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Preface

Throughout the years, the International Semantic Web Conference (ISWC) has firmly
established itself as the premier international forum to discuss and present the latest
advances in fundamental research, innovative technology, and applications of the
Semantic Web, Linked Data, Knowledge Graphs, and Knowledge Processing on the
Web. Now in its 19th edition, ISWC 2020 aims to bring together researchers and
practitioners to present new approaches and findings, share ideas, and discuss expe-
riences. The conference involves researchers with diverse skills and interests, thanks to
the increased adoption of semantic technologies. Furthermore, knowledge-driven
technologies have become increasingly synergetic in many subfields of artificial
intelligence, such as natural language processing and machine learning, and this year’s
call for papers for the main conference tracks was broadened to include such topics to
acknowledge these cooperative research efforts.

This year, the submission process and the conference planning were heavily affected
by the COVID-19 pandemic outbreak. Despite the myriad of challenges faced, ISWC
has maintained its excellent reputation as a premier scientific conference. As a means of
recognizing the difficulties experienced by the community, the submission deadline
was postponed by five weeks, and the decision was made to run the conference as a
virtual event. We received submissions from 51 different countries with Germany, the
USA, China, Italy, and France featuring prominently in the submissions list.

Across the conference, we witnessed a real effort by the community – authors,
Senior Program Committee (SPC) members, Program Committee (PC) members, and
additional reviewers – all of whom were all incredibly supportive of the changes we
had to make to the conference organization, demonstrating remarkable dedication and
energy during the whole process. We also saw the pandemic become an opportunity to
support the scientific community at large, with multiple papers related to COVID-19
research submitted to the conference.

The Research Track, chaired by Jeff Pan and Valentina Tamma, received 170
submissions and ultimately accepted 38 papers, resulting in an acceptance rate of
22.3%. Continuing with the approach taken last year, we adopted a double-blind
review policy, i.e., the authors’ identity was not revealed to the reviewers and vice
versa. Furthermore, reviewers assigned to a paper were not aware of the identity
of their fellow reviewers. We strengthened the composition of the PC, which comprised
34 SPC and 244 regular PC members. An additional 66 sub-reviewers were recruited to
support the review process further.

ISWC has traditionally had a very rigorous reviewing process, which was again
reflected this year. For every submission, several criteria were assessed by the PC
members, including originality, novelty, relevance, and impact of the research contri-
butions; soundness, rigor, and reproducibility; clarity and quality of presentation; and
the positioning to the literature. This year, the vast majority of papers were reviewed by
four reviewers and an SPC member. All of the reviewers engaged in lively and



thorough discussions once the initial reviews had been submitted, and later after the
authors’ responses were made available. Each paper was then discussed among the
Research Track PC chairs and the SPC members to reach a consensus on the final list of
accepted papers. As a further measure to recognize the COVID-19 pandemics’ chal-
lenges, some papers were conditionally accepted, with the SPC members overseeing
them and kindly agreeing to shepherd the papers to address the concerns raised by the
reviewers. The PC chairs would like to express their gratitude to all SPC members, PC
members, and external reviewers for the time, the dedication, and energy they put into
the reviewing process, despite these very challenging circumstances.

The In-Use Track continues the tradition to showcase and learn from the growing
adoption of Semantic Web technologies in concrete and practical settings, demon-
strating the crucial roles that Semantic Web technologies often play in supporting more
efficient, effective interoperable solutions in a range of real-world contexts. This year,
the track chairs Bo Fu and Axel Polleres received 47 paper submissions, and they
accepted 21 papers, leading to an acceptance rate of 44.7%, which reflects a continued
increase in the number of submissions as well as acceptances compared to previous
years, which indicates a growing maturity and adoption of Semantic Web technologies.
The In-Use Track PC consisted of 50 members who engaged in extensive discussions
to ensure a high-quality program, where the committee assessed each submission
following review criteria including novelty and significance of the application,
acceptance and uptake, scalability and technical soundness, as well as the generaliz-
ability of the lessons learned regarding the benefits, risks, and opportunities when
adopting Semantic Web technologies. Each paper received at least three reviews. The
final accepted papers describe successful applications of technologies, including
ontologies, Knowledge Graphs, and Linked Data in a diverse range of domains (e.g.,
digital humanities, pharmaceutics, manufacturing, taxation, and transportation) and
highlight the suitability of Semantic Web methods to advance solutions in various
challenging areas (e.g., adaptive systems, data integration, collaborative knowledge
management, machine learning, and recommendations).

The Resources Track solicited contributions ranging from ontologies and bench-
marks to workflows and datasets over software, services, and frameworks. Many
of these contributions are research enablers. For instance, ontologies are used to lift
data semantically, datasets become core hubs of the Linked Data cloud, and bench-
marks enable others to evaluate their research more systematically. In this year’s
edition, track chairs Claudia d’Amato and Krzysztof Janowicz received 71 submis-
sions, out of which they decided to accept 22. These submissions are well represen-
tative of the spirit of the track and the variety of Semantic Web research. They include
knowledge graphs related to COVID-19, benchmarks for OWL2 ontologies, web
crawlers, and ontologies. The track chairs are incredibly thankful for the timely and
high-quality reviews they received and would like to express their gratitude towards the
SPC members who provided excellent meta-reviews and engaged in discussions to
ensure fair evaluation of all papers.

In light of the reproducibility crisis in natural sciences, we believe that sharing
experimental code, data, and setup will benefit scientific progress, foster collaboration,
and encourage the exchange of ideas. We want to build a culture where sharing results,
code, and scripts are the norm rather than an exception. To highlight the importance in
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this area, Valentina Ivanova and Pasquale Minervini chaired the second edition of the
reproducibility initiative at ISWC. The track’s focus was to evaluate submissions from
the ISWC Research and Resources Tracks’ accepted papers. This year, the ISWC
Reproducibility Track extended the evaluation scope, which now includes two
assessment lines: Reproducibility Line of Assessment for reproducing systems set ups
and computational experiments and Replicability Line of Assessment for evaluating
quantitative laboratory experiments with users. For the Reproducibility Line of
Assessment, two independent members of the PC interacted with the authors to check
the data’s availability, source code, documentation, configuration requirements, and
reproduce the paper’s most important results. For the Replicability Line of Assessment,
one member of the PC interacted with the authors to assess if the authors supplied
enough materials about their work so an interested researcher could re-run the exper-
iments in question. We received 10 submissions from the Resources Track in the
Reproducibility Line of Assessment.

The Industry Track provides industry adopters an opportunity to highlight and share
the key learnings and challenges of applying Semantic Web technologies in real-world
and scalable implementations. This year, the track chairs Freddy Lecue and Jun Yan
received 22 submissions from a wide range of companies of different sizes, and 15
submissions were accepted. The submissions were assessed in terms of quantitative and
qualitative value proposition provided, innovative aspects, impact, and lessons learned,
as well as business value in the application domain; and the degree to which semantic
technologies are critical to their offering. Each paper got one review from an industry
Semantic Web expert, which was checked and validated by the Industry Track chairs.
The final decision was based on the evidence and impact of industrial applications
using/based on Semantic Web technologies.

The Sister Conference Track has been designed as a forum for presentations of
significant Semantic Web-related research results that have been recently presented at
very well-established conferences other than the ISWC. The goal is to give visibility
of these results to the ISWC audience and promote discussions concerning such results.
For this first issue, chaired by Jérôme Euzenat and Juanzi Li, we decided to adopt a
dual strategy, issuing an open call for papers and actively looking for relevant papers to
invite. We invited 22 papers, out of which five applied. Four Additional papers replied
to the call for papers. The authors of one other paper asked to submit, but were
discouraged. Of these, we retained 8 papers. These were published in the past two year
editions of the European Conference on Artificial Intelligence (ECAI), the Association
for the Advancement of Artificial Intelligence (AAAI) conference, the International
Joint Conferences on Artificial Intelligence (IJCAI), the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), and the World Wide Web
(WWW) conference. These papers did not undergo a further peer review, nor are they
republished in the ISWC proceedings. They complemented and added value to the
ISWC 2020 program.

The workshop program, chaired by Sabrina Kirrane and Satya Sahoo, included a
mix of established and relatively new topics. Workshops on established topics included
ontology matching, ontology design and patterns, scalable knowledge base systems,
semantic statistics, querying and benchmarking, evolution and preservation, profiling,
visualization, and Semantic Web for health data management. Workshops on relatively
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new topics included contextualized knowledge graphs, semantics for online misin-
formation detection, semantic explainability, natural language interfaces, research data
management, artificial intelligence technologies for legal documents, the Semantic
Web in practice, and Wikidata. Tutorials on a variety of topics such as knowledge
graph construction, common sense knowledge graphs, pattern-based knowledge base
construction, building large knowledge graphs efficiently, scalable RDF analytics,
SPARQL endpoints, Web API, data science pipelines, semantic explainability, shape
applications and tools, and building mobile Semantic Web applications complemented
the workshop program.

As of ISWC 2020, the Semantic Web Challenges mark their 17th appearance at the
conference. Since last year, all proposed challenges need to provide a benchmarking
platform, on which participants can have their solution validated using objective
measures against fixed datasets. Three exciting challenges were open for submissions:
the SeMantic AnsweR Type prediction task (SMART), the Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab), and the Mining the Web of
HTML-embedded Product Data. For SMART, participants focus on predicting the type
of answers to English questions, which is essential to the topic of question answering
within the natural language processing and information retrieval domain. For SemTab,
participants aimed to convert tables into knowledge graphs to better exploit the
information contained in them. For the Product Data challenge, participants had to
address tasks in the domain of e-commerce data integration, specifically product
matching, and product classification. Challenge entries and lessons learned were dis-
cussed at ISWC 2020.

The Posters and Demos Track is one of the most vibrant parts of every ISWC. This
year, the track was chaired by Kerry Taylor and Rafael Gonçalves, who received a total
of 97 submissions: 58 posters and 39 demos. The PC consisting of 97 members and the
track chairs, accepted 43 posters and 35 demos. The decisions were primarily based on
relevance, originality, and clarity of the submissions.

The conference also included a Doctoral Consortium (DC) Track, chaired by Elena
Simperl and Harith Alani. The DC Track was designed to enable PhD students to share
their work and initial results with fellow students and senior researchers from the
Semantic Web community, gain experience in presenting scientific research, and
receive feedback in a constructive and informal environment. This year, the PC
accepted 6 papers for oral presentations out of 11 submissions. The DC program
focused on allowing the students to work together during multiple activity sessions on
joint tasks, such as articulating research questions or forming an evaluation plan. The
aim was to increase their interactions and receive hands-on guidance from the ISWC
community’s senior members. DC Tracks also included a fantastic invited talk,
delivered by Prof. Payam Barnaghi.

This year, ISWC offered Student Grant Awards to support the full conference’s
registration cost. We acknowledge the Semantic Web Science Association (SWSA) and
the Artificial Intelligence Journal (AIJ) for generously funding this year’s student
grants. The applications were solicited from students attending a higher education
institution, having either an ISWC 2020 paper accepted or just intending to participate
in the conference. Preference was given to the students having a first-authored paper in
either the main conference, the doctoral consortium, a workshop, the poster/demo
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session, or the Semantic Web challenge. This year, given the conference’s virtual
nature and the challenge of increasing student engagement, we planned a unique
program for the Student Engagement and Mentoring Session that was open to all the
student attendees of the conference. The session included three main parts. First, we
hosted career-advising panels, consisting of senior researchers (mentors) with an open
Q&A session on research and career advice. Second, a brainstorming group activity
was planned to engage students in participatory design to creatively combine and
articulate their research ideas for the Semantic Web’s future vision. Lastly, a fun-filled
social virtual party took place to help students socially engage with their peers.

Our thanks go to Elmar Kiesling and Haridimos Kondylakis, our publicity chairs,
and Ioannis Chrysakis and Ioannis Karatzanis, our Web chairs. Together they did an
amazing job of ensuring that all conference activities and updates were made available
on the website and communicated across mailing lists and on social media. Gianluca
Demartini and Evan Patton were the metadata chairs this year, and they made sure that
all relevant information about the conference was available in a format that could be
used across all applications, continuing a tradition established at ISWC many years
ago. We are especially thankful to our proceedings chair, Oshani Seneviratne, who
oversaw the publication of this volume alongside a number of CEUR proceedings for
other tracks.

Sponsorships are essential to realizing a conference and were even more important
this year as additional funds were necessary to put together the virtual conference.
Despite numerous hurdles caused by the unusual situation, our highly committed trio of
sponsorship chairs, Evgeny Kharlamov, Giorgios Stamou, and Veronika Thost, went
above and beyond to find new ways to engage with sponsors and promote the con-
ference to them.

Finally, our special thanks go to the members of the Semantic Web Science
Association (SWSA), especially Ian Horrocks, the SWSA President, for their contin-
uing support and guidance and to the organizers of previous ISWC conferences who
were a constant source of knowledge, advice, and experience.

September 2020 Jeff Z. Pan
Valentina Tamma
Claudia d’Amato

Krzysztof Janowicz
Bo Fu

Axel Polleres
Oshani Seneviratne

Lalana Kagal
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Abstract. We adapt existing approaches for privacy-preserving pub-
lishing of linked data to a setting where the data are given as Descrip-
tion Logic (DL) ABoxes with possibly anonymised (formally: existen-
tially quantified) individuals and the privacy policies are expressed using
sets of concepts of the DL EL. We provide a chacterization of compli-
ance of such ABoxes w.r.t. EL policies, and show how optimal compli-
ant anonymisations of ABoxes that are non-compliant can be computed.
This work extends previous work on privacy-preserving ontology pub-
lishing, in which a very restricted form of ABoxes, called instance stores,
had been considered, but restricts the attention to compliance. The app-
roach developed here can easily be adapted to the problem of computing
optimal repairs of quantified ABoxes.

1 Introduction

Before publishing data concerned with persons, one may want to or be legally
required to hide certain private information [15]. For example, a shady politician
may not want the public to know that he is not only a politician, but also
a businessman, and that he is additionally related to someone who is both a
politician and a businessman. Before they publish data about their boss, his aids
thus need to remove or modify certain information, but being honest themselves,
they want to keep the changes minimal, and they do not want to invent incorrect
information. This poses the question of how to change a given data set in a
minimal way such that all the information to be published follows from the
original one, but certain privacy constraints are satisfied. Basically the same
question is asked in ontology repair [4], with the difference that the information
to be removed is deemed to be erroneous rather than private.

A survey on privacy-preserving data publishing in general is given in [15].
In the context of ontologies, two different approaches for preserving privacy
constraints have been investigated. In the controlled query evaluation framework,
the source data are left unchanged, but an additional layer, called censor, is
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introduced, which decides whether and how queries are answered [9,11,16]. In
contrast, anonymisation approaches modify the source data in a minimal way
such that secrets that should be preserved can no longer be derived [3,12–14]. We
use the approach for privacy-preserving publishing of linked data introduced in
[12,13] as a starting point, where the information to be published is a relational
dataset, possibly with (labelled) null values, and the privacy constraints (called
policy) are formulated as conjunctive queries. A dataset is compliant with such
a policy if the queries have no answers. In our example, the dataset consists of

{Politician(d),Businessman(d), related(d, g),Politician(g),Businessman(g)},

and the policy of the two conjunctive queries Politician(x) ∧ Businessman(x)
and ∃y.related(x, y) ∧ Politician(y) ∧ Businessman(y). Since the first query has
d and g, and the second has d as answers, the dataset does not comply with
this policy. The only anonymisation operation provided in [12,13] for making
the given dataset compliant is to replace constants (naming known individuals,
like d and g) or null values by new null values. In our example, we can achieve
compliance by renaming one occurrence of d and one occurrence of g:

{Politician(d),Businessman(n1), related(d, g),Politician(n2),Businessman(g)}.

Basically, this has the effect of removing Businessman(d) and Politician(g) from
the dataset. While this is one of the optimal anonymisations (w.r.t. minimal
loss of information) that can be obtained with the anonymisation operation
allowed in [12,13], it is not optimal without this restriction. In fact, if we add
related(d, n2) to this anonymisation, then the resulting dataset is still compliant,
and it retains the information that d is related to some politician. The main dif-
ference of our approach to the one in [12,13] is that there only certain operations
are available for anonymising ABoxes, whereas we consider all possible ABoxes
that are implied by the given one. Optimality in [12,13] looks only at the range of
ABoxes that can be obtained using the anonymisation operations defined there.
Thus, optimal anonymisations obtained by the approach in [12,13] may not be
optimal in our sense, as illustrated by the example above.

The aim of this paper is to determine a setting where optimal compliant
anonymisations exist and can effectively be computed. To this purpose, we
restrict the datasets with labelled null values of [12,13] to unary and binary
relations, as usually done in DL ABoxes. In order to express the labelled null
values, we consider an extension of ABoxes, called quantified ABoxes, in which
some of the object names occurring in the ABox are existentially quantified. The
main restriction is, however, that policies are expressed as concepts of the DL
EL, which can be seen as restricted form of conjunctive queries. The policy in
our example can be expressed by the EL concepts Politician �Businessman and
∃related .(Politician � Businessman).

In this setting, we characterise compliance of quantified ABoxes, and use
this characterisation to show how to compute the set of all optimal compliant
anonymisations of a non-compliant quantified ABox by a deterministic algo-
rithm with access to an NP oracle that runs in exponential time. We also show
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that a certain (non-empty) subset of this set can be computed in deterministic
exponential time without oracle. If we are only interested in answers to instance
queries (i.e., which instance relationships follow from the given ABox), we can
replace classical logical entailment by IQ-entailment when defining the notion
of an optimal compliant anonymisation. In this case, the full set of all optimal
compliant anonymisations can be computed in deterministic exponential time,
and the sizes of the anonymisations can be reduced as well.

These results improve on the ones in [3], where a severely restricted form of
ABoxes, called instance stores, was investigated. The ABox in our example is not
an instance store, due to the role assertion between the individuals d and g. Note
that, even in this restricted case, the set of optimal compliant anonymisations
may be exponentially large, which demonstrates that the exponential complexity
of our algorithms cannot be avoided.

In [12,13] and [3], safety is introduced as a strengthening of compliance.
Basically, safety means that the hidden facts should not be derivable even if
additional compliant information is added. The compliant anonymisation in the
above example is not safe since adding Businessman(d) would make it non-
compliant. Due to the space restrictions, we cannot present results for safety
here, though the methods developed in this paper can be extended to deal also
with safety [6].

2 Formal Preliminaries

In this section, we first introduce the logical formalisms considered in this paper,
and then recall some definitions and known results for them.

From a logical point of view, we consider only formulas in the so-called prim-
itive positive (pp) fragment of first-order logic (FO) [20], which consists of exis-
tentially quantified conjunctions of atomic relational formulas. Atomic relational
formulas are of the form R(x1, . . . , xn), where R is an n-ary relation symbol and
the xi are variables. Not all variables occurring in the conjunction need to be
existentially quantified, i.e., a pp formula may contain both quantified and free
variables. We say that the pp formula ∃�x.ϕ1(�x, �z1) entails ∃�y.ϕ2(�y, �z2) if the
following is a valid FO formula: ∀�z1.∀�z2.(∃�x.ϕ1(�x, �z1) → ∃�y.ϕ2(�y, �z2)).

From a database point of view, pp formulas are conjunctive queries (CQs),
where the free variables are usually called answer variables [1]. Entailment of pp
formulas corresponds to CQ containment, which is a well-known NP-complete
problem [10].1 The relational datasets with labelled null values (which generalize
RDF graphs) considered in [12,13] can also be viewed as pp formulas, where the
quantified variables are the labelled null values.

Following the tradition in DL, we consider a signature that contains only
unary and binary relation symbols, respectively called concept names and role
names. Basically, a quantified ABox is just a pp formula over such a signature,
but defined in line with the notation usually employed in the DL community.

1 NP-hardness holds even if only unary and binary relation symbols are available.
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Definition 1. Let Σ be a signature, given by pairwise disjoint, countably infi-
nite sets ΣO, ΣC, and ΣR of object-, concept-, and role names, respectively. A
quantified ABox ∃X.A consists of

– the quantifier prefix ∃X., where X is a finite subset of ΣO whose elements
are called variables, and

– the matrix A, which is a set of assertions of the form A(u) ( concept asser-
tions) and r(u, v) ( role assertions), for A ∈ ΣC, r ∈ ΣR, and u, v ∈ ΣO.

We denote the set of elements of ΣO \ X occurring in A as ΣI(∃X.A), and call
them individual names.

An interpretation I = (ΔI , ·I) of Σ consists of a non-empty set ΔI , called
the domain, and an interpretation function mapping each object name u ∈ ΣO

to an element uI ∈ ΔI , each concept name A ∈ ΣC to a subset AI ⊆ ΔI , and
each role name r ∈ ΣR to a binary relation rI over ΔI . It is a model of the
quantified ABox ∃X.A if there is an interpretation J = (ΔI , ·J ) such that

– ·J coincides with ·I on ΣC, ΣR, and ΣO \ X, and
– uJ ∈ AJ for all A(u) ∈ A and (uJ , vJ ) ∈ rJ for all r(u, v) ∈ A.

Given two quantified ABoxes ∃X.A and ∃Y.B, we say that ∃X.A entails ∃Y.B
(written ∃X.A |= ∃Y.B) if every model of ∃X.A is a model of ∃Y.B. Two quan-
tified ABoxes are equivalent if they entail each other.

Any quantified ABox ∃X.A can be expressed by a pp formula, which existen-
tially quantifies (in arbitrary order) over the variables in X and conjoins all the
assertions from A. The individual names in ΣI(∃X.A) are the free variables of
this pp formula and the variables in X are the quantified variables. Entailment of
quantified ABoxes corresponds to entailment of the corresponding pp formulas,
and thus to containment of conjunctive queries. Consequently, the entailment
problem for quantified ABoxes is NP-complete. It is well known [1,10] that con-
tainment of conjunctive queries can be characterised using homomorphisms. This
characterisation can be adapted to quantified ABoxes as follows.

Henceforth, when considering two quantified ABoxes, say ∃X.A and ∃Y.B,
we assume without loss of generality that they are renamed apart in the sense
that X is disjoint with Y ∪ΣI(∃Y.B) and Y is disjoint with X ∪ΣI(∃X.A). This
also allows us to assume that the two ABoxes are built over the same set of
individuals ΣI := ΣI(∃X.A) ∪ ΣI(∃Y.B). A homomorphism from ∃X.A to ∃Y.B
is a mapping h : ΣI ∪ X → ΣI ∪ Y that satisfies the following conditions:

1. h(a) = a for each individual name a ∈ ΣI;
2. A(h(u)) ∈ B if A(u) ∈ A and r(h(u), h(v)) ∈ B if r(u, v) ∈ A.

