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Abstract— In clinical practice, cognitive impairment is often 

observed after stroke. The efficacy of rehabilitative 

interventions is routinely assessed by means of a 

neuropsychological test battery. Nowadays, more evidences 

indicate that the neuroplasticity which occurs after stroke can 

be better understood by investigating changes in brain 

networks. In this study we applied advanced methodologies for 

effective connectivity estimation in combination with graph 

theory approach, to define EEG derived descriptors of brain 

networks underlying memory tasks. In particular, we proposed 

such descriptors to identify substrates of efficacy of a Brain-

Computer Interface (BCI) controlled neurofeedback 

intervention to improve cognitive function after stroke. 

Electroencephalographic (EEG) data were collected from two 

stroke patients before and after a neurofeedback-based training 

for memory deficits. We show that the estimated brain 

connectivity indices were sensitive to different training 

intervention outcomes, thus suggesting an effective support to 

the neuropsychological assessment in the evaluation of the 

changes induced by the BCI-based cognitive rehabilitative 

intervention.   

I. INTRODUCTION 

A high percentage of patients surviving to a stroke event 

shows severe deficits in both motor and cognitive functions. 

Cognitive deficits are caused by the damage of information 

flows between different cerebral areas devoted to superior 

cortical functions such as language, memory and attention.  

Currently, the diagnosis of cognitive impairments reported 

in a stroke patient, and the evaluation of their recovery due 

to a specific rehabilitation treatment, are based on a battery 

of neuropsychological tests able to investigate the residual 

functionality of each specific cognitive function.[1].  

However, several neurophysiological studies in the last 

years demonstrated how all the phenomena of neuronal 

plasticity associated to specific cognitive rehabilitation 
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interventions are based on modifications in the structure of 

cerebral networks elicited during such cognitive processes 

[2]. A detailed reconstruction of these connectivity patterns 

could thus improve the understanding of neurophysiological 

bases of such processes and lead to the development of new 

approaches for the evaluation of their modifies related to a 

rehabilitation intervention. 

In this work we proposed the use of advanced 

methodologies for effective connectivity estimation [3],  

combined with a state of the art approach for the extraction 

of salient indexes describing the most important features of 

the investigated networks [4], for the study of cerebral 

mechanisms at the basis of plasticity phenomena induced by 

a new memory rehabilitation treatment based on the use of a 

neurofeedback training.  

The aim was to seek for neurophysiological descriptors 
able to be sensitive to different training intervention 
outcomes and thus to support the neuropsychological 
assessment in evaluating the efficacy of a Brain-Computer 
Interface controlled neurofeedback training to promote an 
improvement in memory function deficits after stroke. 

II. MATERIAL AND METHODS 

A. Adaptive Partial Directed Coherence 

The Partial Directed Coherence (PDC) [5] is a full 

multivariate spectral measure, used to determine the directed 

influences between any given pair of signals in a multivariate 

data set. An adaptive formulation of PDC, based on a time 

varying multivariate autoregressive (MVAR) model, is used 

in the study [3]. The original formulation of PDC was 

modified by including dependence from the time in the 

MVAR coefficients as follows: 









N

k

kj

ij

ij

tf

tf
tf

1

2

2

),(

),(
),(  

(1) 

where t refers to a dependence of the MVAR coefficients 

from time and Λij(f,t) represents the (i,j) entry of the matrix of 

MVAR model coefficients Λ at frequency f and time t. The 

estimation of adaptive time-varying coefficients Λ is 

performed by means of the General Linear Kalman Filter 

whose details were reported in [3], [6].  
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B. Graph Theory Approach 

A graph is a mathematical object consisting in a set of 

vertices (or nodes) linked by means of edges (or 

connections) representing the presence of some sort of 

interaction between the vertices. The structure of the 

investigated graph is described by means of an adjacency 

matrix G whose entries are Gij = 1 if the link exists, 

otherwise Gij = 0 [7].  

Degree. The degree of a node consists in the number of links 

connected directly to it [8]. Degree can be defined as follows 
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where Gij represents the entry (i,j) of the adjacency matrix G. 

Anterior Density. Number of connections exchanged 

between the electrodes located in the anterior part of the 

scalp. Before the computation of this index, it is necessary to 

arrange the adjacency matrix by disposing in the first N1 

rows and N1 columns the connectivity values related to the 

nodes belonging to the anterior scalp area (all the anterior 

electrodes before the central line between the ears) and in the 

second N2 rows and N2 columns the connectivity values 

related to the nodes belonging to the posterior scalp area (all 

the posterior electrodes behind the central line between the 

ears). The formulation of such index is as follows 
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where N represents the number of nodes in the network. 

