholm, F. Ekstrand, G. Spampinato, M. Ekstrom, 

and L. Asplund, "Gimme-a general image multiview manipulation 

engine," in International Conference on Reconfigurable 

Computing and FPGAs (ReConFig), 2011, pp. 129-134. 

6751