Proposition 2. Let ∃X.A,∃Y.B be quantified ABoxes that are renamed apart.
Then, ∃X.A |= ∃Y.B iff there exists a homomorphism from ∃Y.B to ∃X.A.

Traditional DL ABoxes are not quantified. Thus, an ABox is a quantified ABox
where the quantifier prefix is empty. Instead of ∃∅.A we simply write A. The
matrix A of a quantified ABox ∃X.A is such a traditional ABox. Note, however,
that one can draw fewer consequences from ∃X.A than from its matrix A.
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Example 3. Consider the ABox A := {r(a, x), A(x)}, which entails A(x) (where
we view A(x) as a singleton ABox). In contrast, the quantified ABox ∃{x}.A
does not entail A(x) since, due to the existential quantification, the x in ∃{x}.A
stands for an arbitrary object instead of a specific one with name x. This shows
that the quantification allows us to hide information about certain individuals.
We can, however, still derive from ∃{x}.A that a (which is not quantified) is
related with some individual that belongs to A.

Such properties of individuals can be expressed using concept descriptions of the
DL EL.

Definition 4. Given two pairwise disjoint, countably infinite sets ΣC and ΣR

of concept and role names, we define EL atoms and EL concept descriptions by
simultaneous induction as follows.

– An EL atom is either a concept name A ∈ ΣC or an existential restriction
∃r.C, where r ∈ ΣR and C is an EL concept description.

– An EL concept description is a conjunction
� C, where C is a finite set of EL

atoms.

Given an interpretation I = (ΔI , ·I) of a signature Σ containing ΣC and ΣR

(see Definition 1), we extend the interpretation function ·I to EL atoms and
concept descriptions as follows:

– (∃r.C)I := {δ|there exists some γ such that (δ, γ) ∈ rI and γ ∈ CI},
– (

� C)I :=
⋂

C∈C CI , where the intersection over the empty set C = ∅ is ΔI .

Given EL concept descriptions C,D and a quantified ABox ∃X.A, we say that

– C is subsumed by D (written C �∅ D) if CI ⊆ DI holds for all interpreta-
tions I, and C is equivalent to D (written C ≡∅ D) if C �∅ D and D �∅ C.
We write C �∅ D to express that C �∅ D, but C ≡∅ D.

– the object u ∈ ΣO is an instance of C w.r.t. ∃X.A (written ∃X.A |= C(u)) if
uI ∈ CI holds for all models I of ∃X.A.

To make the syntax introduced above more akin to the one usually employed
for EL, we denote the empty conjunction

� ∅ as � (top concept), singleton con-
junctions

�{C} as C, and conjunctions
� C for |C| ≥ 2 as C1 � . . . � Cn, where

C1, . . . , Cn is an enumeration of the elements of C in an arbitrary order. Given
an EL concept description C =

� C, we sometimes denote the set of atoms
C as Conj(C). The set Sub(C) of subconcepts of an EL concept description C is
defined in the usual way, i.e., Sub(A) := {A}, Sub(∃r.C) := {∃r.C} ∪ Sub(C),
and Sub(

� C) := {� C}∪⋃
D∈C Sub(D). We denote the set of atoms occurring in

Sub(C) with Atoms(C). The subscript ∅ in �∅ indicates that no terminological
axioms are available, i.e., we consider subsumption w.r.t. the empty TBox.

It is well-known that EL concept descriptions C can be translated into seman-
tically equivalent pp formulas φC(x) with one free variable x. For example,
the EL concept description C :=

�{A,∃r.
�{B,∃r.

�{A,B}}}, which we can
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also write as A � ∃r.(B � ∃r.(A � B)), translates into the pp formula φC(x) =
∃y.∃z.(A(x) ∧ r(x, y) ∧ B(y) ∧ r(y, z) ∧ A(z) ∧ B(z)). The subsumption and the
instance problems thus reduce to entailment of pp formulas:

C �∅ D iff φC(x) entails φD(x) and ∃X.A |= C(u) iff ∃X.A entails φC(u).

Thus, the homomorphism characterisation of entailment applies to subsumptions
and instances as well. However, since the pp formulas obtained from EL concept
descriptions are tree-shaped, the existence of a homomorphism can be checked
in polynomial time. Thus, the subsumption and the instance problem are in P
[7,19]. The fact that EL concept descriptions can be translated into pp formulas
(and thus quantified ABoxes) also shows that quantified ABoxes can express EL
ABoxes with concept assertions of the form C(u) for complex EL concepts C.

The homomorphism characterisation of subsumption also yields the following
recursive characterisation of subsumption [8].

Lemma 5. Let C,D be EL concept descriptions. Then C �∅ D holds iff the
following two statements are satisfied:

1. A ∈ Conj(D) implies A ∈ Conj(C) for each concept name A;
2. for each existential restriction ∃r.F ∈ Conj(D), there is an existential restric-

tion ∃r.E ∈ Conj(C) such that E �∅ F .

An analogous characterisation can be given for the instance problem w.r.t.
(unquantified) ABoxes.

Lemma 6. Let A be an ABox, D an EL concept description, and u ∈ ΣO. Then
A |= D(u) holds iff the following two statements are satisfied:

1. for each concept name A ∈ Conj(D), the ABox A contains A(u),
2. for each existential restriction ∃r.E ∈ Conj(D), the ABox A contains a role

assertion r(u, v) such that A |= E(v).

Regarding the effect that the existential quantification in quantified ABoxes has
on the instance problem, we generalise the observations made in Example 3.

Lemma 7. If ∃X.A be a quantified ABox, C an EL concept description, x ∈ X,
and a ∈ ΣI(∃X.A), then ∃X.A |= C(a) iff A |= C(a), and ∃X.A |= C(x) iff
C = �.

Note that, according to our definition of the syntax of EL, the only EL concept
description equivalent to � =

� ∅ is � itself. We also need the reduced form Cr

of an EL concept description C [18], which is defined inductively as follows.

– For atoms, we set Ar := A for A ∈ ΣC and (∃r.C)r := ∃r.Cr.
– To obtain the reduced form of

� C, we first reduce the elements of C, i.e.,
construct the set Cr := {Cr|C ∈ C}. Then we build Min(Cr) by removing all
elements D that are not subsumption minimal, i.e., for which there is an E
in the set such that E �∅ D. We then set (

� C)r :=
�
Min(Cr).

Adapting the results in [18], one can show that C ≡∅ Cr and that C ≡∅ D implies
Cr = Dr. In particular, this implies that, on reduced EL concept descriptions,
subsumption is a partial order and not just a pre-order.
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3 Compliant Anonymisations w.r.t. Classical Entailment

A policy is a finite set of EL concept descriptions. Intuitively, a policy says that
one should not be able to derive that any of the individuals of a quantified ABox
belongs to a policy concept.

Definition 8. Let ∃X.A,∃Y.B be quantified ABoxes and P a policy. Then

1. ∃X.A is compliant with P at object u ∈ ΣO if A |= P (u) for each P ∈ P;
2. ∃X.A is compliant with P if it is compliant with P at each element of ΣI =

ΣI(∃X.A);
3. ∃Y.B is a P-compliant anonymisation of ∃X.A if ∃X.A |= ∃Y.B and ∃Y.B is

compliant with P;
4. ∃Y.B is an optimal P-compliant anonymisation of ∃X.A if it is a P-compli-

ant anonymisation of ∃X.A, and ∃X.A |= ∃Z.C |= ∃Y.B implies ∃Y.B |= ∃Z.C
for every P-compliant anonymisation ∃Z.C of ∃X.A.

We require that an anonymisation of a quantified ABox is entailed by it, and
also compare different anonymisations using entailment. Later on, we will look
at a setting where a weaker notion than classical entailment is employed. In the
following we assume without loss of generality that all concepts in a given policy
are reduced and incomparable w.r.t. subsumption. In fact, given a policy P, we
can first reduce the elements of P, i.e., construct the set Pr := {P r | P ∈ P}, and
then build Max(Pr) by removing all elements that are not subsumption maximal.
Any quantified ABox is compliant with P iff it is compliant with Max(Pr). We
call such a policy reduced.

Since the instance problem in EL is in P, compliance can obviously be tested
in polynomial time. However, our main purpose is not to test for compliance of
a given quantified ABox, but to compute compliant anonymisations of it in case
it is not compliant. For this purpose, we need an appropriate characterisation
of compliance. The following lemma is an easy consequence of Lemma 6. Its
formulation uses the notion of a hitting set. Given a set of sets {P1, . . . ,Pn}, a
hitting set of this set is a set H such that H ∩ Pi = ∅ for i ∈ {1, . . . , n}.

Lemma 9. The quantified ABox ∃X.A is compliant with the policy P at u ∈ ΣO

iff there is a hitting set H of {Conj(P )|P ∈ P} such that

– ∃X.A is compliant with H ∩ ΣC at u, i.e., A ∈ H for each concept assertion
A(u) in A, and

– ∃X.A is compliant with {Q|∃r.Q ∈ H} at v for each role assertion r(u, v) in
A.

Computing Compliant Anonymisations. We assume that ΣI(∃X.A) = ∅
since otherwise ∃X.A is trivially compliant, and additionally that the policy
P does not contain � since otherwise no compliant anonymisation exists.

If a quantified ABox is not compliant with P, then the characterisation of
compliance in Lemma 9 tells us that, for some of the individuals a ∈ ΣI, the
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required hitting sets do not exist. To overcome this problem, one needs to remove
some of the (implied) instance relationships for these individuals. Compliance
seed functions tell us which ones to remove.

Definition 10. A compliance seed function (abbrv. csf) on ∃X.A for P is a
mapping s : ΣI → ℘(Atoms(P)) such that the following holds for each a ∈ ΣI:

1. the set s(a) contains only atoms C where A |= C(a),
2. for each P ∈ P with A |= P (a), the set s(a) contains an atom subsuming P ,

i.e., there is some C ∈ s(a) such that P �∅ C, and
3. the set s(a) does not contain �∅-comparable atoms.

Assuming that � ∈ P, a compliance seed function always exists because Conj(P )
is non-empty for every P ∈ P; thus one can take as atom C an arbitrary ele-
ment of Conj(P ) to satisfy Property 2. Property 3 avoids redundancies in seed
functions, and thus reduces their overall number. If it does not hold for the set
of atoms chosen to satisfy Property 2, we can simply remove the atoms that are
not subsumption-maximal from this set.

We show that each compliance seed function induces a compliant anonymisa-
tion. For concept names A ∈ s(a), we simply remove the concept assertion A(a)
from A. For atoms of the form ∃r.C ∈ s(a), we need to modify the role successors
of a such that ∃r.C(a) is no longer entailed. To avoid losing more information
than required, we will not just remove assertions from the objects in A, but also
split such objects into several objects by introducing new variables, as motivated
by the simple example in the introduction.

To be more precise, we will use the elements of the following set as variables.

Y :=

⎧
⎪⎨

⎪⎩
yu,K

∣
∣
∣
∣
∣
∣
∣

u ∈ ΣI ∪ X,K ⊆ {C ∈ Atoms(P)|A |= C(u)},

K does not contain �∅ -comparable atoms, and
if u ∈ ΣI, then K = s(u)

⎫
⎪⎬

⎪⎭

For a ∈ ΣI, there is no variable ya,s(a) in Y . To simplify the following def-
inition, we will, however, use ya,s(a) as a synonym for the individual a, i.e., in
this definition the object names yu,K and yv,L range over the elements of Y and
these synonyms for individual names.

Definition 11. Consider a quantified ABox ∃X.A that is not compliant with
the policy P, a compliance seed function s on ∃X.A for P, and Y as defined
above. The canonical compliant anonymisation ca(∃X.A, s) of ∃X.A induced by
s is the quantified ABox ∃Y.B, where B consists of the following assertions:

1. A(yu,K) ∈ B if A(u) ∈ A and A ∈ K;
2. r(yu,K, yv,L) ∈ B if r(u, v) ∈ A and, for each existential restriction ∃r.Q ∈ K

with A |= Q(v), the set L contains an atom subsuming Q, i.e., there is D ∈ L
such that Q �∅ D.

We illustrate this definition by an abstract and slightly modified version of the
example from the introduction.
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ya,∅

A,B

ya,{B}

A

ya,{A}

B

ya,{A,B}

ya,{∃r.(A�B)}

A,B

ya,{B,∃r.(A�B)}

A

ya,{A,∃r.(A�B)}

B

ya,{A,B,∃r.(A�B)}

yx,∅A,B yx,{B}A yx,{A} B yx,{A,B}

Fig. 1. Canonical anonymisation induced by the seed function s in Example 12.

Example 12. The ABox

∃{x}.{A(a), B(a), A(x), B(x), r(a, x)}

is not compliant with the policy P := {A � B,∃r.(A � B)}. In fact, it entails
both (A � B)(a) and (∃r.(A � B))(a). There exist only two csfs s and t, where
s(a) = {A,∃r.(A � B)} and t(a) = {B,∃r.(A � B)}. Figure 1 shows the canonical
anonymisation induced by s. The gray node represents the individual a, and all
other nodes are variables introduced by the construction. Since there is only one
role name r, we did not label the edges connecting objects with it. The canonical
anonymisation induced by t differs from the one shown in Fig. 1 in that a then
corresponds to ya,{B,∃r.(A�B)}.

We want to show that ca(∃X.A, s) is a compliant anonymisation of ∃X.A. This
is an easy consequence of the following lemma.

Lemma 13. Let ca(∃X.A, s) = ∃Y.B be the canonical compliant anonymisation
of ∃X.A induced by the compliance seed function s, and consider an EL concept
description Q and an EL atom C. The following properties hold:

1. The mapping h : ΣI ∪ Y → ΣI ∪ X : yu,K �→ u is a homomorphism from
ca(∃X.A, s) to ∃X.A.

2. If A |= Q(u), then B |= Q(yu,K) for all objects u ∈ ΣI ∪X and yu,K ∈ ΣI ∪Y .
3. If C ∈ K, then B |= C(yu,K) for all objects yu,K ∈ ΣI ∪ Y .

Proof. 1. It is easy to verify that the mapping h defined in the formulation of
the lemma is a homomorphism. In particular, since ya,s(a) is synonym for a, this
mapping maps every individual a ∈ ΣI to itself.
2. It is an easy consequence of the homomorphism characterization of the
instance problem that B |= C(yu,K) implies A |= C(h(yu,K)). Since h(yu,K) = u,
the second property stated in the lemma is the contrapositive of this fact.
3. The third property can be shown by induction on the role depth of C, using the
definition of ca(∃X.A, s) and Property 2. If C = A ∈ ΣC, then A ∈ K implies
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A(yu,K) ∈ B, and thus B |= A(yu,K). Now, assume that C = ∃r.Q and that
r(yu,K, yv,L) ∈ B. We must show that B |= Q(yv,L). If A |= Q(v), then this is a
consequence of Property 2. If A |= Q(v), then the definition of ca(∃X.A, s) yields
an atom D ∈ L such that Q �∅ D. Since the homomorphism characterisation of
subsumption implies that the role depth of D is then bounded by the role depth
of Q, induction yields B |= D(yv,L), and thus B |= Q(yv,L). ��
Proposition 14. Let ∃X.A be a quantified ABox that does not comply with the
policy P, and s a compliance seed function on ∃X.A for P. Then ca(∃X.A, s) is
entailed by ∃X.A and complies with P.

Proof. Property 1 of Lemma 13 and Proposition 2 yield ∃X.A |= ca(∃X.A, s).
For compliance of ca(∃X.A, s) = ∃Y.B with P, let P ∈ P and a = ya,s(a) ∈ ΣI.
If A |= P (a), then Property 2 of Lemma 13 yields B |= P (a). Otherwise, there is
an atom C ∈ s(a) such that P �∅ C, by the definition of a csf. Then Property 3
of Lemma 13 yields B |= C(a), and thus B |= P (a). ��
This proposition shows that the set

CA(∃X.A,P) := {ca(∃X.A, s)|s is a csf on ∃X.A for P}
contains only compliant anonymisations of ∃X.A. This set actually covers all
compliant anonymisations of ∃X.A in the following sense.

Proposition 15. If ∃Z.C is a P-compliant anonymisation of ∃X.A, then there
exists a csf s such that ca(∃X.A, s) |= ∃Z.C.

Proof. Since ∃X.A |= ∃Z.C, Proposition 2 implies the existence of a homomor-
phism h from ∃Z.C to ∃X.A. We define the mapping f : ΣI ∪Z → ℘(Atoms(P)):

f(u) := Max�∅({C ∈ Atoms(P)|C |= C(u) and A |= C(h(u))}).

We claim that the restriction s of f to ΣI is a csf. Assume that a ∈ ΣI and P ∈ P
with A |= P (a). Since ∃Z.C complies with P, there is an atom C ∈ Conj(P ) such
that C |= C(a). Thus, h(a) = a yields that either C ∈ f(a) or there is C ′ ∈ f(a)
with C �∅ C ′. In both cases, Property 2 of Definition 10 is satisfied. Since the
subsumption-maximal elements of a set of reduced atoms are incomparable w.r.t.
subsumption,2 Property 3 is satisfied as well.

Let ∃Y.B := ca(∃X.A, s). To show that ∃Y.B |= ∃Z.C, we prove that the
mapping k : ΣI ∪ Z → ΣI ∪ Y where k(u) := yh(u),f(u) is a homomorphism. If
A(u) ∈ C, then A(h(u)) ∈ A since h is a homomorphism, but A ∈ f(u). Thus
A(yh(u),f(u)) ∈ B. If r(u, v) ∈ C, we must show that r(yh(u),f(u), yh(v),f(v)) ∈ B.
Assume that ∃r.Q ∈ f(u) and A |= Q(h(v)). The former yields C |= (∃r.Q)(u),
and thus C |= Q(v). Thus, there is an atom D ∈ Conj(Q) with A |= D(h(v)) and
C |= D(v). This implies that either D itself or an atom subsuming D belongs to
f(v). In both cases, we obtain r(yh(u),f(u), yh(v),f(v)) ∈ B. ��
2 Recall that we assume that policies are reduced, which implies that the elements of
Atoms(P) are reduced, and thus subsumption is a partial order on them.
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The next theorem is a straightforward consequence of the last two propositions.

Theorem 16. The set CA(∃X.A,P) is a set of P-compliant anonymisations of
∃X.A that contains (up to equivalence) all optimal P-compliant anonymisations
of ∃X.A. It can be computed in (deterministic) exponential time. There is a
(deterministic) algorithm with access to an NP oracle that computes the set of
all optimal P-compliant anonymisations of ∃X.A and runs in exponential time.

Proof. There are exponentially many csfs, which can be computed in exponen-
tial time. For each csf, the canonical anonymisation induced by it can also
be computed in exponential time. Assume now that ∃Z.C is an optimal P-
compliant anonymisation of ∃X.A. By Proposition 15, there exists a csf s such
that ca(∃X.A, s) |= ∃Z.C. Since ∃Z.C is optimal, ∃Z.C and ca(∃X.A, s) are equiv-
alent. The non-optimal elements of CA(∃X.A,P) can be removed from this set
by applying entailment tests. These tests can be realised using an NP oracle. ��
Note that this complexity result considers combined complexity, where the policy
P is assumed to be part of the input. For data complexity, where the policy is
assumed to be fixed, our approach shows that all optimal compliant anonymisa-
tions can be computed in polynomial time with an NP oracle.

At the moment, it is not clear whether the set of optimal compliant anonymi-
sations of a quantified ABox can be computed in exponential time. The reason
why our approach does not run in exponential time without an NP oracle is that
the elements of CA(∃X.A,P) to which the oracle is applied may be exponen-
tially large in the size of ∃X.A. Thus, one may ask whether one can design an
approach that only generates optimal compliant anonymisations. We answer this
question affirmatively in the rest of this section, but unfortunately the approach
we introduce does not produce all of them.

Computing Optimal Compliant Anonymisations. The main idea under-
lying our approach is to define an appropriate partial order on csfs.

Definition 17. Let ∃X.A be a quantified ABox that does not comply with the
policy P, and s, t csfs on ∃X.A for P. We say that s is covered by t (written
s ≤ t) if for each a ∈ Σ and C ∈ s(a) there is an atom D ∈ t(a) s.t. C �∅ D.

It is easy to see that this relation is a partial order. Reflexivity and transitivity
are trivial. To show anti-symmetry, assume that s ≤ t and t ≤ s. It suffices to
prove that s(a) ⊆ t(a) holds for all a ∈ ΣI; the inclusion in the other direction
can be shown symmetrically. Assume that C ∈ s(a). Since s ≤ t, this implies
that there is an atom D ∈ t(a) with C �∅ D. But then t ≤ s yields an atom
C ′ ∈ s(a) such that D �∅ C ′. Since the elements of s(a) are incomparable
w.r.t. subsumption, this yields C = C ′, and thus C ≡∅ D. Since both atoms are
assumed to be reduced, we obtain C = D, which yields C ∈ t(a).

To show that entailment between canonical anonymisations implies covering
for the compliance seed functions inducing them, we need the following lemma.
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Lemma 18. Let ca(∃X.A, s) = ∃Y.B be the canonical compliant anonymisation
of ∃X.A induced by the csf s, C ∈ Atoms(P), and yu,K ∈ Y a variable. If
A |= C(u) and B |= C(yu,K), then K contains an atom subsuming C.

Proof. We prove the lemma by induction on the role depth of C. In the base
case, C = A ∈ ΣC. Thus, A |= C(u) implies that A(u) ∈ A, and thus A ∈ K
would yield A(yu,K) ∈ B, contradicting the assumption that B |= C(yu,K).

Induction step: if C = ∃r.D, then A |= C(u) implies that there is an object v
such that r(u, v) ∈ A and A |= D(v). Assume that K does not contain an atom
subsuming ∃r.D. We claim that this implies the existence of a variable yv,L ∈ Y
such that r(yu,K, yv,L) ∈ B. Since K does not contain an atom subsuming ∃r.D,
we know that, for every existential restriction ∃r.Q ∈ K, we have D �∅ Q, and
thus Conj(Q) must contain an atom CQ such that D �∅ CQ. Let L consist of
the subsumption-maximal elements of the set {CQ|∃r.Q ∈ K and A |= Q(v)}.
Then we have yv,L ∈ Y and r(yu,K, yv,L) ∈ B. Since B |= C(yu,K), this implies
that B |= D(yv,L), and thus there is an atom C ′ ∈ Conj(D) with A |= C ′(v)
and B |= C ′(yv,L). Induction yields an atom C ′′ ∈ L such that C ′ �∅ C ′′.
Together with C ′ ∈ Conj(D), this shows that D �∅ C ′′. However, by construc-
tion, L contains only atoms CQ such that D �∅ CQ. This contradiction shows
that our assumption that K does not contain an atom subsuming C = ∃r.D
cannot hold. ��
Proposition 19. Let s and t be csfs on ∃X.A for P. Then the entailment
ca(∃X.A, s) |= ca(∃X.A, t) implies that s ≤ t.