C. Experimental Design 

Two stroke patients (Patient A, female, 70 years old; right 

hemisphere stroke lesion and Patient B, male, 20 years old, 

left hemisphere stroke) were enrolled in a neurofeedback-

based intervention protocol implemented in BCI close loop, 

to target post-stroke memory disorders. The protocol 

consisted of 10 training sessions in which the patients were 

instructed to voluntarily increase their sensorymotor rhythm 

(SMRs; 12-15 Hz) amplitude over an established threshold. 

Each time the SMR amplitude exceeded the threshold for ≥ 

250 ms, the participant was rewarded by gaining points. The 

threshold was automatically adapted after each run on the 

basis of all previous runs. Cz was used as feedback 

electrode; each training session lasted 25’ (3 min baseline; 6 

feedback runs, 3-min each).  

Before (PRE) and after (POST) the entire rehabilitation 

treatment, EEG scalp signals were recorded (64 channels; 

Brain products, 200Hz sampling frequency) while patients 

were performing the Sternberg memory task [9]. Patients 

declarative memory and the visuo-spatial short-term memory 

deficits were assessed before and after the training by means 

of the Rey Auditory Verbal Learning Test (RAVLT) and the 

Corsi Block Tapping Test (CBTT), respectively [1].   

In the Sternberg task, each trial starts with the presentation 

of a fixation cross in the middle of the screen, for 2 seconds. 

Afterwards, a “memory set” of 4 or 6 digits is presented for 1 

second to allow memorization (encoding phase). The 

presentation of the digits series is followed by another 

fixation cross window presented for 2 seconds (storage 

period). Then a single probe digit is presented for 250 ms 

(retrieval phase) followed by a fixation cross presented for 

1250 ms. Afterwards, the question “yes or no?” appears at 

the screen for a maximum duration of 1500 ms, and the 

participant is required to give an answer about the presence 

(target) or not (no target) of the probe in the memory set. 

The conditions 4/6 digits and target/notarget are randomized 

within the recording session. 36 trials for each condition 

were administered. A detailed description of the timing of 

the experiment for the four different conditions is reported in 

Fig.1. 

 

Figure 1 – Timing of Sternberg task (4 digits, target case) 

D. Effective Connectivity Analysis 

PRE and POST EEG data were band-pass filtered in the 
range [1-45]Hz, depurated from ocular artefacts by means of 
Independent Component Analysis and subjected to a time-
varying connectivity estimation approach [3]. Time-varying 
connectivity patterns were then averaged in the three 
memory phases (encoding, storage and retrieval) and in the 
four frequency bands defined according to the Individual 
Alpha Frequency [10]. A graph theory approach was then 
applied to the achieved networks with the aim to characterize 
their salient properties [8].  

In order to describe modifies in memory processes 
induced by the rehabilitative treatment, statistical 
comparisons, at single subject level, between PRE and POST 
measurements (neuropsychological tests, behavioural data, 
connectivity networks, graph theory indexes) were 
performed. In particular, a dependent samples t-test was 
applied for a significance level of 5% corrected by means of 
False Discovery Rate for preventing type I errors due to 
multiple comparisons.  
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III. RESULTS 

A. Results for Patient A: Positive Outcome 

The Patient A was able to learn the modulation of her SMR 

as indicated by the increase of SMR amplitude from 7.7 μV
2
 

to 8.4 μV
2 
across the 10 training sessions.  

 

 

Figure 1.  a) Bar diagrams reporting the equivalent scores achieved for 

RAVLT and CBTT neuropsychological tests administered to patient A 

before (PRE, red bars) and after (POST, blue bars) the rehabilitation period. 

Equivalent scores below 2 (in yellow) highlight a pathological condition for 

the specific cognitive function investigated by the test. b,c) Anterior 

Density and Left Temporal Degree indexes achieved in Alpha band during 

Sternberg task in PRE (red bars) and POST (blue bars) sessions for the 

representative stroke patient A. The symbol (*) reported above the bars 

highlights a statistical significance between PRE and POST sessions 

(paired t-test; p<0.05). 

Memory Assessment. As reported in Fig.1a, the 

neuropsychological tests revealed a significant improvement 

of the tested memory function after the neurofeedback-based 

training (PRE-POST comparison, paired t-test, p<0.05). 