Proof. Let ∃Y.B = ca(∃X.A, s) and ∃Z.C = ca(∃X.A, t), and assume that
∃Y.B |= ∃Z.C. We must show for all a ∈ ΣI that C ∈ s(a) implies the existence
of an atom D ∈ t(a) with C �∅ D. By the definition of csfs and Property 3 of
Lemma 13, C ∈ s(a) implies A |= C(a) and B |= C(a). Since ∃Y.B |= ∃Z.C, the
latter yields C |= C(a). By Lemma 18, t(a) contains an atom subsuming C. ��
As an easy consequence, this proposition shows that the set

CAmin(∃X.A,P) := {ca(∃X.A, s)|s is a ≤-minimal csf on ∃X.A for P}

contains only optimal compliant anonymisations of ∃X.A.

Theorem 20. The set CAmin(∃X.A,P) is non-empty, contains only optimal
P-compliant anonymisation of ∃X.A, and can be computed in exponential time.

Proof. Since policies are assumed not to contain �, the set of all csfs is non-
empty. Since it is a finite set, it must contain minimal elements w.r.t. the partial
order ≤. Assume the ca(∃X.A, s) ∈ CAmin(∃X.A,P) is not optimal. Then there
is a compliant anonymisation ∃Z.C of ∃X.A such that ∃Z.C |= ca(∃X.A, s), but
∃Z.C and ca(∃X.A, s) are not equivalent. By Proposition 15, there exists a csf
t such that ca(∃X.A, t) |= ∃Z.C. But then we have ca(∃X.A, t) |= ca(∃X.A, s),
which yields t ≤ s by Proposition 19. Since s = t would imply that ∃Z.C and



Computing Compliant Anonymisations 15

ca(∃X.A, s) are equivalent, we actually have t < s, which contradicts the min-
imality of s. The set CAmin(∃X.A,P) can be computed in exponential time,
by first generating all csfs, then removing the non-minimal ones, and finally
generating the induced canonical anonymisations. ��
A simple consequence of this theorem is that one optimal compliant anonymi-
sation can always be computed in exponential time w.r.t. combined complexity,
and polynomial time w.r.t. data complexity. One simply needs to compute a
minimal csf s, and then build ca(∃X.A, s). In contrast to computing all optimal
compliant anonymisations, this process does not need an NP oracle. In general,
however, not all optimal compliant anonymisations of ∃X.A are contained in
CAmin(∃X.A,P). Technically, the reason is that the converse of Proposition 19
need not hold. The following gives a concrete example where CAmin(∃X.A,P)
is not complete.

Example 21. Consider the policy P := {∃r.A} and the non-compliant ABox
∃∅.A, with A := {r(a, b), A(b)}. The only minimal csf is the function s defined
as s(a) := {∃r.A} and s(b) := ∅. In ca(∃∅.A, s), the individual b still belongs to
A, but the role assertions r(a, b) is no longer there.

Consider the (non-minimal) csf t defined as t(a) := {∃r.A} and t(b) := {A}.
In ca(∃∅.A, t), the individual b does not belong to A, but the role assertions
r(a, b) is still there. Thus, ca(∃∅.A, s) and ca(∃∅.A, t) are incomparable w.r.t.
entailment, although s < t. We claim that ca(∃∅.A, t) is optimal. Otherwise, we
can use Proposition 15 to obtain a csf t′ < t such that ca(∃∅.A, t′) |= ca(∃∅.A, t).
However, the only csf smaller than t is s, which yields a contradiction.

4 Compliant Anonymisations w.r.t IQ-Entailment

Since we are only interested in instance queries (i.e., checking which instance
relationships C(a) hold for individuals a in a quantified ABox), it makes sense to
consider a different notion of entailment and equivalence based on which instance
relationships are implied by the ABox. Switching to this alternative notion of
entailment allows us to improve on the results shown in the previous section.

Definition 22. Let ∃X.A and ∃Y.B be quantified ABoxes. We say that ∃X.A
IQ-entails ∃Y.B (written ∃X.A |=IQ ∃Y.B) if ∃Y.B |= C(a) implies ∃X.A |= C(a)
for all EL concept descriptions C and all a ∈ ΣI. Two quantified ABoxes are IQ-
equivalent if they IQ-entail each other.

Obviously, ∃X.A |= ∃Y.B implies ∃X.A |=IQ ∃Y.B, but the converse need not
be true. Whereas entailment can be characterised using homomorphisms, IQ-
entailment is characterised using simulations. Similar results have been shown
in the context of interpolation and separability, but for interpretations rather
than ABoxes (see, e.g., Lemma 4 in [21]). A simulation from ∃X.A to ∃Y.B is a
relation S ⊆ (ΣI ∪ X) × (ΣI ∪ Y ) that satisfies the following properties:

1. (a, a) ∈ S for each individual name a ∈ ΣI;
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2. if (u, v) ∈ S and A(u) ∈ A, then A(v) ∈ B;
3. if (u, v) ∈ S and r(u, u′) ∈ A, then there exists an object v′ ∈ ΣI ∪ Y such

that (u′, v′) ∈ S and r(v, v′) ∈ B.

Proposition 23. Let ∃X.A and ∃Y.B be quantified ABoxes that are renamed
apart. Then, ∃Y.B |=IQ ∃X.A iff there exists a simulation from ∃X.A to ∃Y.B.

Proof. To prove the only-if direction, we define an appropriate relation S and
show that it is a simulation:

S := {(u, v)|A |= C(u) implies B |= C(v) for each EL concept description C}

1. Since ∃Y.B IQ-entails ∃X.A, S contains the pair (a, a) for each a ∈ ΣI.
2. Let (u, v) ∈ S and A(u) ∈ A. Then A |= A(u), which yields B |= A(v) by the

definition of S. By Lemma 6, this implies that B contains A(v).
3. Let (u, v) ∈ S and consider a role assertion r(u, u′) ∈ A. It follows that

A entails ∃r.�(u) and so B entails ∃r.�(v), i.e., v has at least one r-successor
in B. Since B is finite, v can only have finite number of r-successors in B. We
use a diagonalization argument. Assume that, for each r(v, v′) ∈ B, there is
an EL concept description Cv′ such that A |= Cv′(u′) and B |= Cv′(v′). Define
C :=

�{Cv′ |r(v, v′) ∈ B}, which is a well-defined EL concept description since
v has only finitely many r-successors. Then A |= C(u′), and so A |= ∃r.C(u).
We conclude that B |= ∃r.C(v), and so there must exist r(v, v′) ∈ B such that
B |= C(v′), which contradicts our construction of C. It follows that there
must exist an r-successor v′ of v in B such that A |= C(u′) implies B |= C(v′)
for all EL concept descriptions C, and thus the pair (v, v′) is in S and the
role assertion r(u′, v′) is in B.

For the if direction, assume that S is a simulation from ∃X.A to ∃Y.B. If
∃X.A |= C(a), then there is a homomorphism from the pp formula φC(a) corre-
sponding to C(a) to ∃X.A such that a is mapped to a. The composition of this
homomorphism with S yields a simulation from φC(a) to ∃Y.B. Since φC(a) is
tree-shaped, the existence of such a simulation implies the existence of a homo-
morphism from φC(a) to ∃Y.B, which yields ∃Y.B |= C(a). ��
Since the existence of a simulation can be decided in polynomial time [17],
this proposition implies that IQ-entailment can be decided in polynomial time.
We redefine the notions “compliant anonymisation” and “optimal compliant
anonymisation” by using IQ-entailment rather than entailment.

Definition 24. Let ∃X.A,∃Y.B be quantified ABoxes and P a policy. Then

1. ∃Y.B is a P-compliant IQ-anonymisation of ∃X.A if ∃X.A |=IQ ∃Y.B and
∃Y.B is compliant with P;

2. ∃Y.B is an optimal P-compliant IQ-anonymisation of ∃X.A if it is a P-com-
pliant IQ-anonymisation of ∃X.A, and ∃X.A |=IQ ∃Z.C |=IQ ∃Y.B implies
∃Y.B |=IQ ∃Z.C for every P-compliant IQ-anonymisation ∃Z.C of ∃X.A.
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We can show that CA(∃X.A,P) covers all compliant IQ-anonymisations of ∃X.A
w.r.t. IQ-entailment. The proof of this result is similar to the proof of Proposition
15 (see [5] for an explicit proof).

Proposition 25. If ∃Z.C is a P-compliant IQ-anonymisation of ∃X.A, then
there exists a csf s such that ca(∃X.A, s) |=IQ ∃Z.C.

As in Sect. 3, this implies that CA(∃X.A,P) contains (up to IQ-equivalence)
all optimal compliant IQ-anonymisations. Since IQ-entailment can be decided
in polynomial time, removing non-optimal elements from CA(∃X.A,P) can now
be realised in exponential time without NP oracle.

Theorem 26. Up to IQ-equivalence, the set of all optimal P-compliant IQ-
anonymisations of ∃X.A can be computed in exponential time.

This theorem shows that using IQ-entailment improves the complexity of our
algorithm for computing optimal compliant anonymisations. For data com-
plexity, it is even in P. Moreover, in the setting of IQ-entailment the set
CAmin(∃X.A,P) turns out to be complete. Indeed, the converse of Proposition
19 holds as well in this setting (see [5] for a detailed proof).

Proposition 27. Let s and t be compliance seed functions on ∃X.A for P. Then
we have ca(∃X.A, s) |=IQ ca(∃X.A, t) iff s ≤ t.

Proof sketch. The only-if direction is analogous to the proof of Proposition 19.
Conversely, we can show that the relation S consisting of the pairs (yu,K, yu,L)
such that, for each C ∈ L, there is some D ∈ K with C �∅ D, is a simulation
(see [5] for details). ��

As a consequence, we obtain the following improvement over Theorem 26.

Theorem 28. Up to IQ-equivalence, the set CAmin(∃X.A,P) consists of all
optimal P-compliant IQ-anonymisations of ∃X.A, and it can be computed in
exponential time.

Thus, it is not necessary to compute the whole set CA(∃X.A,P) first
and then remove non-optimal elements. One can directly compute the set
CAmin(∃X.A,P). Using IQ-entailment also allows us to reduce the sizes of the
elements of this set. In fact, it is easy to see that removing variables not reach-
able by a role path from an individual results in a quantified ABox that is
IQ-equivalent to the original one. For the canonical anonymisation depicted in
Fig. 1, this yields an ABox that, in addition to the individual a (i.e., the grey
node) contains only the three variables yx,{B}, yx,{A}, and yx,{A,B} that are
directly reachable from a. In practice, one would not first generate all variables
and then remove the unreachable ones, but generate only the reachable ones in
the first place.
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5 Conclusions

We have developed methods to hide private information (as expressed by a policy
P) while modifying the knowledge base (given by a quantified ABox ∃X.A)
in a minimal way. More formally, we have shown how to compute the set of
all optimal P-compliant anonymisations of ∃X.A. In general, this set contains
exponentially many anonymisations that may be of exponential size. As already
shown in [3] for the restricted case of an EL instance store, this exponential blow-
up cannot be avoided in the worst case, both regarding the number and the size
of the anonymisations. These exponential lower bounds hold both for the case
of classical entailment and of IQ-entailment (since for instance stores this does
not make a difference). Nevertheless, we have shown that using IQ-entailment
leads to a more efficient algorithm (exponential time instead of exponential time
with NP oracle), and may result in considerably smaller anonymisations. One
may ask why we did not restrict our attention to IQ-entailment altogether. The
reason is that, even if one considers only policies expressed by EL concepts, one
may still want to query the ABoxes using general conjunctive queries. ABoxes
that are IQ-equivalent, but not equivalent, may yield different answers to CQs.
An interesting topic for future research is to see whether our approach can be
extended to policies expressed by CQs rather than EL concepts. A first step in
this direction could be to extend the policy language to ELI or acyclic CQs.

There is a close connection between computing a compliant anonymisation
of and repairing an ABox [4]. Basically, if C ∈ P, then we want to avoid con-
clusions of the form C(a) for all individuals a, whereas repairs want to get rid
of conclusions C(a) for a specific individual a. It is easy to see how to adapt
our notion of a compliance seed function to the repair setting. By making small
modifications to our framework, we can thus also compute optimal repairs [5].

As mentioned in the introduction, achieving compliance of a knowledge base
is not always sufficient. Instead, one sometimes wants to ensure the more strin-
gent requirement of safety [3,12,13]. Currently, we investigate how to extend
the results presented in this paper from compliance to safety. Although adapt-
ing our approach to deal with the case of safety is not trivial, and requires the
development of new methods, the basic formal setup for both problems remains
unchanged. In particular, the results for compliance presented here are impor-
tant stepping-stones since our approach basically reduces safety to compliance
w.r.t. a modified policy [6]. Another interesting topic for future research is to
consider compliance and safety of ABoxes w.r.t. terminological knowledge. With-
out additional restrictions, optimal compliant anonymisations (repairs) need no
longer exist [4], but we conjecture that our methods can still be applied if the
terminological knowledge is cycle-restricted in the sense introduced in [2].
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18. Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44613-3
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Abstract. Question Answering systems are generally modelled as a
pipeline consisting of a sequence of steps. In such a pipeline, Entity
Linking (EL) is often the first step. Several EL models first perform
span detection and then entity disambiguation. In such models errors
from the span detection phase cascade to later steps and result in a drop
of overall accuracy. Moreover, lack of gold entity spans in training data is
a limiting factor for span detector training. Hence the movement towards
end-to-end EL models began where no separate span detection step is
involved. In this work we present a novel approach to end-to-end EL by
applying the popular Pointer Network model, which achieves competitive
performance. We demonstrate this in our evaluation over three datasets
on the Wikidata Knowledge Graph.

Keywords: Entity Linking · Question Answering · Knowledge
Graphs · Wikidata

1 Introduction

Knowledge Graph based Question Answering (KGQA) systems use a background
Knowledge Graph to answer queries posed by a user. Let us take the following
question as an example (Fig. 1): Who founded Tesla?. The standard sequence
of steps for a traditional Entity Linking system is as follows: The system tries
to identify Tesla as a span of interest. This task is called Mention Detection
(MD) or Span Detection. Then an attempt is made to link it to the appropriate
entity in the Knowledge Base. In this work we focus on Knowledge Bases in the
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Fig. 1. Illustrating the use of Entity Linking in KGQA system.

form of graphs, hence the entity linker in this case tries to link Tesla to the
appropriate node in the graph. For a human, it is evident that the question is
looking for a person’s name who created an organisation named Tesla, since the
text contains the relation founded. Hence, it is important that the entity linker
understands the same nuance and ignores other entity nodes in the Knowledge
Graph which also contain Tesla in their labels, e.g., Nikola Tesla (Q9036,
Serbian-American inventor), tesla (Q163343, SI unit) when consider-
ing the example of the Wikidata knowledge graph. The task of ignoring the
wrong candidate nodes, and identifying the right candidate node instead, is
called Entity Disambiguation (ED). The cumulative process involving Mention
Detection and Entity Disambiguation is called Entity Linking (EL).

Typically, the MD and ED stages are implemented by different machine learn-
ing models which require separate training. Especially for the MD part, sentences
with marked entity spans are a requirement. In practice, such data is not eas-
ily available. Moreover, errors introduced by the MD phase cascade on to the
ED phase. Hence, a movement towards end-to-end Entity Linkers began [11,26].
Such systems do not require labelled entity spans during training. In spite of the
benefits of end-to-end models some challenges remain: Due to the lack of a span
detector at the initial phase, each word of the sentence needs to be considered
as an entity candidate for the disambiguation which leads to the generation of
a much larger number of entity candidates. To re-rank these candidates a large
amount of time is consumed, not just in processing the features of the candidates,
but also in compiling their features.

In this work, we remain cognizant of these challenges and design a system
that completely avoids querying the Knowledge Graph during runtime. PNEL
(Pointer Network based Entity Linker) instead relies on pre-computed and pre-
indexed TransE embeddings and pre-indexed entity label and description text
as the only set of features for a given candidate entity. We demonstrate that this
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produces competitive performance while maintaining lower response times when
compared to another end-to-end EL system, VCG [26].

While there is a wide variety of KG embeddings to choose from, we confine
our experiments to pre-computed TransE over Wikidata supplied by PyTorch-
BigGraph [13]. Our choice was based on the popularity and ease of availability
of these embeddings.

Traditionally, the Knowledge Graphs of choice for Question Answering
research have been DBpedia [12], Freebase [2] and YAGO [27]. However, in recent
times Wikidata [30] has received significant attention owing to the fact that it
covers a large number of entities (DBpedia 6M1, Yago 10M2, Freebase 39M3,
Wikidata 71M4). DBpedia, YAGO and Wikidata source their information from
Wikipedia, however DBpedia and YAGO filter out a large percentage of the orig-
inal entities, while Wikidata does not. While Wikidata has a larger number of
entities it also adds to noise which is a challenge to any EL system. Wikidata also
allows direct edits leading to up-to-date information, while DBpedia depends on
edits performed on Wikipedia. Freebase has been discontinued and a portion of
it is merged into Wikidata [19]. Moreover DBpedia now extracts data directly
from Wikidata, apart from Wikipedia5 [8]. Hence, we decide to base this work
on the Wikidata knowledge graph and the datasets we evaluate on are all based
on Wikidata.

In this work our contributions are as follows:

1. PNEL is the first approach that uses the Pointer Network model for solving
the End-to-End Entity Linking problem over Knowledge Graphs, inspired
by the recent success of pointer networks for convex hull and generalised
travelling salesman problems.

2. We are the first work to present baseline results for the entire LC-QuAD
2.0 [5] test set.

3. Our approach produces state-of-the-art results on the LC-QuAD 2.0 and Sim-
pleQuestions datasets.

The paper is organised into the following sections: (2) Related Work, outlin-
ing some of the major contributions in entity linking used in question answering;
(3) PNEL, where we discuss the pointer networks and the architecture of PNEL
(4) Dataset used in the paper (5) Evaluation, with various evaluation criteria,
results and ablation test (6) Error Analysis (7) Discussion and future direction.

1 https://wiki.dbpedia.org/develop/datasets/latest-core-dataset-releases.
2 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/.
3 https://developers.google.com/freebase/guide/basic concepts#topics.
4 https://www.wikidata.org/wiki/Wikidata:Statistics.
5 https://databus.dbpedia.org/dbpedia/wikidata.

https://wiki.dbpedia.org/develop/datasets/latest-core-dataset-releases
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://developers.google.com/freebase/guide/basic_concepts#topics
https://www.wikidata.org/wiki/Wikidata:Statistics
https://databus.dbpedia.org/dbpedia/wikidata
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2 Related Work

DBpedia Spotlight [16] is one of the early works for entity linking over DBpedia.
It first identifies a list of surface forms and then generates entity candidates.
It then disambiguates the entity based on the surrounding context. In spite of
being an early solution, it still remains one of the strongest candidates in our own
evaluations, at the same time it has low response times. Compared to PNEL it
lags behind in precision significantly. S-MART [31] generates multiple regression
trees and then applies sophisticated structured prediction techniques to link
entities to resources. S-MART performs especially well in recall on WebQSP in
our evaluations and the reason seems to be that they perform more complex
information extraction related tasks during entity linking, e.g., “Peter Parker”
span fetches “Stan Lee”6. However compared to PNEL it has low precision.

The journey towards end-to-end models which combine MD and ED in one
model started with attempts to build feedback mechanisms from one step to the
other so that errors in one stage can be recovered by the next stage. One of the
first attempts, Sil et al. [25], use a popular NER model to generate extra number
of spans and let the linking step take the final decisions. Their method however
depends on a good mention spotter and the use of hand engineered features. It
is also unclear how linking can improve their MD phase. Later, Luo et al. [15]
developed competitive joint MD and ED models using semi-Conditional Ran-
dom Fields (semi-CRF). However, the basis for dependency was not robust, using
only type-category correlation features. The other engineered features used in
their model are either NER or ED specific. Although their probabilistic graphi-
cal model allows for low complexity learning and inference, it suffers from high
computational complexity caused by the usage of the cross product of all possi-
ble document spans, NER categories and entity assignments. Another solution
J-NERD [18] addresses the end-to-end task using engineered features and a prob-
abilistic graphical model on top of sentence parse trees. EARL [6] makes some
rudimentary attempts towards a feedback mechanism by allowing the entity and
relation span detector to make a different choice based on classifier score in the
later entity linking stage, however it is not an End-to-End model.

Sorokin et al. [26] is possibly the earliest work on end-to-end EL. They use
features of variable granularities of context and achieve strong results on Wiki-
data that we are yet unable to surpass on WebQSP dataset. More recently,
Kolitsas et al. [11] worked on a truly end-to-end MD (Mention Detection) and
ED (Entity Disambiguation) combined into a single EL (Entity Linking) model.
They use context-aware mention embeddings, entity embeddings and a prob-
abilistic mention - entity map, without demanding other engineered features.
Additionally, there are a few recent works on entity linking for short text on
Wikidata [30], which is also the area of focus of PNEL. OpenTapioca [4] works
on a limited number of classes (humans, organisations and locations) when com-
pared to PNEL, but is openly available both as a demo and as code and is

6 https://github.com/UKPLab/starsem2018-entity-linking/issues/8#issuecomment-
566469263.

https://github.com/UKPLab/starsem2018-entity-linking/issues/8#issuecomment-566469263
https://github.com/UKPLab/starsem2018-entity-linking/issues/8#issuecomment-566469263
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lightweight. Falcon 2.0 [22] is a rule based EL solution on Wikidata which is
openly available and fast, but it requires manual feature engineering for new
datasets. Sevigli et al. [24] performs ED using KG entity embeddings (Deep-
Walk [20]) on Wikidata, but they rely on an external MD solution. PNEL and
Sorokin et al. both use TransE entity embeddings and also perform MD and
ED end-to-end in a single model. Sorokin et al. has a more complex architec-
ture when compared to PNEL. Apart from using TransE embeddings, they fetch
neighbouring entities and relations on the fly during EL, which is a process PNEL
intentionally avoids to maintain lower response times. KBPearl [14] is a recent
work on KG population which also targets entity linking as a task for Wikidata.
It uses dense sub-graphs formed across the document text to link entities. It is
not an end-to-end model but is the most recent work which presents elaborate
evaluation on Wikidata based datasets, hence we include it in evaluations.

We also include QKBFly [17] and TagME [7] in our evaluations because
KBPearl includes results for these systems on a common dataset (LC-QuAD
2.0). QKBFly performs on-the-fly knowledge base construction for ad-hoc text.
It uses a semantic-graph representation of sentences that captures per-sentence
clauses, noun phrases, pronouns, as well as their syntactic and semantic depen-
dencies. It retrieves relevant source documents for entity centric text from mul-
tiple sources like Wikipedia and other news websites. TagME is an older system
that spots entity spans in short text using a Lucene index built out of anchor text
in Wikipedia. It then performs a mutual-voting based disambiguation process
among the candidates and finishes with a pruning step.

3 PNEL

PNEL stands for Pointer Network based Entity Linker. Inspired by the use case
of Pointer Networks [29] in solving the convex hull and the generalised travelling
salesman problems, this work adapts the approach to solving entity linking.
Conceptually, each candidate entity is a point in an euclidean space, and the
pointer network finds the correct set of points for the given problem.

3.1 Encoding for Input

The first step is to take the input sentence and vectorise it for feeding into the
pointer network. We take varying length of n-grams, also called n-gram tiling
and vectorise each such n-gram.

Given an input sentence S = {s1, s2...sn} where sk is a token (word) in the
given sentence, we vectorise sk to vk, which is done in the following manner:

1. Take the following 4 n-grams: [sk], [sk−1, sk], [sk, sk+1], [sk−1, sk, sk+1].
2. For each such n-gram find the top L text matches in the entity label database.

We use the OKAPI BM25 algorithm for label search.
3. For each such candidate form a candidate vector comprising of the concate-

nation of the following features
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Who founded Tesla ?
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Fig. 2. The red and green dots represent entity candidate vectors for the given question.
The green vectors are the correct entity vectors. Although they belong to the same
entity they are not the same dots because they come from different n-grams. At each
time step the Pointer Network points to one of the input candidate entities as the
linked entity, or to the END symbol to indicate no choice. (Color figure online)

(a) Rkl = Rank of entity candidate in text search (length 1), where 1 ≤ l ≤ L.
(b) ngramlen = The number of words in the current n-gram under consid-

eration where 1 ≤ ngramlen ≤ 3 (length 1).
(c) k = The index of the token sk (length 1).
(d) posk = A one-hot vector of length 36 denoting the PoS tag of the word

under consideration. The 36 different tags are as declared in the Penn
Treebank Project [23] (length 36).

(e) EntEmbedkl = TransE Entity Embedding (length 200).
(f) SentFTEmbed = fastText embedding of sentence S (length 300), which

is a mean of the embeddings of the tokens of S. In some sense this carries
within it the problem statement.

(g) TokFTEmbedk = fastText embedding of token sk (length 300). Addition
of this feature might seem wasteful considering we have already added the
sentence vector above, but as shown in the ablation experiment in Table 6,
it results in an improvement.

(h) DescriptionEmbedkl = fastText embedding of the Wikidata description
for entity candidate kl (length 300).
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Fig. 3. The word “Francisco” is vectorised in the following manner: 4 n-grams repre-
sented by the underlines are considered and searched against an entity label database.
The top 50 search results are depicted for each of the n-grams resulting in 200 can-
didates. For the entity Q72495, for example, we fetch its TransE embedding, add its
text search rank, n-gram length, word index position as features. Additionally we also
append the fastText embedding for “Francisco” and the entire fastText embedding
for the sentence (average of word vectors) to the feature. We then append the fast-
Text embeddings for the label and description for this entity. Hence we get a 1142
dimensional vector Vk120 corresponding to entity candidate Q72495. For all 200
candidate entities for “Francisco”, we have a sequence of two hundred 1142 dimensional
vectors as input to the pointer network. For the sentence above which has 7 words, this
results in a final sequence of 7 × 200 = 1400 vectors each of length 1142 as input to
our pointer network. Any one or more of these vectors could be the correct entities.

(i) TextMatchMetrickl = This is a triple of values, each ranging from 0 to
100, that measures the degree of text match between the token under con-
sideration sk and the label of the entity candidate kl. The three similarity
matches are simple ratio, partial ratio, and token sort ratio. In case of sim-
ple ratio the following pair of text corresponds to perfect match: "Elon
Musk" and "Elon Musk". In case of partial ratio the following pair of
text corresponds to a perfect match: "Elon Musk" and "Musk". In case
of token sort ratio the following pair of text corresponds to a perfect
match: "Elon Musk" and "Musk Elon" (length 3).

For each token sk we have an expanded sequence of token vectors, comprising
of 4 n-grams, upto 50 candidates per n-gram, where each vector is of length
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Fig. 4. K = Number of search candidates per n-gram. On the left: K vs F1 score on a
set of 100 WebQSP test questions, with average word length of 6.68. F1 is maximum
for K = 40 and 50. On the right: K vs time taken for PNEL to return a response. The
relationship appears to be close to linear.

1142. Hence each token sk is transformed into 4 × 50 = 200 vectors, each a
1142 length vector (see Fig. 3). We may denote this transformation as sk →
{vk1, vk2....vk200}. Note that there may be less than 50 search results for a given
token so there may be less than 200 entity candidates in the final vectorisation.
Each of these vk vectors is an entity candidate (Fig. 3).

3.2 Training

For the entire sentence, a sequence of such vectors is provided as input to the
pointer network. During training the labels for the given input sequence are the
index numbers of the correct entities in the input sequence. Note that the same
entity appears multiple times because of n-gram tiling. During each decoding
time step the decoder produces a softmax distribution over the input sequence
(see Fig. 2), which in our implementation has a maximum sequence length of
3000. Additionally the BEGIN, END, PAD symbols add to a total of 3003 symbols
to softmax over. The cross entropy loss function is averaged over the entire
output sequence of labels and is considered the final loss for the entire input
sequence.

3.3 Network Configuration

We use a single layer bi-LSTM [9] pointer network with 512 hidden units in a
layer and an attention size of 128. Addition of an extra layer to the network
did not result in an improvement. The Adam optimizer [10] was used with an
initial learning rate of 0.001. A maximum input sequence length of 3000 and a
maximum output length of 100 were enforced.
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4 Datasets

For reasons explained in Sect. 1 we evaluate on Wikidata based datasets. We use
the following:

– WebQSP: We use the dataset released by Sorokin et al. [26] where the
original WebQSP dataset by Yih et al. [32], which was based on Freebase,
has been adapted and all Freebase IDs converted to their respective Wiki-
data IDs. WebQSP contains questions that were originally collected for the
WebQuestions dataset from web search logs (Berant et al. [1]). WebQSP is
a relatively small dataset consisting of 3098 train 1639 test questions which
cover 3794 and 2002 entities respectively. The dataset has a mixture of sim-
ple and complex questions. We found some questions in the test set that had
failed Freebase to Wikidata entity ID conversions. We skipped such questions
during PNEL’s evaluation.

– SimpleQuestions: To test the performance of PNEL on simple questions,
we choose SimpleQuestions [3], which as the name suggests, consists only
of Simple Questions. The training set has more than 30,000 questions while
the test set has close to 10,000 questions. This dataset was also originally
based on Freeebase and later the entity IDs were converted to corresponding
Wikidata IDs. However out of the 10,000 test questions only about half are
answerable on the current Wikidata.

– LC-QuAD 2.0: Unlike the first two datasets, LC-QuAD 2.0 [5] is based on
Wikidata since its inception and is also the most recent dataset of the three.
It carries a mixture of simple and complex questions which were verbalised by
human workers on Amazon Mechanical Turk. It is a large and varied dataset
comprising of 24180 train questions and 6046 test questions which cover 33609
and 8417 entities respectively.

5 Evaluation

In this section we evaluate our proposed model(s) against different state-of-the-
art methods for KGQA. As notations, PNEL-L stands for PNEL trained on
LC-QuAD 2.0. PNEL-W and PNEL-S stand for PNEL trained on WebQSP and
SimpleQuestions respectively.

5.1 Experiment 1: EL over KBPearl Split of LC-QuAD 2.0 Test Set

Objective: The purpose of this experiment is to benchmark PNEL against a
large number of EL systems, not just over Wikidata, but also other KBs.

Method: The results are largely taken from KBPearl. PNEL is trained on the
LC-QuAD 2.0 training set. For a fair comparison, the systems are tested on
the 1294 questions split of test set provided by KBPearl. We train PNEL for 2
epochs.
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Remarks: Results for Falcon 2.0 and OpenTapioca were obtained by accessing
their live API. The original Falcon 2.0 paper provides an F1 of 0.69 on 15%
of randomly selected questions from a combination of the train and test splits
of the dataset. Several systems in the table below do not originally produce
Wikidata entity IDs, hence the authors of KBpearl have converted the IDs to
corresponding Wikidata IDs.

Analysis: As observed from the results in Table 1, PNEL outperforms all other
systems on this particular split of LC-QuAD 2.0 dataset.

Table 1. Evaluation on KBPearl split of LC-QuAD 2.0 test set

Entity linker Precision Recall F1

Falcon [21] 0.533 0.598 0.564

EARL [6] 0.403 0.498 0.445

Spotlight [16] 0.585 0.657 0.619

TagMe [7] 0.352 0.864 0.500

OpenTapioca [4] 0.237 0.411 0.301

QKBfly [17] 0.518 0.479 0.498

Falcon 2.0 0.395 0.268 0.320

KBPearl-NN 0.561 0.647 0.601

PNEL-L 0.803 0.517 0.629

5.2 Experiment 2: EL over Full LC-QuAD 2.0 Test Set

Objective: The objective of this experiment is to compare systems that return
Wikidata IDs for the EL task.

Method: We train PNEL on LC-QuAD 2.0 train set and test on all 6046
questions in test set. PNEL was trained for 2 epochs.

Remarks: Results for competing systems were obtained by accessing their live
APIs. We choose systems that return Wikidata IDs.

Analysis: As seen in Table 2, similar to the previous experiment, PNEL per-
forms the best on the LC-QuAD 2.0 test set.

5.3 Experiment 3: EL over WebQSP Test Set

Objective: Benchmark against an end-to-end model that returns Wikidata IDs.
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Table 2. Evaluation on LC-QuAD 2.0 test set

Entity linker Precision Recall F1

VCG [26] 0.516 0.432 0.470

OpenTapioca [4] 0.237 0.411 0.301

Falcon 2.0 0.418 0.476 0.445

PNEL-L 0.688 0.516 0.589

Method: Train and test PNEL on WebQSP train and test sets respectively.
PNEL is trained for 10 epochs.

Remarks: Results for the competing systems were taken from Sorokin et al.
[26].

Table 3. Evaluation on WebQSP

Entity linker Precision Recall F1

Spotlight 0.704 0.514 0.595

S-MART [31] 0.666 0.772 0.715

VCG [26] 0.826 0.653 0.730

PNEL-L 0.636 0.480 0.547

PNEL-W 0.886 0.596 0.712

Analysis: As seen in Table 3 PNEL comes in third best in this experiment,
beaten by VCG and S-MART. S-MART has high recall because it performs
semantic information retrieval apart from lexical matching for candidate gener-
ation, as explained in Sect. 2. VCG is more similar to PNEL in that it is also an
end-to-end system. It has higher recall but lower precision than PNEL.

5.4 Experiment 4: EL over SimpleQuestions Test Set

Objective: Benchmark systems on the SimpleQuestions Dataset.

Method: Train and test PNEL on SimpleQuestions train and test sets respec-
tively. PNEL is trained for 2 epochs.

Remarks: We extended the results from Falcon 2.0 [22].
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Table 4. Evaluation on SimpleQuestions

Entity linker Precision Recall F1

OpenTapioca [4] 0.16 0.28 0.20

Falcon 2.0 0.38 0.44 0.41

PNEL-L 0.31 0.25 0.28

PNEL-S 0.74 0.63 0.68

Analysis: As seen in Table 4, PNEL outperforms the competing systems both
in precision and recall for SimpleQuestions dataset. As observed, PNEL has the
best precision across all datasets, however, recall seems to be PNEL’s weakness.

5.5 Experiment 5: Candidate Generation Accuracy

Objective: The purpose of this experiment is to see what percentage of correct
entity candidates were made available to PNEL after the text search phase. This
sets a limit on the maximum performance that can be expected from PNEL.

Remarks: PNEL considers each token a possible correct entity, but since it
only considers top-K text search matches for each token, it also loses potentially
correct entity candidates before the disambiguation phase. The results in Table 5
are for K = 30.

Table 5. Entity Candidates available post label search

Dataset PNEL (%)

WebQSP 73

LC-QuAD 2.0 82

SimpleQuestions 90

5.6 Experiment 6: Ablation of Features Affecting Accuracy

Objective: We present an ablation study on the WebQSP dataset to understand
the importance of different feature vectors used in the model.

Analysis: As seen in Table 6 it appears that the most important feature is
the TransE entity embedding, which implicitly contains the entire KG structure
information. On removing this feature there is drop in F1 score from 0.712 to
0.221. On the other hand the least important feature seem to be the description
embedding. Removal of this feature merely leads to a drop in F1 from 0.712
to 0.700. A possible reason is that the Text Search Rank potentially encodes
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Table 6. Ablation test for PNEL on WebQSP test set features

Sentence
embed.

Word
embed.

Descript.
embed.

TransE PoS tags Text
rank

n-gram
length

Text
match
metric

F1
score

� � � � � � � � 0.712

� � � � � � � 0.554

� � � � � � � 0.666

� � � � � � � 0.700

� � � � � � � 0.221

� � � � � � � 0.685

� � � � � � � 0.399

� � � � � � � 0.554

� � � � � � � 0.698

significant text similarity information, and TransE potentially encodes other
type and category related information that description often adds. Removal of
the Text Search Rank also results in a large drop in F1 reaching to 0.399 from
0.712.

5.7 Experiment 7: Run Time Evaluation

Objective: We look at a comparison of run times across the systems we have
evaluated on

Table 7. Time taken per question on the WebQSP dataset of 1639 questions

System Seconds Target KG

VCG 8.62 Wikidata

PNEL 3.14 Wikidata

Falcon 2.0 1.08 Wikidata

EARL 0.79 DBpedia

TagME 0.29 Wikipedia

Spotlight 0.16 DBpedia

Falcon 0.16 DBpedia

OpenTapioca 0.07 Wikidata

Analysis: QKBFly and KBPearl are off-line systems, requiring separate steps
for entity candidate population and entity linking, hence they are not evaluated
in Table 7. VCG and PNEL are end-to-end systems while the others are modular
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systems. VCG and PNEL were installed locally on a machine with the following
configuration: 256 GB RAM, 42 core E5-2650 Intel Xeon v4@2.2 GHz. No GPU
was present on the system during run time. For VCG and PNEL, the times taken
for first runs were recorded, where the corresponding databases such as Virtuoso
and Elasticsearch, were started just before the evaluation. This was done so
that the times were not affected by caching from previous runs. For systems
except PNEL and VCG, the times mentioned in the table were collected from
API calls to their hosted services. It must be considered that, due to network
latency, and other unknown setup related configurations at the service end, the
times may not be comparably directly. PNEL performs faster than VCG since it
avoids querying the KG during runtime, and instead relies on pre-computed KG
embeddings. PNEL also uses lesser number of features than VCG. A visible trend
is that the more accurate system is slower, however Spotlight is an exception,
which performs well in both speed and accuracy.

6 Error Analysis

A prominent feature of PNEL is high precision and low recall. We focus on loss
in recall in this section. For LC-QuAD 2.0 test set consisting of 6046 questions,
the precision, recall and F-score are 0.688, 0.516 and 0.589 respectively. We cat-
egorise the phases of loss in recall in two sections 1) Failure in the candidate
generation phase 2) Failure in re-ranking/disambiguation phase. When consid-
ering the top 50 search candidates during text label search, it was found that
75.3% of the correct entities were recovered from the entity label index. This
meant that before re-ranking we had already lost 24.7% recall accuracy. During
re-ranking phase, a further 23.7% in absolute accuracy was lost, leading to our
recall of 0.516. We drill down into the 23.7% absolute loss in accuracy during
re-ranking, attempting to find the reasons for such loss, since this would expose
the weaknesses of the model. In the plots below, we consider all those questions
which contained the right candidate entity in the candidate generation phase.
Hence, we discard those questions for our analysis, which already failed in the
candidate generation phase.

Table 8. Comparison of PNEL’s performance with respect to number of entities in a
question.

Entity count Questions count Precision Recall F1

1 3311 0.687 0.636 0.656

2 1981 0.774 0.498 0.602

3 88 0.666 0.431 0.518

It is observed in Table 8 that recall falls as the number of entities per question
rises. It must not be concluded however, that PNEL fails to recognise more
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than an entity per question. There were 375 questions with multiple entities
where PNEL was able to link all the entities correctly. In Fig. 5 we observe that
the recall does not exhibit significant co-relation with either the length of the
question, or the length of entity label. The recall remains stable. There seems
to be some co-relation between the amount of data available for a given length
of question, and the recall on it. It appears that the model performs better on
question lengths it has seen more often during training.

Fig. 5. Plots of recall variation versus 1) Length of Question 2) Length of entity span
3) Frequency of questions with the given lengths in the dataset (scaled down by a factor
of 1000)

7 Discussion and Future Work

In this work we have proposed PNEL, an end-to-end Entity Linking system based
on the Pointer Network model. We make no modifications to the original Pointer
Network model, but identify its utility for the problem statement of EL, and
successfully model the problem so the Pointer Network is able to find the right
set of entities. We evaluate our approach on three datasets of varying complexity
and report state of the art results on two of them. On the third dataset, WebQSP,
we perform best in precision but lag behind in recall. We select such features
that require no real time KG queries during inference. This demonstrates that
the Pointer Network model, and the choice of features presented in this work,
result in a practical and deployable EL solution for the largest Knowledge Graph
publicly available - Wikidata.

For future work: PNEL being based on the LSTM cell inevitably processes
tokens sequentially increasing the response times. This limitation could be over-
come by using some variant of the Transformer model [28] instead, which is not
only a powerful model but also able to process tokens in parallel. As a future
work we would also like to explore different entity embedding techniques and
investigate which characteristics make an embedding suitable for the entity link-
ing task.
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Abstract. Despite their large-scale coverage, cross-domain knowledge
graphs invariably suffer from inherent incompleteness and sparsity. Link
prediction can alleviate this by inferring a target entity, given a source
entity and a query relation. Recent embedding-based approaches operate
in an uninterpretable latent semantic vector space of entities and rela-
tions, while path-based approaches operate in the symbolic space, making
the inference process explainable. However, these approaches typically
consider static snapshots of the knowledge graphs, severely restricting
their applicability for evolving knowledge graphs with newly emerging
entities. To overcome this issue, we propose an inductive representation
learning framework that is able to learn representations of previously
unseen entities. Our method finds reasoning paths between source and
target entities, thereby making the link prediction for unseen entities
interpretable and providing support evidence for the inferred link.

Keywords: Explainable link prediction · Emerging entities · Inductive
representation learning

1 Introduction

Recent years have seen a surge in the usage of large-scale cross-domain knowl-
edge graphs [17] for various tasks, including factoid question answering, fact-
based dialogue engines, and information retrieval [2]. Knowledge graphs serve
as a source of background factual knowledge for a wide range of applications
[6]. For example, Google’s knowledge graph is tightly integrated into its search
engine, while Apple adopted Wikidata as a source of background knowledge for
its virtual assistant Siri. Many such applications deal with queries that can be
transformed to a structured relational query of the form (es, rq, ?), where es is
the source entity and rq is the query relation. For example, the query “Who is
the director of World Health Organization?” can be mapped to the structured
query (World Health Organization, director, ?) while executing it on a knowl-
edge graph. Unfortunately, due to the inherent sparsity and incompleteness of
knowledge graphs, answers to many such queries cannot be fetched directly from
the existing data, but instead need to be inferred indirectly.
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Furthermore, with the ever-increasing volume of the knowledge graphs, the
number of emerging entities also increases. Many of these emerging entities have
a small number of known facts at the time they are integrated into the knowledge
graphs. Therefore, their connectivity to pre-existing entities in the knowledge
graph is often too sparse (Fig. 1).

Fig. 1. A subgraph of NELL with Tom Cable as an emerging entity. The solid-lined
circles and arrows represent the existing entities and relations. The dashed-lined circles
and arrows denote an emerging entity and some of its known relationships to other
existing entities. The unknown relationships that need to be inferred through inductive
representation learning and explainable reasoning are shown as dotted arrows.

In recent years, embedding-based models [28] have widely been adopted to
infer missing relationships in a knowledge graph. In such embedding-based mod-
els, distributed vector representations of entities and relations in the knowledge
graph are used to learn a scoring function f(es, rq, eo) in a latent embedding
space to determine the plausibility of inferring a new fact. However, these mod-
els are lacking in terms of the interpretability and explainability of the decisions
they make. One does not obtain any clear explanation of why a specific inference
is warranted. For example, from the embeddings of facts (A, born in, California)
and (California, located in, US), the fact (A, born in, US) could be deduced. But
logical composition steps like this one are learned implicitly by knowledge graph
embeddings. This means that this approach cannot offer such logical inference
paths as support evidence for an answer.

In contrast, path-based reasoning approaches operate in the symbolic space
of entities and relations, leveraging the symbolic compositionality of the knowl-
edge graph relations, thus making the inference process explainable. This means
that the user can inspect the inference path, consisting of existing edges in
the knowledge graph, as support evidence. To this end, purely symbolic and
fast rule-mining systems, e.g., PRA [22], AMIE+ [9], and AnyBURL [25] may
attain a level of performance that is comparable to embedding-based methods,
but neglect many of the statistical signals exploited by the latter. To leverage
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the advantages of both path-based and embedding-based models, some neural-
symbolic approaches [10,11,13,16,26] have as well been proposed. Some recent
path-based reasoning approaches [4,23] formulate the path-finding problem as a
Partially Observable Markov Decision Process (POMDP), in which the model
learns a policy to find an inference path from the source entity to the target
entity using REINFORCE [41], a policy gradient based reinforcement learning
algorithm.

However, most of these approaches are studied with static snapshots of the
knowledge graphs, thus severely restricting their applicability for a dynamically
evolving knowledge graph with many emerging entities. Except for the purely
symbolic rule-mining systems mentioned above, most existing approaches that
depend on learning latent representations of entities require that all entities are
present during training. Therefore, these models are incapable of learning rep-
resentations of arbitrary newly emerging entities not seen during training. Some
recent approaches such as HyTE [5] and DyRep [34] have considered dynami-
cally evolving temporal knowledge graphs. However, similar to embedding-based
models, these models are not explainable.

To overcome this issue, we propose a joint framework for representation learn-
ing and reasoning in knowledge graphs that aims at achieving inductive node
representation learning capabilities applicable to a dynamic knowledge graph
with many emerging entities while preserving the unique advantage of the path-
based approaches in terms of explainability. For inductive node representation
learning, we propose a variant of Graph Transformer encoder [21,47] that aggre-
gates neighborhood information based on its relevance to the query relation. Fur-
thermore, we use policy gradient-based reinforcement learning (REINFORCE)
to decode a reasoning path to the answer entity. We hypothesize that the induc-
tively learned embeddings provide prior semantic knowledge about the underly-
ing knowledge environment to the reinforcement learning agent.