Equivalent scores for both CBTT and RAVLT tests 

increased from 1 to 3 and 4 respectively, thus indicating a 

transition from a pathological (PRE) to a physiological 

(POST) condition. 

 

Figure 2.  a) Bar diagrams reporting the equivalent scores achieved for 

RAVLT and CBTT neuropsychological tests administered to patient B 

before (PRE, red bars) and after (POST, blue bars) the rehabilitation period. 

Equivalent scores below 2 (in yellow) highlight a pathological condition for 

the specific cognitive function investigated by the test. b,c) Anterior 

Density and Left Temporal Degree indexes achieved in Alpha band during 

Sternberg task in PRE (red bars) and POST (blue bars) sessions for the 

representative stroke patient A. The symbol (*) reported above the bars 

highlights a statistical significance between PRE and POST sessions 

(paired t-test; p<0.05). 

Behavioral Data. Analysis of the behavioral performance 

obtained at the Sternberg task revealed a significant increase 

of correct answers and a significant decrease of the reaction 

time after training (PRE-POST comparison, paired t-test, 

p<0.05).  

EEG derived Brain Network. Analysis of the connectivity 

patterns revealed a significant POST training increase of 

Anterior Density index (Fig.1b) estimated in the alpha band 

only for Storage and Retrieval phases of the Sternberg task 

associated with an increase of Left Temporal Degree index 

(Fig.1c) in alpha band for all the three memory phases 

(Encoding, Storage and Retrieval). 

B. Results for Patient B: Negative Outcome 

The Patient B did not show changes in the amplitude of 

his SMR across the 10 training sessions. The amplitude 

value remained stable around 2.3 μV
2
. 
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Memory Assessment. In this Patient (Fig.2a) we did not find 

significant changes in the memory functions as evaluated by 

means of neuropsychological assessment (PRE-POST 

comparison, paired t-test, p>0.05). Equivalent scores for 

both RAVLT and CBTT tests remained around 1 and 2 

respectively, indicating a persistency of the pathological 

profile. 

Behavioral Data. Similar negative outcome was found for the 

behavioral assessment. Data analysis revealed a decrease of 

the percentage of correct answers and no significant 

difference in reaction time between PRE and POST sessions 

of Sternberg task (paired t-test, p<0.05). 

EEG derived Brain Network. Connectivity pattern analysis 

revealed in Patient B an opposite profile of changes in the 

POST training analysis with respect to what observed in 

Patient A. In fact, a significant decrease in the Anterior 

Density index (Fig.2b) for Storage and Retrieval phases and 

of Left Temporal Degree index (Fig.2c) for the Retrieval 

memory phase both estimated in the alpha band, were 

observed. 

IV. DISCUSSION 

In the present paper we proposed a new approach based 
on the use of advanced methodologies for effective 
connectivity estimation and graph theory for defining a set of 
neurophysiological indexes able to describe the modifies 
related to the plasticity induced by the rehabilitative 
intervention. In particular, we selected as descriptors of 
memory processes at the basis of Sternberg task, the anterior 
density and left temporal degree indexes in alpha band. In 
fact, the importance of fronto-central and left fronto-
temporal areas in Sternberg task has been already 
demonstrated in a preliminary study conducted on healthy 
subjects performing the task [11]. The central executive, 
located in frontal areas of the brain, is in fact responsible for 
coordinating the other working memory subsystems, for 
recruiting and allocating attentive resources to inhibit the 
irrelevant processes and for decoding the information 
associated with the material to keep in memory [12]. The left 
temporal areas are instead responsible for the strategy 
planning, the recoding of the visual material into 
phonological code, the rehearsal of the stimuli by inner 
speech and the provisional storage of the material [13]. 

The results showed in this paper confirmed the role of 
such indexes as valid descriptors of modifies in networks 
elicited during Sternberg task. In particular for both 
representative subjects the variations of such indexes 
between PRE and POST sessions were in agreement with 
behavioral results and above all with the outcome of 
neuropsychological tests on memory functions.  

V. CONCLUSION 

The results showed in the present study demonstrated the 

possibility to use the combination of advanced 

methodologies for effective connectivity estimation and 

graph theory indexes for describing the neurophysiological 

changes in cerebral networks induced by a memory 

rehabilitation treatment. 

The neurophysiological descriptors were sensitive to 

different training intervention outcomes, thus suggesting an 

effective support to the neuropsychological assessment in the 

evaluation of the changes induced by the BCI-based 

cognitive rehabilitative intervention.  
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