We summarize the contributions of this paper as follows: (1) We introduce a
joint framework for inductive representation learning and explainable reasoning
that is capable of learning representations for unseen emerging entities during
inference by leveraging only a small number of known connections to the other
pre-existing entities in the knowledge graph. Our approach can not only infer
new connections between an emerging entity and any other pre-existing entity
in the knowledge graph, but also provides an explainable reasoning path as
support evidence for the inference. (2) We introduce new train/development/test
set splits of existing knowledge graph completion benchmark datasets that are
appropriate for inductive representation learning and reasoning.

2 Related Work

2.1 Embedding-Based Methods

Knowledge graph completion can be viewed as an instance of the more general
problem of link prediction in a graph [39]. Due to advances in representation
learning, embedding-based methods have become the most popular approach.
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Such methods learn d-dimensional distributed vector representations of entities
and relations in a knowledge graph. To this end, the translation embedding model
TransE [3] learns the embedding of a relation as a simple translation vector from
the source entity to the target entity such that es + er ≈ eo. Its variants, e.g.,
TransH [40], TransR [24], TransD [18] consider similar objectives. Tri-linear mod-
els such as DistMult [45], along with its counterpart ComplEx [35] in the com-
plex embedding space, use a multiplicative scoring function f(s, r, o) = eᵀ

sWreo,
where Wr is a diagonal matrix representing the embedding of relation r. Convo-
lutional neural network models such as ConvE [7] and ConvKB [27] apply convo-
lutional kernels over entity and relation embeddings to capture the interactions
among them across different dimensions. These models obtain state-of-the-art
results on the benchmark KBC datasets. However, none of the above-mentioned
approaches deliver the full reasoning paths that license specific multi-hop infer-
ences, and hence they either do not support multi-hop inference or do not support
it in an interpretable manner. Moreover, these approaches assume a static snap-
shot of the knowledge graph to train the models and are not straightforwardly
extensible to inductive representation learning with previously unseen entities.

2.2 Path-Based Methods

An alternative stream of research has explored means of identifying specific paths
of inference, which is the task we consider in this paper. To this end, the Path
Ranking Algorithm (PRA) [22] uses random walks with restarts for multi-hop
reasoning. Following PRA, other approaches [10,11,13,26] also leverage random
walk based inference. However, the reasoning paths that these methods follow
are gathered by random walks independently of the query relation.

Recent approaches have instead adopted policy gradient based reinforcement
learning for a more focused exploration of reasoning paths. Policy gradient based
models such as DeepPath [44], MINERVA [4], MINERVA with Reward Shaping
and Action Dropout [23], and M-Walk [31] formulate the KG reasoning task as
a Partially Observable Markov Decision Process and learn a policy conditioned
on the query relation. Such reasoning techniques have also been invoked for
explainable recommendation [8,42,43] and explainable dialogue systems [46].
Although the inference paths are explainable in these models (if reward shaping
is omitted), there may be a substantial performance gap in comparison with
embedding-based models.

Another sub-category of path-based methods, e.g., AMIE+ [9], AnyBURL
[25], and RuleS [16] proceed by mining Horn rules from the the existing knowl-
edge graphs for link prediction. The body of a Horn rule provides the reasoning
path. Although these approaches are capable of fast rule mining and can eas-
ily be applied to unseen emerging entities, the quality of the learned rules are
affected by the sparsity of the knowledge graph.
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2.3 Graph Convolution-Based Methods

Graph Convolution Networks (GCNs) can be used for node classification in a
homogeneous graph [20]. They are an instance of Message Passing Neural Net-
works (MPNN), in which the node representations are learned by aggregating
information from the nodes’ local neighborhood. GraphSAGE [15] attempts to
reduce the memory footprint of GCN by random sampling of the neighborhood.
Graph Attention Networks (GAT) [38] are a variant of GCN that learn node
representations as weighted averages of the neighborhood information. However,
GCN and its variants such as GAT and GraphSAGE are not directly applica-
ble for link prediction in knowledge graphs, as they ignore the edge (relation)
information for obtaining the node embeddings. To alleviate this issue, R-GCNs
operate on relational multi-graphs [29], but, similar to GCNs, R-GCNs also need
all nodes of the graphs to be present in memory and therefore are not scalable
to large-scale knowledge graphs. Hamaguchi et al. [14] proposed a model for
computing representations for out-of-KG entities using graph neural networks.
The recent models such as SACN [30] and CompGCN [36] leverage the graph
structure by inductively learning representations for edges (relations) and nodes
(entities). However, unlike our model, these methods are not explainable.

3 Model

Fig. 2. A schematic diagram of a Graph Transformer block, along with an illustration
of the workflow of our model, demonstrating successive applications of inductive node
representation learning and action selection to find a reasoning path.

Our model consists of two modules that are subject to joint end-to-end train-
ing. The encoder module learns inductive entity embeddings while accounting
for the query relation and the local neighborhood of an entity (Sect. 3.2). The



44 R. Bhowmik and G. de Melo

decoder module operates on this learned embedding space of entities and rela-
tions. By leveraging the embeddings of the source entity and the query relation,
the decoder module infers a reasoning path to the target entity using policy
gradient-based reinforcement learning (Sect. 3.3). Before describing these com-
ponents in more detail, Sect. 3.1 first provides preliminary definitions.

3.1 Problem Statement

Formally, we consider knowledge graphs G(E ,R,F) defined as directed multi-
graphs such that each node e ∈ E represents an entity, each r ∈ R represents
a unique relation, and each directed edge (es, r, eo) ∈ F represents a fact about
the subject entity es.

Given a structured relational query (es, rq, ?), where es is the source entity,
rq is the query relation, and (es, rq, eo) /∈ F , the goal is to find a set of plausible
answer entities {eo} by navigating paths through the existing entities and rela-
tions in G leading to answer entities. Note that, unlike previous methods that
consider transductive settings with a static snapshot of the knowledge graph,
we allow for dynamic knowledge graphs, where es may be an emerging entity,
and therefore, previously unseen. Moreover, while embedding-based methods
only deliver candidate answer entities, we here also seek the actual paths, i.e.,
sequences of nodes and edges for better interpretability.1

3.2 Graph Transformer for Inductive Representation Learning

The state-of-the-art embedding based models either focus on learning entity
embeddings by using only the query relations, ignoring the subject entity’s
neighborhood, or use message passing neural networks to learn embeddings con-
ditioned on neighboring entities and relations while being oblivious of the query
relation. However, we observe that in many cases a new fact can be inferred by
using another existing fact. For example, the fact (PersonX, Place of Birth, Y)
can often help to answer to the query (PersonX, Nationality, ?). Motivated by
this observation, we propose a Graph Transformer architecture that learns the
embedding of the source entity by iterative aggregation of neighborhood infor-
mation (messages) that are weighted by their relevance to the query relation. To
learn the relevance weights, our Graph Transformer model deploys multi-head
scaled dot product attention, also known as self-attention [37].

Formally, we denote the local neighborhood for each entity ei ∈ E as Ni such
that Ni = {ej | ej ∈ E ∧ (ei, r, ej) ∈ F ∧ r ∈ Rij}, where Rij is the set of
relations between entities ei and ej .

Each neighboring entity ej ∈ Ni connected to ei by a relation r sends in a
message to entity ei. The message mijr is a linear transformation of the fact
(ei, r, ej) followed by the application of a non-linear function, specifically, the

1 From here onwards, we will use the terms node and entity, as well as edge and
relation(ship) interchangeably.
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leaky rectified linear unit (LeakyReLU) function with a negative slope of 0.01.
Formally,

mijr = LeakyReLU(Wf [ei; r; ej]), (1)

where Wf ∈ R
d×3d is a shared parameter for the linear transformation and [;]

is the concatenation operator.
To compute an attention head, our model performs linear projections of the

query relation rq, the neighborhood relations r ∈ Rij , and the neighborhood
messages mijr to construct queries Q, keys K, and values V , respectively, such
that Q = WQrq, K = WKr, and V = WV mijr, where WQ,WK ,WV ∈ R

d′×d

are learnable parameters.
Next, we use the queries Q to perform a dot-product attention over the keys

K. Formally,

αijr =
exp((WQrq)ᵀ(WKr))∑

z∈Ni

∑

r′∈Rij

exp((WQrq)ᵀ(WKr′))
(2)

We adopt the common procedure of scaling the dot products of Q and K by a
factor of 1√

d′ [37].
The attention weights are then used to aggregate the neighborhood messages.

Note that self-attention deploys multiple attention heads, each having its own
query, key, and value projectors. The aggregated messages from N attention
heads are concatenated and added to the initial embedding ei through a residual
connection to obtain new intermediate representation

êi = ei + ‖N
n=1

⎛

⎝
∑

j∈Ni

∑

r∈Rij

αn
ijrW

n
V mijr

⎞

⎠ , (3)

where ‖ is the concatenation operator.
Layer normalization (LN) [1] is applied to the intermediate representation

êi, followed by a fully connected two-layer feed forward network (FFN) with a
non-linear activation (ReLU) in between. Finally, the output of the feed forward
network is added to the intermediate representation through another residual
connection. The resulting embedding is again layer normalized to obtain the
new representation gi

l for ei. Formally,

gi
l = LN(FFN(LN(êi)) + LN(êi)) (4)

This pipeline is called a Transformer block. Figure 2 represents a schematic
diagram of a Transformer block in Graph Transformers. We stack L layers of
Transformer blocks to obtain the final embedding gi

L for ei.

3.3 Policy Gradient for Explainable Reasoning

To infer the answer entity, we could leverage the entity representations obtained
by the Graph Transformers. However, our goal is not only to infer the answer
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entity, but to find a symbolic reasoning path to support the inference. Following
previous work [4,23], we formulate the reasoning task as a finite horizon, deter-
ministic partially observable Markov Decision Process (POMDP). A knowledge
graph can be seen as a partially observable environment with out-going relations
at each entity node corresponding to a set of discrete actions that an agent can
explore to reach the target answer from the source entity.

Knowledge Graph Environment. Formally, a Markov Decision Process is defined
by a 4-tuple (S,A,P,R), where S is a finite set of states, A is a finite set of
actions, P captures state transition probabilities, and R is the reward function.
In a knowledge graph environment, the state space is defined as a set of tuples
st = (et, rq) ∈ S, where et is an entity node in the knowledge graph, and rq is
the query relation. The action space At ∈ A for a state st is defined as the set
of outgoing edges from entity node et in the knowledge graph. Formally, At =
{(rt+1, st+1) | (et, rt+1, st+1) ∈ G}. Since state transitions in a KG environment
are deterministic, the transition probabilities P (st+1 | st, at) = 1 ∀P ∈ P. The
agent receives a terminal reward of 1 if it arrives at the correct answer entity at
the end.

Graph Search Policy. To find a plausible path to the answer entity, the model
must have a policy to choose the most promising action at each state. Note
that in the KG environment, the decision of choosing the next action is not
only dependent on the current state, but also on the sequence of observations
and actions taken so far in the path. We use a multi-layer LSTM as a sequence
encoder to encode the path history.

Formally, each state st is represented by a vector st = [et; rq] ∈ R
2d and

each possible action at ∈ At is represented by at = [et+1; rt+1] ∈ R
2d, where

et, et+1 ∈ R
d are the embeddings of the entity nodes at timesteps t and t + 1,

respectively, that are obtained from Graph Transformer encoders. rt+1 ∈ R
d is

the embedding of an out-going relation from entity et, and rq ∈ R
d corresponds

to the embedding of the query relation rq. Each of these embeddings is also
obtained from the Graph Transformer encoder. The path history is encoded as
ht = LSTM(ht−1,at−1). Given the embedded action space At ∈ R

2|At|, i.e., the
stacked embeddings of actions at ∈ At, and the path history ht, we define the
parameterized policy as:

πθ(at | st) = Softmax(At(W2ReLU(W1[ht; et; rq])))

Policy Optimization. The policy network is trained to maximize the expected
reward for all (es, rq, eo) triples in the training sub-graph. The agent learns an
optimal policy πθ by exploring a state space of all possible actions. The objective
of the agent is to take actions to maximize the expected end reward. Formally:

J(θ) = E(es,rq,eo)

[
Ea1,...,aT −1∼πθ

[R(sT |es, rq)]
]

(5)
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Table 1. Evaluation datasets for inductive setting

Dataset |E| |R| |U| |F|
train dev test aux

FB15k-237-Inductive 13,119 237 1,389 227,266 17,500 32,197 61,330

WN18RR-Inductive 35,928 11 4,029 67,564 3,000 11,015 19,395

NELL-995-Inductive 71,578 200 776 137,221 500 1,679 2,267

Since policy gradient uses gradient-based optimization techniques, the esti-
mated gradient of the objective function can be derived as follows:

∇θJ(θ) = Ea1:T ∼πθ
[∇θ log πθ(a1:T |es, rq)R(sT |es, rq)] (6)

≈ 1
N

N∑

n=1

∇θ log πθ(an
1:T |es, rq)R (7)

Here, N is the number of policy rollouts.
Each policy rollout explores a sequence of actions a1:T . At each timestep

t ∈ {1 : T}, the agent selects an action at conditioned on the current state st.
Therefore, the gradient of the log-likelihood in Eq. 6 can be expressed as

∇θ log πθ(a1:T |es, rq) =
T∑

t=1

∇θ log πθ(at|st, es, rq) (8)

Reward Shaping. Previous work [23] observed that a soft reward for the target
entities is more beneficial than a binary reward. Following their work, we use pre-
trained ConvE [7] embeddings for the observed entities and relations to shape the
reward function. If the agent reaches the correct answer entity, it receives reward
1. Otherwise, the agent receives a reward estimated by the scoring function of the
pre-trained ConvE. Note that the ConvE model is trained only on the training
sub-graph of seen entities. ConvE plays no role during inference. Its only purpose
is to provide soft reward signals during training to help the model in learning a
better policy.

4 Evaluation

4.1 Datasets

We evaluate our model based on three standard benchmark knowledge graph
completion datasets. (1) FB15k-237 [33], introduced as a replacement for the
FB15k dataset [3]. In FB15k-237, the reverse relations are removed, rendering the
dataset more challenging for inference. (2) WN18RR [7] is a subset of the WN18
benchmark dataset. Similar to FB15k-237, the reverse relations are removed for
this dataset. (3) NELL-995 [44] is a subset of the 995-th iteration of NELL.
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To test the effectiveness of our model for inductive representation learning
and reasoning, we create new splits of training, development, and test sets for
each of the three benchmark datasets mentioned above. This new split of the data
is necessary, as in an inductive setting, the subject entities in the test set must
not be present anywhere in the training subgraph. To satisfy this requirement,
we first sample 10% of all the entities present in each of the benchmark datasets.
We denote this as the set of unseen entities U , while the remaining entities are
denoted as seen entities E . Then, we proceed to split the triples in the datasets
into three disjoint sets. The first set contains the triples in which both the head
and the tail entities are in E . The second set consists of the triples with head
entities belonging to U , but tail entities in E . In the third set, the head entities
belong to E , but the tail entities are in U . We further split the first set into
train and dev triples. The second set becomes the test triples, and the union of
the second and the third set is denoted as auxiliary data. Auxiliary triples are
required to obtain the local neighborhood of a source entity at inference time.
Note that an emerging entity in the test set is not disconnected from the training
graph. It has at least one seen entity in its neighborhood. This ensures that our
model can find a path to the target entity during inference. If the emerging entity
were completely disconnected from the training graph (i.e. all neighboring nodes
were in U), finding a path to the target entity would not be possible.

We append the suffix “-Inductive” to distinguish these newly derived datasets
from their original counterparts. A summary of these datasets is presented in
Table 1. To help with the reproducibility for future research on this topic, we
make the datasets and our source code publicly available at: https://github.
com/kingsaint/InductiveExplainableLinkPrediction

4.2 Baselines

Embedding Methods. We compare our model to a set of embedding based models
that perform well under the transductive setting of link prediction. Although
these models are particularly unsuitable for the inductive setting, we include
them to better demonstrate the challenges of applying such algorithms in an
inductive setting. In particular, we compare our model to ConvE [7], TransH [40],
TransR [24], and RotatE [32]. For these experiments, we adapted the PyKEEN2

implementations of these models.

Graph Convolution Methods. We choose a state-of-the-art graph convolution-
based method CompGCN [36] as a baseline. Our choice is motivated by two
factors: (1) CompGCN performs strongly in the transductive setting by outper-
forming the other baselines for most of the datasets, and (2) since its encoder
module deploys neighborhood integration through Graph Convolution Networks,
it has similar characteristics to our model, and therefore, is a good candidate for
inductive representation learning. We also compare our model to R-GCN [29]

2 https://github.com/pykeen/pykeen.

https://github.com/kingsaint/InductiveExplainableLinkPrediction
https://github.com/kingsaint/InductiveExplainableLinkPrediction
https://github.com/pykeen/pykeen
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and SACN [30], which also leverage the graph structure to learn node represen-
tations by aggregating neighborhood information. For CompGCN and SACN,
we adapted the source code made available by the authors to make them suit-
able for inductive representation learning and link prediction. For R-GCN, we
adapted the source code available in the DGL library3.

Symbolic Rule Mining. We compare our model with AnyBURL [25], a purely
symbolic rule mining system. AnyBURL is capable of extremely fast rule min-
ing, has outperformed other rule mining approaches including AMIE+ [9], and
produces comparable results to existing embedding-based models.

Path-Based Model. Finally, we compare our model to a policy gradient-based
multihop reasoning approach [23] that is similar to the decoder module of our
model. We modified the source code4 of this model to adapt it to our task.

4.3 Experimental Details

Training Protocol. Since the benchmark knowledge graph completion datasets
contain only unidirectional edges (es, rq, eo), for all methods, we augment the
training sub-graph with the reverse edges (eo, r

−1
q , es). During the Graph Trans-

former based inductive representation learning, n% of local neighboring entities
are randomly selected and masked. During training, we mask 50%, 50%, and 30%
of neighboring nodes, respectively, for the FB15k-237, WN188RR, and NELL-
995 datasets. Neighborhood masking helps in learning robust representations
and reduces the memory footprint, and has been shown to be effective [15]. Fol-
lowing previous work [4,23], during training of the policy network, we also retain
the top-k outgoing edges for each entity that are ranked by the PageRank scores
of the neighboring entities. We set the value of k for each dataset following Lin
et al. [23]. Such a cut-off threshold is necessary to prevent memory overflow.
Finally, we adopt the false-negative masking technique in the final timestep of
the policy rollouts to guide the agent to the correct answer entities as described
in previous work [4,23], where it was found helpful when multiple answer entities
are present in the training graph.

Hyperparameters. For a fair comparison to the baselines, we keep the dimension-
ality of the entity and relation embeddings at 200. For our model, we deploy one
layer of a Transformer block (L = 1) and 4 attention heads (N = 4). We choose
a minibatch size of 64 during training due to limited GPU memory. We rely on
Adam [19] stochastic optimization with a fixed learning rate of 0.001 across all
training epochs. Additionally, we adopt entropy regularization to improve the
learning dynamics of the policy gradient method. The regularizer is weighted
by a hyperparameter β set to a value within [0, 0.1]. We apply dropout to the
entity and relation embeddings, the feedforward networks, and the residual con-
nections. The policy rollout is done for T = 3 timesteps for every dataset.
3 https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn.
4 https://github.com/salesforce/MultiHopKG.

https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn
https://github.com/salesforce/MultiHopKG
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Table 2. Evaluation results of our model as compared to alternative baselines on
inductive variants of the WN18RR, FB15K-237, and NELL-995 datasets. The Hits@N
and MRR metrics are multiplied by 100.

Model WN18RR-Inductive FB15K-237-Inductive NELL-995-Inductive

Hits@N Hits@N Hits@N

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

TransR [24] 0.8 0.6 0.7 0.9 5.0 4.0 5.2 6.6 5.3 4.9 5.3 6.5

TransH [40] 0.0 0.0 0.0 0.0 6.2 5.4 6.3 8.0 3.6 3.4 3.6 3.6

RotatE [32] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ConvE [7] 1.9 1.1 2.1 3.5 26.3 20.0 28.7 38.8 43.4 32.5 50.3 60.9

R-GCN [29] 14.7 11.4 15.1 20.7 19.1 11.5 20.9 34.3 58.4 50.9 62.9 71.6

SACN [30] 17.5 9.7 20.3 33.5 29.9 20.5 32.8 50.0 42.4 37.0 42.9 53.2

CompGCN [36] 2.2 0.0 2.2 5.2 26.1 19.2 28.5 39.2 42.8 33.1 47.9 61.0

AnyBURL [25] – 48.3 50.9 53.9 – 28.3 43.0 56.5 – 8.7 11.0 12.3

MultiHopKG [23] 45.5 39.4 49.2 56.5 38.6 29.3 43.4 56.7 74.7 69.1 78.3 84.2

Our Model w/ RS 48.8 42.1 52.2 60.6 39.8 30.7 44.5 57.6 75.2 69.7 79.1 84.4

Evaluation Protocol. Following previous work [23], we adopt beam search decod-
ing during inference with a beam width of 512 for NELL-995 and 256 for the
other datasets. If more than one path leads to the same target entity, then the
path with the maximum log-likelihood is chosen over the others. During eval-
uation, the auxiliary graph augments the training graph to construct the KG
environment with unseen entities and their relations to the seen entities. For
our model and the baselines, the embeddings of all unseen entities are initialized
with Xavier normal initialization [12] at inference time.

Evaluation Metrics. We adopt the ranking based metrics Mean Reciprocal Rank
and Hits@k that are also used by prior work for evaluation. We follow the filtered
setting [3] adopted by prior approaches. In the filtered setting, the scores for the
false negative answer entities are masked to facilitate correct ranking of the
target entity.

4.4 Results

We present the experimental results of our method and the baselines in Table 2.
The results of the embedding-based models TransH, TransR, and RotatE across
all datasets demonstrates their inability to deal with entities that are unseen dur-
ing training. These models are thus rendered as ineffective for inductive repre-
sentation learning and reasoning. ConvE performs better than other embedding-
based models we consider. Still, the much inferior performance of ConvE com-
pared to our model shows that ConvE is not particularly suitable for inductive
representation learning.

We observe that our model significantly outperforms the graph convolution
network baselines CompGCN, SACN, and R-GCN across all datasets. Although
these models use the neighborhood information for learning representations,
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Table 3. Ablation study. The Hits@N and MRR metrics are multiplied by 100.

Model WN18RR-Inductive FB15K-237-Inductive NELL-995-Inductive

Hits@N Hits@N Hits@N

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

Our Model w/ RS 48.8 42.1 52.2 60.6 39.8 30.7 44.5 57.6 75.2 69.7 79.1 84.4

Our Model w/o RS 48.2 40.1 53.0 62.2 37.8 29.4 42.6 54.0 71.1 65.3 75.0 79.9

GT + ConvTransE 1.1 0.6 1.1 1.8 22.9 17.3 24.9 33.3 47.9 40.6 51.1 61.9

unlike our method, their neighborhood integration methods do not explicitly
consider the query relations.

We find AnyBURL and MultiHopKG to be the most competitive methods to
ours. AnyBURL performs adequately for the WN18RR and FB15K-237 dataset
while performing poorly on the NELL-995 dataset. MultiHopKG adapts sur-
prisingly well to our dataset despite the unseen entities being initialized with
Xavier normal initialization. We conjecture that the learned representations of
the query and the outgoing edges (relations) have enough semantic information
encoded in them to navigate to the target entity by simply exploiting the edge
(relation) information. However, our proposed model holds an edge over this
model with 7.2%, 3.1%, and 0.7% gains in the MRR metric for the WN18RR,
FB15K-237, and NELL-995 datasets respectively.

5 Analysis

In this section, we perform further analysis of our proposed model. First, we
conduct a set of ablation studies (Table 3). Then, we qualitatively analyze our
model’s ability to provide reasoning paths as supporting evidence for inference.
Finally, we analyze the effect of the cardinality of relation types on the inference
process.

5.1 Ablation Study

To better understand the contribution of reward shaping in our model, we per-
form an ablation study, where our model is deprived of the soft reward signals
provided by ConvE. In general, we observe that replacing reward shaping with
hard binary reward deteriorates the performance of our model across all datasets.
Note that our ablated version still mostly outperforms the other baseline meth-
ods.

Additionally, we experiment with a non-explainable variant of our model, in
which we retain the Graph Transformer (GT) encoder, but we replace the policy
gradient-based decoder with an embedding-based decoder called ConvTransE,
which is also used in SACN as a decoder module. With this model, we observe
a significant drop in performance. Thus, we conjecture that the policy gradient-
based decoder not only provides explainability, but also is crucial for decoding.
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Table 4. Example queries from the NELL-995 test set with unseen source entities.
The answers are supported by the explainable reasoning paths derived by our model.

Query (William Green, worksFor, ?)

Answer Accenture

Explanation William Green
personLeadsOrganization−−−−−−−−−−−−−−−−−→ Accenture

Query (Florida State, organizationHiredPerson, ?)

Answer Bobby Bowden

Explanation Florida State
worksFor←−−−−−− Bobby Bowden

Query (Messi, athleteHomeStadium, ?)

Answer Camp Nou

Explanation Messi
athletePlaysForTeam−−−−−−−−−−−−−−→ Barcelona

teamHomeStadium−−−−−−−−−−−−−→ Camp Nou

Query (Adrian Griffin, athleteHomeStadium, ?)

Answer United Center

Explanation Adrian Griffin
athletePlaysForTeam−−−−−−−−−−−−−−→ Knicks

athletePlaysForTeam←−−−−−−−−−−−−−− Eddy Curry
athleteHomeStadium−−−−−−−−−−−−−−→ United Center

Query (Bucks, teamPlaysInLeague, ?)

Answer NBA

Explanation Bucks
organizationHiredPerson−−−−−−−−−−−−−−−−−→ Scott Stiles

organizationHiredPerson←−−−−−−−−−−−−−−−−− Chicago

Bulls
teamPlaysInLeague−−−−−−−−−−−−−→ NBA

Table 5. MRR for the test triples in inductive setting with to-Many and to-1 relation
types. The % columns show the percentage of test triples for each relation type.

Dataset to-Many to-1

% MRR % MRR

FB15k-237-Inductive 77.4 31.6 22.6 75.5

WN18RR-Inductive 48.1 60.8 51.9 30.1

NELL-995-Inductive 7.6 41.4 92.4 78.5

5.2 Qualitative Analysis of Explainability

Since explainability is one of the key objectives of our model, we provide exam-
ples of explainable reasoning paths for queries that involve previously unseen
source entities at inference time. Table 4 contains examples of 1-hop, 2-hop, and
3-hop reasoning paths. These examples demonstrate our model’s effectiveness in
learning inductive representations for the unseen entities, which helps to infer
the reasoning paths.

5.3 Effect of Relation Types

Following Bordes et al. [3], we categorize the relations in the seen snapshot of the
knowledge graph into Many-to-1 and 1-to-Many relations. The categorization is
done based on the ratio of the cardinality of the target answer entities to the
source entities. If the ratio is greater than 1.5, we categorize the relation as
to-Many, otherwise as to-1. We analyzed the results of the test set for these
two types of relations. We report the percentage of triples with these two types
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of relations and the corresponding MRR achieved by our model in Table 5. For
FB15k-237 and NELL-995, our model performs better for to-1 relations than for
to-many relations. On the contrary, we observe a reverse trend for the WN18RR
dataset. Note however that to-many relations have alternative target entities.
In the current evaluation protocol, our model is punished for predicting any
alternative target entity other than the ground truth target.

6 Conclusion

The ever-expanding number of entities in knowledge graphs warrants the explo-
ration of knowledge graph completion methods that can be applied to emerging
entities without retraining the model. While prior approaches assume a static
snapshot of the knowledge graph, we introduce a joint framework for inductive
representation learning to predict missing links in a dynamic knowledge graph
with many emerging entities. Additionally, our method provides explainable rea-
soning paths for the inferred links as support evidence. Through experiments we
demonstrate that our model significantly outperforms the baselines across the
new inductive benchmark datasets introduced in this paper.
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dings for simple link prediction. In: Proceedings of the 33nd International Confer-
ence on Machine Learning. (ICML 2016), vol. 48, pp. 2071–2080 (2016)

36. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-
relational graph convolutional networks. In: International Conference on Learning
Representations (2020)

37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017)
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Attention Networks. In: International Conference on Learning Representations
(2018)

39. Wang, L., et al.: Link prediction by exploiting network formation games in
exchangeable graphs. In: Proceedings of IJCNN 2017, pp. 619–626 (2017). https://
ieeexplore.ieee.org/document/7965910/

40. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of AAAI 2014, pp. 1112–1119. AAAI Press (2014)

41. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

42. Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforcement knowl-
edge graph reasoning for explainable recommendation. In: Proceedings of SIGIR
2019, pp. 285–294. ACM, New York (2019)

43. Xian, Y., et al.: CAFE: coarse-to-fine knowledge graph reasoning for e-commerce
recommendation. In: Proceedings of CIKM 2020. ACM (2020)

44. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. In: Proceedings of EMNLP 2017. ACL (2017)

45. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. CoRR abs/1412.6575 (2014)

46. Yang, K., Xinyu, K., Wang, Y., Zhang, J., de Melo, G.: Reinforcement learning
over knowledge graphs for explainable dialogue intent mining. IEEE Access 8,
85348–85358 (2020). https://ieeexplore.ieee.org/document/9083954

47. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph Transformer networks.
Adv. Neural Inform. Process. Syst. 32, 11983–11993 (2019)

https://doi.org/10.1007/978-3-319-93417-4_38
http://aclweb.org/anthology/P/P16/P16-1136.pdf
https://ieeexplore.ieee.org/document/7965910/
https://ieeexplore.ieee.org/document/7965910/
https://ieeexplore.ieee.org/document/9083954


Tentris – A Tensor-Based Triple Store

Alexander Bigerl1(B) , Felix Conrads1 , Charlotte Behning2 ,
Mohamed Ahmed Sherif1 , Muhammad Saleem3 ,

and Axel-Cyrille Ngonga Ngomo1

1 DICE Group, CS Department, Paderborn University, Paderborn, Germany
{alexander.bigerl,felix.conrads,mohamed.sherif}@uni-paderborn.de,

axel.ngonga@upb.de
2 Department of Medical Biometry, Informatics and Epidemiology,

University Hospital Bonn, Bonn, Germany
behning@imbie.uni-bonn.de

3 CS Department, University of Leipzig, Leipzig, Germany
saleem@informatik.uni-leipzig.de

https://dice-research.org/

Abstract. The number and size of RDF knowledge graphs grows continuously.
Efficient storage solutions for these graphs are indispensable for their use in real
applications. We present such a storage solution dubbed TENTRIS. Our solu-
tion represents RDF knowledge graphs as sparse order-3 tensors using a novel
data structure, which we dub hypertrie. It then uses tensor algebra to carry out
SPARQL queries by mapping SPARQL operations to Einstein summation. By
being able to compute Einstein summations efficiently, TENTRIS outperforms the
commercial and open-source RDF storage solutions evaluated in our experiments
by at least 1.8 times with respect to the average number of queries it can serve
per second on three datasets of up to 1 billion triples. Our code, evaluation setup,
results, supplementary material and the datasets are provided at https://tentris.
dice-research.org/iswc2020.

1 Introduction

A constantly increasing amount of data is published as knowledge graphs. Over 149 bil-
lion facts are published in the 2973 datasets of the Linked Open Data (LOD) Cloud [9],
including large datasets such as UniProt1 (55.3 billion facts) and LinkedTCGA [22]
(20.4 billion facts). Even larger knowledge graphs are available in multinational organ-
isations, including Google, Microsoft, Uber and LinkedIn [18]. Proposing scalable solu-
tions for storing and querying such massive amount of data is of central importance for
the further uptake of knowledge graphs. This has motivated the development of a large
number of solutions for their storage and querying [4,8,10,12,15,19,24,27–29].

We present TENTRIS, a new in-memorytriple store for the efficient storage and
querying of RDF data. Two innovations are at the core of our triple store. First, TEN-
TRIS represents RDF data as sparse order-3 tensors using a novel in-memorytensor data
structure dubbed hypertrie, which we also introduce in this paper. This data structure
facilitates the representation of SPARQL queries as (sequences of) operations on ten-
sors. A hypertrie combines multiple indexes into a single data structure, thus eliminating

1 https://www.uniprot.org/downloads.
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some of the redundancies of solutions based on multiple indexes (see, e.g., [15]). As a
result, TENTRIS can store whole knowledge graphs and corresponding indexes into a
single unified data structure.

Our second innovation lies in the way we process SPARQL2 queries: To query the
RDF data stored in TENTRIS, SPARQL queries are mapped to Einstein Summations.
As a result, query optimization is delegated to the implementation of an Einstein sum-
mation operator for hypertries. Since the proposed tensor data structure offers precise
statistics, the order for tensor operations is computed online, thus further speeding up
the query execution.

The rest of the paper is organized as follows: Sect. 2 gives an overview of related
work. In Sect. 3 notations are defined and backgrounds on tensors are provided. In
Sect. 4 the mapping of RDF graphs to tensors is defined and in Sect. 5 we introduce our
new tensor data structure. In Sect. 6 the querying approach is described. The evaluation
is presented in Sect. 7, and in Sect. 8 we conclude and look at future prospects. Exam-
ples for definitions and concepts are provided throughout the paper. For an extended,
comprehensive example, see the supplementary material.

2 Related Work

Several commercial and open-source triple stores have been developed over recent years
and used in a number of applications. In the following, we briefly introduce the most
commonly used triple stores that are documented and freely available for benchmark-
ing. We focus on these triple stores because they are candidates for comparison with
our approach. We do not consider distributed solutions (see [1] for an overview), as
a distributed version of TENTRIS will be the subject of future work. Throughout our
presentation of these approaches, we sketch the type of indexes they use for storing and
querying RDF, as this is one of the key differences across triple stores.3

RDF-3X [15] makes extensive use of indexes. This triple store builds indexes for
all full collation orders SPO (Subject, Predicate, Object), SOP, OSP, OPS, PSO, POS,
all aggregated indexes SP, PS, SO, OS, PO, OP and all one-value indexes S, P and O. It
uses a B+-tree as index data structure that is extended by LZ77 compression to reduce
the memory footprint. Virtuoso [8] uses “2 full indexes over RDF quads plus 3 partial
indexes” [8], i.e., PSOG (Predicate, Subject, Object, Graph), POGS, SP, OP and GS.
Apache Jena TDB2 [10] uses three indexes to store the triples in the collation orders
SPO, POS, and OSP. The indexes are loaded via memory mapped files. GraphDB [19]
uses PSO and POS indexes to store RDF statements. BlazeGraph [24] uses B+-trees
as data structure for its indexes. Statements are stored in the collation orders SPO,

2 At the moment TENTRIS supports the same fragment of SPARQL as [4,12,26,27] which
includes basic graph patterns and projections with or without DISTINCT.

3 Note that indexes for different collation orders are crucial for the performance of triple stores.
They determine which join orders are possible and which triple patterns are cheap to resolve.
However, building indexes comes at a cost: each index takes additional time to build and
update. It also requires additional memory. Consequently, there is always a trade-off between
querying speed on the one hand and memory consumption and maintenance cost on the other
hand.
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POS, and OSP. gStore [29] uses a signature-based approach to store RDF graphs and to
answer SPARQL queries. An RDF graph is stored in an extended signature tree, called
VS*-tree. Additionally, it generates materialized views to speed up star queries. In con-
trast to most other triple stores, gStore derives signatures from RDF terms instead of
using unique IDs. gStore is a in-memory system, i.e., it holds all data in main memory.

Another in-memory triple store, RDFox [14], uses a triple table with three addi-
tional rows which store linked lists of triples with equal subjects, predicates and object
respectively. The elements of the subjects and objects lists are grouped by predicates.
Indices on the triple table are maintained for collation orders S, P, and O as arrays, and
for collation orders SP, OP and SPO as hashtables.

The idea of using matrices or tensors to build triple stores has been described in
a few publications. BitMat [4], like TENTRIS, uses an order-3 Boolean tensor as an
abstract data structure for an RDF graph. The actual implementation stores the data in
collation orders PSO and POS. The subindexes for SO and OS are stored using Boolean
matrices. Join processing is done using a multi-way join approach. However, BitMat
is unable to answer queries that use variables for predicates in triple patterns, i.e.,
SELECT ?p WHERE {a ?p b.}. A similar approach was chosen by the authors
of TripleBit [28]. For each predicate, this approach stores an SO and OS index based on
a custom column-compressed matrix implementation. This results in two full indexes—
PSO and POS. In contrast to BitMat, TripleBit supports variables for predicates in triple
patterns. A more generic approach is used for MagiQ [12]. The authors define a map-
ping of RDF and SPARQL to algebraic structures and operations that may be imple-
mented with different linear algebra libraries as a backend. The RDF graph is encoded
into a sparse matrix. A statement is represented by using predicates as values and inter-
preting the column and row number as subject and object IDs. Basic graph patterns are
translated to general linear algebra operations. The approach does not support variables
for predicates in triple patterns. A similar mapping was also chosen by the authors of
TensorRDF [27] using Mathematica as a backend for executing matrix operations. All
mentioned triple stores except gStore use unique IDs to represent each resource. They
store the mapping in an index for query translation and result serialization. Further, all
of them except gStore apply column-oriented storage.

Like most stores above, TENTRIS adopts the usage of unique IDs for resources
and column-oriented storage. However, it does not use multiple independent indexes or
materialized views. Instead, TENTRIS relies on the novel hypertrie tensor data struc-
ture that unifies multiple indexes into a single data structure. Like gStore and RDFox,
it holds all data in-memory. In contrast to some of the other tensor-based solutions,
TENTRIS can process queries which contain unbound predicates.

3 Background

3.1 Notation and Conventions

Let B be the set of Boolean values, i.e., {true, false} and N be the set of the natural
numbers including 0. We map true to 1 and false to 0. The natural numbers from 1 to n
are shorthanded by In := {i ∈ N | 1 ≤ i ≤ n}. The set of functions {f | f : X → Y }
is denoted Y X or [X →Y ]. The domain of a function f is written as dom (f) and the
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target (also called codomain) is denoted by cod (f). A function which maps x1 to y1 and
x2 to y2 is denoted by [x1 → y1, x2 → y2]. Sequences with a fixed order are delimited
by angle brackets like l = 〈a, b, c〉. Their elements are accessible via subscript, e.g.,
l1 = a. Bags are delimited by curly-pipe brackets, e.g., {|a, a, b|}. The number of times
an element e is contained in any bag or sequence C is denoted by count (e, C); for
example, count (a, {|a, a, b|}) = 2. We denote the Cartesian product of S with itself i
times with Si = S × S × . . . S

︸ ︷︷ ︸

i

.

3.2 Tensors and Tensor Operations

In this paper, we limit ourselves to tensors that can be represented as finite n-
dimensional arrays.4 An order-n tensor T is defined as a mapping from a finite multi-
index K = K1 × · · · × Kn to some codomain V . We only use multi-indexes with
K1 = · · · = Kn ⊂ N. In addition, we consider exclusively tensors T with B or N as
codomain. We call k ∈ K a key with key parts 〈k1, . . . ,kn〉. Values v in a tensor are
accessed in array style, e.g., T [k] = v.

Example 1. An example of an order-3 tensor T ∈ [(I8)3 → B] is given in Fig. 1. Only
those entries given by the points in the figure are set to 1.

Slices. Slicing is an operation on a tensor T that returns a well-defined portion of T
in the form of a lower-order tensor. Slicing is done by means of a slice key s ∈ S :=
K1 ∪ { : } × ··· × Kn ∪ { : } with: /∈ K1, ... ,Kn. When applying s to a tensor T
(denoted T [s]), the dimensions marked with : are kept. A slice key part si 	= : removes
all entries with other key parts at position i and removes Ki from the result’s domain.
The sequence brackets may be omitted from the notation, e.g., T [:, 2, :] for T [〈:, 2, :〉].
Example 2. Let T be the tensor from Example 1. The slice T [s] with the slice key
s = 〈:, 2, :〉 is an order-2 tensor with 1 at keys 〈1, 3〉, 〈1, 4〉, 〈3, 4〉, 〈3, 5〉, 〈4, 3〉 and
〈4, 5〉.
Definition 1. Assume T ,K, V , n, S and s to be defined as above. Let P be the sequence
of positions in s which are set to : . For s = 〈:, 2, :〉, P would be 〈1, 3〉. A sub-multi-
index is defined by K′ := ×i∈P Ki. Keys from the sub-multi-index are mapped to the
original multi-index by ϕs : K′ → K with

ϕs : k′ 
→ k with ki =
{

k′
j if i = Pj ,

si otherwise.

A slice T ′ = T [s] can now be defined formally as follows: T ′ ∈ V K′
: k′ 
→ T [ϕs(k′)] .

4 Tensors can be defined in a more general manner than provided herein, see [2] for details.
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Table 1. Example RDF Graph. Resources are
printed alongside their integer IDs. The integer
IDs are enclosed in brackets and are not part of
the resource.

Subject Predicate Object

:e1 (1) foaf:knows (2) :e2 (3)

:e1 (1) foaf:knows (2) :e3 (4)

:e2 (3) foaf:knows (2) :e3 (4)

:e2 (3) foaf:knows (2) :e4 (5)

:e3 (4) foaf:knows (2) :e2 (3)

:e3 (4) foaf:knows (2) :e4 (5)

:e2 (3) rdf:type (6) dbr:Unicorn (7)

:e4 (5) rdf:type (6) dbr:Unicorn (7)

Fig. 1. 3D plot of the tensor that represents the
RDF graph from Table 1. Every 1 is indicated
by a point at the corresponding position. Points
are orthogonally connected to the subject-object-
plane for better readability.

Einstein Summation. We define Einstein summation in a manner akin to [13]. Ein-
stein summation is a variable-input operation that makes the combination of multiple
operations on vectors, matrices and tensors in a single expression possible [7,20]. Ein-
stein summation is available in many modern tensor and machine learning frameworks
[11,13,25,26]. It supports, amongst others, inner products, outer products, contractions
and scalar multiplications. “The notation uses [subscript labels] to relate each [dimen-
sion] in the result to the [dimension] in the operands that are combined to produce its
value.” [13, p. 77:3]

Example 3. Consider the tensor T from Example 2 and slices T (1) := T [1, 2, :], T (2)[:
, 2, :] and T (3) := T [:, 6, 7]. An exemplary Einstein summation is given byRf ← T

(1)
f ×

T
(2)
f,u × T

(3)
u . The result R is an order-1 tensor, which is calculated as R[f ∈ I8] =

∑

u∈I8

T (1)[f ] · T (2)[f, u] · T (3)[u], and results in R = 〈0
1
, 0
2
, 1
3
, 2
4
, 0
5
, 0
6
, 0
7
, 0
8
〉 .

We use Einstein notation expressions on the semiring (N,+, 0, ·, 1) to support
bag semantics for SPARQL results. We also implement set semantics for DISTINCT
queries using (B,∨, 0,∧, 1) as semiring. All corresponding definitions are analogous to
those presented in the paper for bag semantics and are hence not detailed any further.

4 RDF Graphs as Tensors

Our mapping of RDF graphs to order-3 tensors extends the model presented in [17] by
adding a supplementary index, which serves to map undefined variables in SPARQL
solution mappings. By adopting the same representation for RDF graphs and bags of
solution mappings, we ensure that graphs and bags of mappings are compatible and can
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hence conjoint in tensor operations. Informally, the tensor T (g) of an RDF graph g with
α resources is hence an element of [(Iα+1)3 → B] such that T [i, j, k] = 1 holds iff the
i-th resource of g is connected to the k-th resource of g via the j-th resource (which
must be a predicate) of the same graph. Otherwise, T [i, j, k] = 0.

Example 4. Consider the triples of the RDF graph g′ shown in Table 1. Each RDF term
of g′ is printed alongside an integer identifier that is unique to each term. All entries
shown in Fig. 1 are set to 1. All other entries are 0.

Formally, we define the tensor T (g) for an RDF graph g:

Definition 2. Let g be an RDF graph and r(g) the set of RDF terms used in g. We define
id as a fixed bijection that maps RDF terms r(g) and ε, a placeholder for undefined
variables in SPARQL solution mapping, to integer identifiers I := I|r(g)|+1. The inverse
of id is denoted id−1. With respect to g and id, an RDF term 〈s, p, o〉 is represented by
a key 〈id(s), id(p), id(o)〉. The tensor representation of g is given by t(g) ∈ [I3 → B].
The entries of t(g) map a key k to 1 if the RDF statement corresponding to k is in g;
otherwise k is mapped to 0:

∀k ∈ I
3 : t(g)[k] := count (〈id−1(k1), id−1(k2), id−1(k3)〉, g).

The results of a SPARQL query on g is a bag of solution mappings Ω with vari-
ables U . Let 〈u1, . . . , u|U |〉 be an arbitrary but fixed sorting of U . A solution map-
ping [u1 → w1, . . . , u|U | → w|U |] with wi ∈ r(g) ∪ {ε} is represented by a key
〈id(w1), . . . , id(w|U |)〉.5 The tensor representation of Ω is an order-|U | tensor t(Ω)
where each variable u ∈ U is mapped to a separate dimension. t(Ω) maps a key k to
the count of the represented solution mapping in Ω:

∀k ∈ I
|U | : t(Ω)[k] := count ([u1→ id−1(k1), . . . , u|U | → id−1(k|U |)], Ω).

5 Hypertries – A Data Structure for Tensors

Using tensors for RDF graphs requires a data structure that fulfills the following require-
ments: (R1) the data structure must be memory-efficient and (R2) must allow efficient
slicing (R3) by any combination of dimensions (also see Sect. 6.1). Additionally, (R4)
such a data structure must provide an efficient way to iterate the non-zero slices of any
of its dimensions.

A trie [6] with a fixed depth is a straightforward sparse tensor representation that
fulfills (R1) and (R2). A key consisting of consecutive key parts is stored by adding
a path labeled with these key parts from the root node of the trie. Existing labeled
edges are reused, introducing a moderate amount of compression (R1). Further, the trie
sparsely encodes a Boolean-valued tensor by only storing those keys that map to 1 (R1).
Descending by an edge, representing a key part k, is equal to slicing the tensor with the
first key part fixed to k. The descending is efficient (R2) if a hashtable or a search tree is
used to store the children of a node. However, to support efficient slicing by any other
dimension except the first, a new trie with another collation order must be populated.
The same holds true for iterating non-zero slices as required for joins (see (R4)).
5 Technically, SPARQL semantics define solution mappings as partial functions f . Our formal
model is equivalent and simply maps all variables for which f is not defined to ε.
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Fig. 2. Trie representation of a tensor T depicting the data from Table 1. A slice T[3, :, :] by the
first dimension with 3 is shown in the red box. (Color figure online)

Example 5. Figure 2 shows an order-3 Boolean tensor stored in a trie. Each leaf encodes
a 1 value for the key that is encoded on the path towards it. The slice for the key 〈3, :, :〉
is shown in the red box, resulting in an order-2 tensor.

These limitations are overcome by hypertries, a generalization of fixed-depth tries.
A hypertrie permits the selection of a key part at an arbitrary position to get a (sub-)
hypertrie that holds the concatenations of the corresponding key prefixes and suffixes.
To achieve this goal, a node holds not only a set of edges for resolving the first key part,
but also a set for every other dimension. This allows for slicing by any dimension as
required by condition (R3) above. By storing each dimension’s edges and children in a
hashmap or search tree, iterating the slices by any dimension is accomplished implicitly.
Hence, hypertries fulfill (R4).

Formally, we define a hypertrie as follows:

Definition 3. Let H(d,A,E) with d ≥ 0 be the set of all hypertries with depth d,
alphabet A and values E. If A and E are clear from the context, we use H(d). We set
H(0) = E per definition. A hypertrie h ∈ H(1) has an associated partial function

c
(h)
1 : A � E that specifies outgoing edges by mapping edge labels to children. For

h′ ∈ H(n), n > 1, partial functions c
(h′)
i : A � H(d−1), i ∈ In are defined. Function

c
(h′)
i specifies the edges for resolving the part equivalent to depth i in a trie by mapping
edge labels to children. For a hypertrie h, z(h) is the size of the set or mapping it
encodes.

An example of a hypertrie is given in Fig. 3. A naive implementation of a hypertrie
would require as much memory as tries in every collation order. However, we can take
advantage of the fact that the slicing order relative to the original hypertrie does not
matter when chaining slices. For example, consider a hypertrie h of depth 3. It holds that
h[3, :, :][:, 4] = h[:, :, 4][3, :]. Consequently, such equivalent slices should be stored only
once and linked otherwise. By applying this technique, the storage bound is reduced
from O(d! · d · z(h)) for tries in any collation order to O(2d−1 · d · z(h)) for a hypertrie
(for proof see supplementary material). Given that d is fixed to 3 for RDF graphs, this
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Fig. 3. A hypertrie storing the IDs from Table 1. Most nodes are left out for better readability.
Each node represents a non-empty slice of the parent node. The slice key relative to the root node
is printed in the node. The orange numbers indicate slice key positions, the mapping below them
link all non-empty slices by that position to the nodes encoding the slice result.

results in a data structure that takes at most 4 times more memory than storing the triples
in a list. Note that storing all tries for all six collation orders (see, e.g., [15]) requires 6
times as much memory as storing the triples in a list.

6 Querying

6.1 From SPARQL to Tensor Algebra

Triple Pattern. Let g be an RDF graph with the tensor representation T and index
function id as defined in Definition 2. Let Q be a triple pattern with variables U and
let Q(g) be the bag of solutions that results from applying Q to g. The slice key k(Q)

which serves to execute Q on T is given by

k(Q)
i :=

{

: if Qi ∈ U ,
id(Qi), otherwise.

If k(Q) is defined,6 it holds true that T [k(Q)] ∈ [I|U | → B] is a tensor representation for
the set of solution mappings Q(g). Otherwise, the set is empty and thus represented by
the empty tensor which has all values set to 0.

Basic Graph Pattern. Consider a BGP B = {B(1), ... , B(r)} and its set of used
variables U . Let g and T be defined as above. A tensor representation of applying B to
g, i.e., B(g), is given by T ′ with T ′

〈l∈U〉 ← ×i∈Ir
T [kB(i)

]〈l∈B(i)|l∈U〉 .

6 It may not be defined if t contains any resource that is not in dom (id).
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Algorithm 1: Einstein notation over hypertries

Input: A list of hypertries O, a list of
subscripts to the hypertries L and a
subscript to the result R

Output: A hypertrie or another tensor
representation

1 einsum(O, L, R)
2 k ← 〈id(ε), ... , id(ε)〉, |k| = |R|
3 r ← empty tensor of rank |R|
4 einsum rek(O,L,R, k, r)
5 return r

6 einsum rek(O,L,R, k, r)
7 U ← {λ ∈ Λ | Λ ∈ L}
8 if U 	= ∅ then
9 l ← any label from U

10 L′ ← 〈Λ \ l | Λ ∈ L〉
11 P ← 〈{i | Λ[i] = l} | Λ ∈ L〉

12 K ← ⋂

j∈I|O|

⋂

i∈P[i] dom (cO[j]
i )

13 for κ ∈ K do
14 O′ ← 〈〉
15 for i ∈ I|O| do

16 s ← s[i] :=
{

κ, if i ∈ P[i]
:, otherwise

17 O′ ← O′ + 〈O[i][s]〉
18 if z(O′[i]) = 0 then
19 continue with next κ

20 if l ∈ R then
21 k[i] ← κ with R[i] = l

22 einsum rek(O′, L′, R, k, r)

23 else
24 r[k]+ ← ∏

o∈O o

Projection. Let B, r, U , g, and T be as above; consider U ′ ⊆ U . The projection
ΠU ′(B(g)) is represented by the tensor T ′′

〈l∈U ′〉 ← ×i∈Ir
T [kB(i)

]〈l∈B(i)|l∈U〉 .
With this mapping, we can now implement the key operations of the SPARQL alge-

bra using hypertries.

6.2 Tensor Operations on Hypertries

Hypertries support both slices and Einstein summation efficiently. The efficient evalu-
ation of slices was described in Sect. 5. An algorithm to evaluate Einstein summation
based on a worst-case optimal multi-join algorithm by [16] is given by Algorithm 1 and
discussed in this section. The algorithm is structured in two functions, a recursion starter
and a recursion. The recursion starter (ll. 1–5) takes a list O of hypertrie operands, a
list L of subscripts for the operands and a subscript R for the result as input and returns
the resulting tensor r. A subscript is represented by a sequence of labels. The recursion
starter prepares the key k and the result tensor r, calculates the result by calling the
recursion einsum rek and returns the result.

The recursion (ll. 6–24) additionally takes k and r as parameters. It first selects a
label l that is used in L (ll. 7+9). If there is such a label (l. 8), a new operand’s subscript
L′ is calculated by removing l from L (l. 10). It is to be used in the next recursion
level. Next, the intersection K (l. 12) of edge labels by all those dimensions of the
hypertries O (l. 11) that are subscripted by l is calculated. Note that operand subscripts
with repeating labels, e.g., 〈?x, ?x〉 for a TP ?x :pred ?x, are implicitly covered by
the construction of P which stores for each operand all positions that are subscripted
with l. For each κ ∈ K (l. 13) the l-subscripted dimensions of operands in O are
resolved by κ and the new operands stored to O′ (ll. 14–17). If any of the new operands
is empty, the current κ is skipped (ll. 18–19). Operands that are not subscripted by l
are just copied. If R contains l, k is set to κ at the corresponding position (ll. 20–21).
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A recursive call is issued with the modified operands O′ and operands’ subscript L′ (l.
22). If there is no label left in L, the break condition is reached (ll. 23–24). At this point
the operands are scalars. The product of the operands is calculated and added to the
entry at k in the result tensor r (l. 24).

6.3 Processing Order

The Einstein summation encapsulates all joins into a single operation. Thus, join order-
ing is not required. Nonetheless, the order in which labels are selected in line 9 of Algo-
rithm 1 is crucial for the actual processing time. Clearly, the worst-case search space for
the result is a subset to the Cartesian product of all operands’ non-zero entries’ keys.
Evaluating a label that occurs more than once at operands reduces the search space if
the size of the cut K in line 12 of Algorithm 1 is smaller than its inputs. Assuming
equal distribution in the subhypertries, an upper bound to the reduction factor by a label
is given by the ratio of the size of K to the maximum number of children of dimen-
sions subscripted with the label. Given a sequence of operands O and their sequences
of labels L, we define the reduction factor for a label l, an operand o ∈ O and its labels
Λ ∈ L by

ψo,Λ(l) =

{

m−
O,L(l)

m+
o,Λ(l)

if l ∈ Λ,

1 otherwise.

where, m−
O,L(l) = min

(

|dom (cO[i]
j )|

∣

∣

∣ L[i][j] = l
)

is the minimal cardi-

nality of dimensions of any operand subscripted with l and m+
o,Λ(l) =

max
(|dom (co

j)|
∣

∣ Λ[j] = l
)

is the maximum cardinality of dimensions of o sub-
scripted with l. Thus, the full guaranteed reduction factor for l is given by ΨO,L(l) =
∏

i ψO[i],L[i](l). To reflect the observation that in practice K is mostly smaller than
m−

O,L(l), we additionally divide ΨO,L(l) by the number of sets of different sizes used
in the cut. We hereby assume two such sets to be equal if they have the same size. As
ΨO,L(l) can be computed efficiently, it is calculated in each recursive call for all label
candidates l. The label with the smallest factor is chosen.

7 Evaluation

7.1 Experimental Setup

All experiments7 were executed on a server machine with an AMD EPYC 7742, 1 TB
RAM and two 3TB NVMe SSDs in RAID 0 running Debian 10 and OpenJDK 11.0.6.
Each experiment was executed using the benchmark execution framework IGUANA
v3.0.0-alpha2 [5], which we chose because it is open-source and thus ensures that our
experiments can be repeated easily.

Benchmarks. We chose WatDiv [3] to generate a synthetic benchmark, and FEASI-
BLE [23] – a benchmark generation framework which uses query logs – to generate

7 The full setup is available as Ansible playbook at https://github.com/dice-group/tentris-paper-
benchmarks/releases/tag/v1.0.

https://github.com/dice-group/tentris-paper-benchmarks/releases/tag/v1.0
https://github.com/dice-group/tentris-paper-benchmarks/releases/tag/v1.0
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a benchmark on real-world data. We used datasets of varied sizes and structures (see
Table 2) by choosing the 1 billion-triple dataset fromWatDiv as well as the real datasets
English DBpedia 2015-108 (681 M triples) and Semantic Web Dog Food SWDF (372K
triples). We used all query templates for WatDiv.9 The benchmark queries for DBpedia
and SWDF were generated by using FEASIBLE on real-world query logs contained
in LSQ [21]. FEASIBLE was configured to generate SELECT queries with BGPs and
optional DISTINCT. Queries with more than 220 results were excluded from all bench-
marks to ensure a fair comparison.10 Statistics on the queries11 used are given in Table 3.

Table 2. Numbers of distinct triples (T), subjects (S), predicates (P) and objects (O) of each
dataset. Additionally, Type classifies the datasets as real-world or synthetic.

Dataset #T #S #P #O Type

SWDF 372 k 32 k 185 96 k Real-world

DBpedia 681M 40M 63 k 178M Real-world

WatDiv 1G 52M 186 92M Synthetic

Table 3. Statistics on the queries used for each dataset. #Q stands for the number of queries used
in our evaluation. The average and the min-max range in brackets are given for the number of
triple patterns (#TP), the number of results (#R), and the average join-vertex degree (avg JVD).
The absolute and relative frequencies (in brackets) are given for the number of distinct queries
(#D) and for the number of queries with large results (>5000 results).

Dataset #Q #TP #R #D avg JVD >5000 results

SWDF 203 1.74 (1–9) 5.5 k (1–304 k) 124 (61%) 0.75 (0–4) 18 (8.9%)

DBpedia 557 1.84 (1–14) 13.2 k (0–843 k) 222 (40%) 1.19 (0–4) 73 (13.1%)

WatDiv 45 6.51 (2–10) 3.7 k (0–34 k) 2 (4%) 2.61 (2–9) 9 (20.0%)

Triple Stores. We chose triple stores that were openly available and supported at least
SELECT queries with or without DISTINCT and BGPs. All triple stores were required
to be able to load the three benchmarking datasets. Triple stores which were not able to
load all experimental datasets had to be excluded from our experiments. The following
triple stores were used in our evaluation: a) TENTRIS 1.0.4, b) Virtuoso Open-Source
Edition 7.2.5.1, c) Fuseki (Jena TDB) 3.14.0, d) Blazegraph v2.1.4, e) GraphDB Free
v9.1.1, f) TripleBit [28],12 which uses matrices to store triples similar to TENTRIS’s
8 We used this version because of query logs being available for FEASIBLE.
9 For each template one query was generated. Additionally, queries not projecting all variables
were included with and without DISTINCT.

10 Virtuoso has a limit of 220 results for queries answered via HTTP (see issue https://github.
com/openlink/virtuoso-opensource/issues/700).

11 All queries can be found in the supplementary material.
12 We extended TripleBit to support entering SPARQL queries via command-line interface
directly. This modification was necessary to use TripleBit with IGUANA. Code available at:
https://github.com/dice-group/TripleBit/releases/tag/2020-03-03.

https://github.com/openlink/virtuoso-opensource/issues/700
https://github.com/openlink/virtuoso-opensource/issues/700
https://github.com/dice-group/TripleBit/releases/tag/2020-03-03
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tensor, g) RDF-3X 0.3.8 [15], which uses many indices similar to the hypertrie used by
TENTRIS, and e) gStore commit 3b4fe58-mod13 which stores all data in-memory like
TENTRIS. All triple stores were allocated the same amount of RAM.

Benchmark Execution. We used two evaluation setups to cater for the lack of HTTP
endpoints in TripleBit and RDF-3X. In the first setup, we executed a HTTP-based
benchmark. Here, five stress tests with 1, 4, 8, 16 and 32 users were executed using the
HTTP SPARQL endpoints of the triple stores TENTRIS, Virtuoso, Fuseki, Blazegraph,
and gStore. For GraphDB we executed only the stress tests with one user because it
does not support more than two parallel users in the free version. The second setup
covered triple stores with a command-line interface (CLI). This benchmark simulated a
single user because CLI does not support multiple concurrent users. The second setup
was executed against TENTRIS, RDF3X and TripleBit. Like in previous works [5,22],
we set the runtime of all benchmarks to 60min with a 3-min. timeout. The performance
of each triple store was measured using Queries per Second (QpS) for each client. In
addition, we assessed the overall performance of each triple store by using an average
penalized QpS (avg pQpS) per client: If a triple store failed to answer a query before
the timeout or returned an error, then said query was assigned a runtime of 3min.

7.2 Evaluation of Join Implementation

The performance of TENTRIS depends partially on the approach used to process joins.
In our first series of experiments, we hence compared our default join implementation
(see Sect. 6.3) with two other possible join implementations: 2-way joins (T2j) and a
random label selection strategy (Tr). We used the HTTP-based benchmarks with one
user. The results of this series of experiments is shown in Fig. 7. Our join implemen-
tation based on multi-way joins and label ordering strategy contributes substantially
to the performance of TENTRIS. Our default TENTRIS is the fastest w.r.t. avg pQpS
and median QpS on all datasets. T2j and Tr time out on several queries through the
benchmarks and answer several queries from each benchmark more than an order of
magnitude slower than the default TENTRIS. Hence, we use the default implementation
of TENTRIS throughout the rest of the experiments.

7.3 Comparison with Other Approaches

Figure 4 shows the results of our HTTP evaluation on SWDF, DBpedia and WatDiv.
For each number of clients tested in the HTTP evaluation, two vertically aligned plots
are given: the first shows a boxplot of QpS and the mean QpS for single queries as
points, while the second reflects the avg pQpS. Please note the log-scale of the box-
plots. For a better comparison between the number of clients tested, Fig. 5 shows a plot
for each dataset with the avg pQpS depending on the number of clients. Analogous

13 As IGUANA requires SPARQL Protocol conformance, we fixed the HTTP request handling of
gStore, i.e., parsing requests, naming of parameters, and response content-type. With respect
to benchmark execution, we set the timeout to 3min, and the thread limit to 32 and raised
the total memory limit to 800GB. Code available at: https://github.com/dice-group/gStore-1/
releases/tag/3b4fe58-mod.

https://github.com/dice-group/gStore-1/releases/tag/3b4fe58-mod
https://github.com/dice-group/gStore-1/releases/tag/3b4fe58-mod
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Fig. 4. Benchmark results on SWDF (a), DBpedia (b) and WatDiv (c) using HTTP with triple
stores Blazegraph (B), Fuseki (F), GraphDB (G), gStore (S), TENTRIS (T) and Virtuoso (V): For
each dataset, the first row shows boxplots for evaluations with 1, 4, 8, 16 and 32 clients respec-
tively. Each point represents QpS for each single query, or mean QpS for a single query type
for more than one client. For better readability we log-scaled the first line of the graphics. If
queries with 0QpS were present, those values were converted to 5 · 10−4 QpS and the number of
occurrences are shown as values on the bottom line. The second row shows avg pQpS per client.
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Fig. 5. The plots show for SWDF, DBpedia and WatDiv the avg pQpS for each triple store with
increasing number of clients.

to Fig. 4, Fig. 6 provides the results of the CLI evaluation. Figure 7 shows the results
of the comparison of different TENTRIS versions. For a comparison of the time and
space requirements for loading the datasets into the triple stores see the supplementary
material.

HTTP Results. Overall, TENTRIS outperforms all other triple stores for all datasets
clearly with respect to avg pQpS. For a single client, our approach achieves a 1.83 to
2.51 times higher avg pQpS than the second best triple store, i.e., gStore or GraphDB.
The avg pQpS of our approach is even 7.62 to 21.98 times higher than that of the slowest
framework. With multiple users, TENTRIS scales almost linearly with the number of
clients (see Fig. 5). TENTRIS is the only triple store in our evaluation that completed
each query of all benchmarks at least once. Virtuoso succeeded on nearly all queries,
with only a single failed query in the DBpedia benchmark with 32 users. The other
triple stores failed on several queries across benchmark configurations.

As shown in Fig. 4a, TENTRIS is the fastest triple store for SWDF. It achieves avg
pQpS that are at least 2 times higher than the second best and the median of its QpS
lies above all values of all other stores. TENTRIS scales up the best to 32 users. The
QpS per client drops from 1 to 32 clients by just 39%. Only Virtuoso shows a similar
behavior, with a drop of 41%. The other triple stores are orders of magnitude slower
when queried with multiple clients. Looking further into detail, TENTRIS outperforms
the other stores for small queries which produce less then 5000 results (see Table 3)
and Virtuoso is second best. For the 9% large queries with more than 5000 results,
Blazegraph and gStore are about 1.5 times faster than TENTRIS for 1 client, but do
not not scale with the number of clients; such that TENTRIS is 10 times faster than
Blazegraph and 3 times faster than gStore for 32 clients.

For the DBpedia dataset, TENTRIS is the fastest store w.r.t. the avg pQpS and the
median QpS. The result plots in Fig. 4b show that TENTRIS is almost two times faster
than the second best triple store with respect to avg pQpS. It scales at least linearly with
an increasing number of clients. When dividing the queries by small and large results,
TENTRIS is always the fastest for DBpedia on small queries and only outperformed by
gStore on large queries with 1–8 clients. Again, TENTRIS scales better and is fastest for
16–32 clients.
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Like for the real-word datasets SWDF and DBpedia, TENTRIS outperforms the
other triplestores on the synthetic WatDiv dataset by at least 1.8 times w.r.t. the avg
pQpS. It scales at least linearly with an increasing number of clients. TENTRIS is fastest
on the WatDiv dataset for small. For small queries and 1 client, GraphDB is the second
best, while Virtuoso is the second best for multiple clients. For large queries, gStore is
1.5 times faster for 1 client than the second fastest TENTRIS, for 4 and 8 clients TEN-
TRIS and gStore answer queries with roughly the same speed. With 16 to 32 clients,
TENTRIS is the fastest at answering large queries by at least a factor of 2.
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Fig. 6. Benchmarks on SWDF, DBpedia
and WatDiv using a CLI with triple stores
TripleBit (R), TENTRIS (T) and RDF-3X
(X). A description of the layout is given in
Fig. 4.
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Fig. 7. Benchmarks on SWDF, DBpedia
and WatDiv using different configurations
of TENTRIS, i.e., the default configuration
(T), using two-way joins (T2j) and using
a random label order for the Einstein sum-
mation (Tr). A description of the layout is
given at Fig. 4

CLI Results. The results of the CLI evaluation plotted in Fig. 6 show that TENTRIS

clearly outperforms TripleBit and RDF-3X on all datasets. TripleBit and RDF-3X fail
on 38 resp. 5 out of 203 queries for SWDF and 535 resp. 279 out of 557 queries for
DBpedia. For the SWDF dataset, TENTRIS is at least 2.5 times faster with respect to
pQpS. For DBpedia, the margin is even higher with 4.4-48,200 times higher pQpS.
The scatterplot shows that TENTRIS answers more than 75% of the queries faster than
TripleBit answers any query and than RDF-3X answers most queries. For the WatDiv
dataset TENTRIS outperforms TripleBit and RDF-3X by at least 2.3 times w.r.t. pQpS.

Summary. Overall, TENTRIS outperforms all other approaches in the HTTP bench-
marks client w.r.t. the average QpS per client across all datasets. The CLI experiments
lead to a similar picture. While TENTRIS is always best for small queries with up to
5000 results, gStore is faster for large queries with more than 5000 results with up to 8
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clients. This difference in performance seems to be due to the current result serialization
of TENTRIS and will be addressed in future versions of the framework. The additional
better scalability of the approach w.r.t. the number of clients suggests that TENTRIS

is a viable alternative to existing solutions for querying RDF knowledge graphs. An
analysis of our results suggests that the selection of the sequence of operations in the
Einstein summation can be improved further by using heuristics (e.g., star joins vs. path
joins) or by using function approximators ranging from regression-based solutions to
deep learning.

8 Conclusion and Outlook

With TENTRIS, we present a time-efficient triple store for RDF knowledge graphs. We
define a new mapping of RDF and SPARQL to tensors and tensor operations like slic-
ing and Einstein summation. Our experimental results show that TENTRIS outperforms
established triple stores with respect to QpS within experimental settings with up to
32 concurrent users. This improvement is the result of a novel tensor data structure,
called hypertrie, that is designed to store low-rank tensors efficiently and allows the
efficient evaluation of slices and Einstein summation. We show that hypertries allow
for constant time slices on any combination of dimensions. An efficient evaluation of
Einstein summation expressions on hypertries is achieved by an adaption of a worst-
case optimal multi-join algorithm. TENTRIS will be extended in future works to be a
fully-fledged triple store. Further improvements will include the data-driven improve-
ment of the processing order for Einstein summation labels. Moreover, we will develop
domain-specific versions of TENTRIS, e.g., geo-spatial extensions.
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Abstract. There is a variety of available approaches to learn graph
node embeddings. One of their common underlying task is the gener-
ation of (biased) random walks that are then fed into representation
learning techniques. Some techniques generate biased random walks by
using structural information. Other approaches, also rely on some form
of semantic information. While the former are purely structural, thus
not fully considering knowledge available in semantically rich networks,
the latter require complex inputs (e.g., metapaths) or only leverage
node types that may not be available. The goal of this paper is to
overcome these limitations by introducing NESP (Node Embeddings
via Semantic Proximity), which features two main components. The
first provides four different ways of biasing random walks by leveraging
semantic relatedness between predicates. The second component focuses
on refining (existing) embeddings by leveraging the notion of seman-
tic proximity. This component iteratively refines an initial set of node
embeddings imposing the embeddings of semantic neighboring nodes of
a node to lie within a sphere of fixed radius. We discuss an extensive
experimental evaluation and comparison with related work.

1 Introduction

Nowadays there is abundant graph data on the Web; from friendship graphs in
social networks to knowledge graphs [6]. These graphs can be used for several
tasks such as link prediction–whether any two nodes are connected by some
edge/relation, node classification–identifying the type of a node, node clustering–
grouping the same type nodes into the same category, and so on. Recently, graph
embeddings have become a popular means to accomplish those tasks.

The idea is to project nodes or triples [7] of a given graph into a low dimen-
sional vector space while maintaining its structure; as an example, nodes sharing
an edge will be nearby in the vector space [2]. Research on graph embeddings
focuses on two main types of graphs: homogeneous, having a single type of both
nodes and edges (e.g., social relationships of bloggers aka. BlogCatalog [27])–and
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J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 74–91, 2020.
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heterogeneous, having different types of nodes and edges (e.g., DBpedia [20]).
Homogeneous graph embeddings such as LINE [24], node2vec [9], and Deep-
walk [17] learn node embeddings by using random walks to encode node prox-
imity. While random walk based approaches perform well in several embedding
tasks, this result does not directly apply to heterogeneous information networks
(HINs) aka knowledge graphs (KGs), partly due to the difficulty to precisely
take into account the different kinds of node and edge types in the graph.

Heterogeneous
Network

Walk
Generator

Semantic
Proximity
Function

Skip-Gram Embedding
Refinement

Embeddings

Fig. 1. The NESP framework.

Some approaches find biased random walks
in HIN by leveraging edge weights (e.g., based
on TF-IDF in predicates) that are derived
from structural information (e.g., Biased-
RDF2Vec [16]). Other approaches, besides the
structure, also rely on some form of semantic
information (e.g., [5,8]) either as an additional
input (e.g, metapaths [5], that is, sequences of
node types) or implicit (e.g., alternating the
node types [12] traversed during the walk gen-
eration according to some likelihood probabil-
ity). A survey of related literature can be found
in [2,25].

While the former are mainly structural-
based, thus not fully considering the knowledge
available in semantically rich networks (e.g., KGs or HIN), the latter require
complex inputs (e.g., it is not clear how to find meaningful metapaths) or only
leverage node types where, besides the fact that these may not be available,
there is also the need to precisely define the initial stay probability and the
number of memorized domains whose optimal values may vary from dataset to
dataset. Moreover, none of these approaches can learn (or refine) embeddings
where the embeddings of semantic neighbors, even if not directly connected, are
constrained to be close together in the vector space.

The goal of this paper is to fill these gaps by introducing a framework
called NESP (Node Embeddings via Semantic Proximity), shown in Fig. 1
which contributes two main components. The first provides four different ways
of biasing random walks by leveraging semantic information. Differently, from
approaches using metapaths or similar, where one needs, for instance, to under-
stand the schema-compatibility of the sequence of node types, NESP allows to
find domain-driven walks when optionally specifying a set of predicates related
to a domain of interest. After generating the walks, NESP employs the Skip-
gram model [15] to learn the node embeddings. The second component focuses
on the notion of semantic proximity, which identifies the semantic neighborhood
of a node that may be different from the structural neighborhood (e.g., consider-
ing (directly) connected nodes). For instance, the semantic neighbor of the node
(entity) S. Kubrick in DBpedia can be the node M. Forman, which is some hops
away from S. Kubrick or another node, which is, for instance of the same type.
This second component can be used to refine embeddings found by any exist-
ing system. Concretely, it leverages penalty functions [1] to iteratively refine an
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initial set of embeddings so that embeddings of the semantic neighbor of a node
lie within a sphere of fixed radius centered at the node’s embedding. Overall,
the contributions of this paper are summarized as follows:

– We introduce a novel approach that leverages edge relatedness to drive the
embedding construction. It is much simpler to use edges than nodes (in meta
paths) as one needs to guarantee compatibility between node sequences.

– Our approach learns domain-specific embeddings by using some input predi-
cates to specify the domain.

– NESP requires simpler input than related approaches (e.g., metapath2vec).
– We introduce an embedding refinement strategy for existing embedding algo-

rithms based on penalty functions and semantic proximity.

The remainder of the paper is organized as follows. We introduce some pre-
liminary definitions in Sect. 2. The NESP system is introduced in Sect. 3. Our
embedding refinement approach is presented in Sect. 4. We discuss the experi-
mental evaluation in Sect. 5. Related work is treated in Sect. 6. We conclude and
sketch future work in Sect. 7.

2 Preliminaries

Heterogeneous Networks. A graph G = (V,E) has a set of nodes V and
edges E as well as a function τ that maps nodes and edges into their respective
types, formally, τ : V → TV and τ : E → TE . A Graph G is called heterogeneous
if nodes (resp. edges) of the graph have different types, i.e., |TV | > 1 (resp.
|TE | > 1). When all nodes (resp. edges) of the graph have one type of nodes and
one type of edges, i.e., |TV | = |TE | = 1, then the graph is homogeneous. In this
work, we are mainly interested in a type of heterogeneous graphs called knowl-
edge graphs (KGs) aka heterogeneous information networks (HINs). A knowledge
graph is a directed node and edge labeled multi-graph G = (V,E,U) where V
is a set of vertices that represent entities, E is a set of predicates and U is a set
of triples of the form (s, p, o) representing directed labeled edges where s, o ∈ V
and p ∈ E.

Graph Embedding. A graph embedding model h : v → R
d projects nodes

into a low dimensional vector space, where d � |V |–number of nodes, so that
neighboring nodes are nearby in the vector space. At the simplest level, an
input to an embedding model consists of an adjacency matrix of a given graph
and its output is a vector embedding of each node in the graph so that the
distance between two neighboring nodes is much smaller than the ones that
are far apart. The dot product between two node embeddings approximates
an edge existence between them. After producing an embedding model of a
given graph, the model can be used for accomplishing several tasks such as
node clustering, node classification, recommendation, and so on. Given their
wide array of advantages, graph embeddings have been well researched, we refer
the reader to [2] for a survey. A graph embedding model is defined based on a
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node similarity and an objective function. Broadly, graph embedding approaches
can be divided into two, homogeneous and heterogeneous, based on the kind
of graphs they focus on. In this study, we propose an embedding model for
heterogeneous networks based on predicate relatedness to find biased random
walks and an embedding refinement model based on semantic proximity.

Predicate Relatedness. To find biased random walks NESP leverages an
existing predicate relatedness measure [18]. Given a knowledge graph G =
(V,E,U) and a pair of predicates (pi, pj) ∈ E, the relatedness measure is
based on the Triple Frequency defined as TF (pi, pj) = log(1 + Ci,j), where
Ci,j counts the number of times the predicates pi and pj link the same sub-
jects and objects. Moreover, it uses the Inverse Triple Frequency defined as
ITF (pj , E) = log |E|

|{pi:Ci,j>0}| . Based on TF and ITF, for each pair of pred-
icates pi and pj we can build a (symmetric) matrix CM where each element
is CM (i, j) = TF (pi, pj) × ITF (pj , E). The final predicate relatedness matrix
MR can be constructed such that Rel(pi, pj) = Cosine(Wi,Wj), where Wi

(resp., Wj) is the row of pi (resp., pj) in CM . We refer to Rel(pi, pj) as the
relatedness score.

3 NESP: Relatedness-Driven Walk Generation

Unlike previous heterogeneous network embedding approaches that use the types
of nodes and metapaths, we use predicates (i.e., edge labels) and their related-
ness, to guide walk generation. The input to the walk generator is a graph
G = (V,E,U), a predicate relatedness matrix CM , and a set of input predicates
R that may be used to generate domain-driven embeddings, that is, embeddings
where some edges are preferred to others during the walk generation. This set if
not specified includes all the available predicates. Let u ∈ V be the current node
in a walk, N(u) is the set of its neighbors, v ∈ N(u) is the next node in a walk,
E(u, v) is the set of all predicates linking u and one of its neighbor v ∈ N(u).
Moreover, let Rel(pi, pj) be the relatedness score for predicates pi and pj . To
pick the next node v ∈ N(u) starting from u we define the following approaches.

Semantic Relatedness Driven Walk. For a given node u and its neighbors
N(u), we collect the set of all predicates E(u, v) between u and its neighbors
{v ∈ N(u)}. Then, the relatedness between each predicate puv ∈ E(u, v) and
all the input predicates pj ∈ R is computed. Once having a relatedness score
for each edge (resp. neighbor) this strategy picks as the next node v the one
linked to u via the highest relatedness score. When two or more edges have the
same relatedness score, one will be selected uniformly at random. The approach
is summarized in the following equation:
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P (v|u,R) =

⎧
⎪⎨

⎪⎩

0 if |E(u, v)| = 0
1 if |E(u, v)| = 1
ϕ(R, E(u, v)) otherwise

ϕ(R, E(u, v)) = max
pj∈R,puv∈E(u,v)

Rel(pj , puv)

(1)

Relatedness Driven Jump and Stay Walk. The walks generated by the
above approach tend to be biased, indeed, it always picks the node linked via
the predicate having the highest relatedness score, thus introducing a form of
determinism. To overcome this aspect, we propose relatedness driven jump and
stay. For the first M steps of a walk and when the probability of picking the
next node is larger than some threshold α, we choose the next node according to
Eq. 1 (corresponding to staying); otherwise, we choose a random neighbor (cor-
responding to jump). We use two parameters: a threshold α for the relatedness
score and a step counter M to track the number of nodes visited so far. For each
walk, the neighbor v of u is selected according to α and M . For the first M steps
(nodes), we choose a node having ϕ(R, E(u, v)) > α. Starting from the (M +1)th
step, the next node is randomly chosen. By denoting with m the current step,
the next node is selected according to the following equation:

P (v|u,R, α,m) =

{
P (v|u,R) if P (v|u,R, α,m) > α and m < M

x ← U(0, 1) otherwise,
(2)

x is a random number chosen from a uniform distribution U(0, 1).

Randomized Relatedness Driven Walk. In this approach, we use a param-
eter K to specify the percentage of nodes to choose from. As in the previ-
ous strategy, we compute the relatedness scores between the input edges and
the edges linking the current node u to each of its neighbors v. However, we
only consider the top-k highest values that single out a subset of all neighbors
(those linked via these top-k predicates). The next node v is selected at random
among them. In particular, the higher the relatedness score of an edge, the more
likely that it will be selected. Formally v is chosen according to the following
distribution:

P (v|u,R,K) =

{
ϕ(R,puv)∑

w∈Pr(u,R,K) w if |E(u, v)| > 1

P (v|u,R) otherwise

Pr(u,R,K) = argmax
X′⊆X (u,R),|X′|=K

∑

x∈X′
x

X (u,R) ← {ϕ(R, pj)|∀pj ∈ E(u, v′) and ∀v′ ∈ V }

(3)

In the denominator of the above equation, we consider only the top-k ranked
edges to choose from. To elaborate, X () contains the set of all relatedness scores
between u and its neighbors; and the function Pr() selects the top-k relatedness
scores using the argmax. Note that if the number of neighbors of u is less than
K, then K is changed to the number of its neighbors.
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Probabilistic Relatedness Driven Walk. This approach is a variation of the
above approach in which instead of considering the top-k neighbors, we choose
randomly one of them. In particular, the next node v is sampled from the non-
uniform discrete distribution corresponding to the relatedness score according
to the following equation:

Pt(v|u,R) =

{ ϕ(R,puv)∑
v′∈V,pj∈E(u,v′) ϕ(R,pj)

if |E(u, v)| > 1

P (v|u,R) otherwise
(4)

Note that all the above approaches provide much simpler ways of guiding the
walks than metapath-based approaches. This is because one has to have precise
domain knowledge in picking meaningful metapaths. Not to mention the fact
that in schema-rich graphs, it can be the case that no path in the graph satisfies
the input metapath. Hence, approaches based on metapaths can only work on
graphs that have a simple schema, i.e., a few edge and node types. Moreover, we
underline the fact that some of the walk generation strategies are refinements
(for instance, probabilistic relatedness driven walk is a variation of randomized
relatedness driven walk). The choice of the walk generation strategy depends on
many factors including how rich in semantics is the graph, how big is the graph,
etc. As an example, if there are node types one can use relatedness driven jump
and stay walk. For large graphs, one can pick the semantic relatedness driven
walk, which is generally faster as observed in the experiments.

3.1 Learning Node Embeddings

In this section, we describe how nodes of heterogeneous graphs are mapped
into vectors in a d-dimensional vector space. For a graph G = (V,E,U) and
node u ∈ V , the function h maps nodes into vectors, i.e., h : u → R

d where
d � |V |. Similar to previous approaches, we use the Skip-gram model to learn
latent representations of nodes by making use of the walks generated. Skip-gram
maximizes the co-occurrence probability among nodes that appear within a given
walk of length L. The co-occurrence probability of two nodes u and v in a set of
walks W is given by the Softmax function using their vector embeddings eu and
ev:

P ((eu, ev) ∈ W ) = σ(eu · ev) (5)

In the above equation, σ is the softmax function and eu ·ev is the dot product of
the vectors eu and ev. Likewise, the probability that a node u and a randomly
chosen node vj that does not appear in a walk starting from u is given by:

P ((evj
, eu) �∈ W ) = σ(−eu · evj

) (6)

The negative sampling objective of the Skip-gram model, that needs to be max-
imized, is given by the following objective function:

O(θ) = log σ(eu · ev) +
∑

n∈Γ

Een
[log σ(−eu · en)], (7)
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where θ denotes the set of all parameters and Γ is the set of negative samples. We
use the asynchronous stochastic gradient descent (ASGD) algorithm in parallel
to optimize the objective function [12,19].

4 NESP: Embedding Refinement via Semantic Proximity

In this section, we describe the second strategy included in NESP. Its goal is to
refine node embeddings that have been learned by any existing mechanism both
semantic (e.g., JUST [12]) and structural based (e.g., node2vec [10], Deepwalk
[17]). The core of the approach is the notion of semantic proximity, which for a
node identifies a set of semantic neighbors. This definition is very general; the
semantic neighbors can be nodes having the same node type (but not necessarily
connected), nodes having a similar degree, the edge types, they can be top-k
neighbors and so on. The goal of this strategy is to use information about the
semantic neighbors (and their initial embeddings) of each node so that the refined
node embeddings are nearby in the vector space. To elaborate, the refinement
strategy allows to modify an initial embedding that may have placed nodes that
are semantically neighbors far apart in the vector space.

Semantic Proximity. We mentioned that semantic proximity defines the neigh-
borhood of a node. As mentioned, the notion of neighborhood is general and
allows to identify semantically close nodes according to different strategies. We
see semantic proximity as a mapping from a node into its semantic neighbors, i.e.,
NK : V → 2|V |. Concretely, an instantiation of NK can be a function based on
semantic relatedness. Given a node u, and a set of input predicates R, describing
a domain of interest, NK can be defined as follows:

NK(u) = Pr(u,R,K) (8)

The definition of Pr() is given in Eq. 3.

Embedding Refinement. Once NK(u) has been defined, to implement embed-
ding refinement for each node u we consider a sphere with a small radius r ∈ R

and then constrain the embeddings of the semantic neighbor nodes of u to lie
within this sphere. Thus, any two node embeddings within the sphere are at a
maximum of 2r distance. A small r would place the embeddings of neighbor-
ing nodes as close as possible. We mentioned that the initial embeddings to be
refined can be computed with any mechanism, which is one of the benefits of
our refinement approach. To summarize, under a given semantic proximity, the
embedding of u and v ∈ NK(u) must be close to each other. Hence, the objective
is to minimize the sum of all radii for all v, given the center u, by using Eq. 7
and the cost function given in [1,9].

min
R,C

∑

v∈NK(u)

∑

b∈V

[
log σ(ev · eb) +

∑

n∈Γ

Een
[log σ(−ev · en)]

]
+

α
∑

u∈V

r2u + ϕ(u, v, ru)

subject to ||ev − eu||22 ≤ r2u, ru ≥ 0, ∀v ∈ NK(u) and ∀u ∈ V

(9)
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Table 1. Statistics of the datasets used in our experiments.

Graph |V | |E| |TV | |TE | #labels

DBLP [11] ∼2M ∼276M 3 4 4

Foursquare [11] ∼30K ∼83K 4 4 10

Yago movies [11] ∼7K ∼89K 4 5 5

PubMed [25] ∼63K ∼245K 10 4 8

AIFB [20] ∼2.4K ∼16K 21 18 4

BGS [20] ∼12K ∼1423K 2 15 3

In the above equation, Γ is the set of negative samples, α denotes a positive
weight, the constraint ||ev − eu||22 ≤ r2u ensures that (the embeddings of) nodes
that have the same semantic proximity as u belong to the sphere of radius ru

and centered at eu, and R and C denote set of all radii and center embeddings
respectively. Besides, ϕ(u, v, ru) is the penalty function given in Eq. 10. Note
that Eq. 9 is a non-convex constrained optimization problem. To convert into an
unconstrained optimization problem, we add the following penalty function to
the formulation as done in [1].

ϕ(u, v, ru) = λ
∑

u∈V

∑

v∈N(u)

f(||ev − eu||22 − r2u) +
∑

u∈V

ρ(u)f(−ru) (10)

In the above formula λ, ρ(u) ∈ Z
+ are parameters which are gradually increased

depending on the violation of the constraint. f is a penalty function defined as
f(t) = max(t, 0) and controls the violations of the constraints in Eq. 9. We use
ASGD to solve the unconstrained optimization problem corresponding to Eq. 9.
The optimized solution gives the refined node embedding of v.

5 Experiments

In this section, we report on an empirical evaluation of our approach and compar-
ison with related work. NESP has been implemented in Python. Experiments
were run on a MacBook P2.7 GHz quad-core processor with 16 GB RAM. The
reported results are the average of 5 runs. We used six datasets (see Table 1) from
different domains for which the ground truth results were already available.

5.1 Competitors and Parameter Setting

We consider a sample of the most popular and well-performing approaches to
compute embeddings in (knowledge) graphs.

– Deepwalk: designed for homogeneous graphs, it generates random walks and
then feeds them into the Skip-gram model. We set the number of walks per
node to n = 10, the maximum walk length to L = 100 and the window size
(necessary for the notion of context in the Skip-gram model) to w = 10.
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– node2vec: this approach improves upon Deepwalk in both the way random
walks are generated (by balancing the breadth-first search (BFS) and depth
first search (DFS) strategies) and in the objective function optimization (it
uses negative sampling). We set the parameter values for n, L, and w to the
same values as Deepwalk. Moreover, we also set the parameters p and q, which
defines probability of returning to source node and of moving to a node away
from the source node, to the best values reported in [9].

– Metapath2vec: it takes as input one or more metapaths and generates walks
to be fed into the Skip-gram model. We consider the same metapaths used
in the evaluation of JUST [12]. For DBLP, ΠDBLP

1 = A-P-A and ΠDBLP
2

= A-P-V-P-A linking authors to papers and authors to papers and venues
respectively. For Yago movies (mov), Πmov

1 = A-M-D-M-A and Πmov
2 = A-

M-C-M-A representing actors starring in movies with common directors and
composers, respectively. For Foursquare (4SQ), Π4SQ

1 = U-C-P-C-U repre-
senting users checking-in at the same point of interest, and Π4SQ

2 = P-C-T-
C-P representing points of interest having check-ins at the same timestamp.

– JUST: this approach was designed to get rid of metapaths. In doing so, the
authors consider probabilities of jump or stay based on the kinds of domains
(node types) visited during the generation of a random walk. We set the
algorithm parameters to the best values reported in [12].

– RDF2Vec: this approach uses graph kernels, extracted using the Weisfeiler-
Lehman, to guide walk generation; it assumes equal weights for all edges [20].

– Biased-RDF2Vec: this approach focuses on finding domain-specific embed-
dings by providing a set of input predicates.

– NESPred: with this we considered specific subsets of edge labels in the com-
putation of embeddings to evaluate the domain-driven approach. For the
DBLP dataset, we considered R1 = {author} linking a paper to an author,
and R2 = {author , venue} including edges to link a paper to its authors and
to the venue it was published. For Foursquare we used R1 = {perform, locate}
and R2 = {locate, happenedAt} including edges linking users to check-in loca-
tions and edges to link the time of checking and the location. For the Yago
dataset we used R1 = {actedIn, directed} and R2 = {actedIn, coDirector}
linking actors to movies and directors and actors to movies co-directed. In
these datasets, the set of edges were picked to mimic the link between nodes
in the metapaths discussed above. For the datasets AIFB and BGS we use
the same predicates used to evaluate biased-RDF2Vec [16].

For NESP, we considered all the edge types and set the values of n, L, and w as
for the other approaches. For each system, we used d=128 as dimension of the
node embeddings, and the number of negative samples Γ is set to 10 for all meth-
ods in all experiments. For NESP, the notion of semantic proximity NK used
in the experiment about embedding refinement is defined as top-k most related
nodes via Eq. 8. We only report the best walk strategy, i.e., probabilistic relat-
edness driven walk ; the others were slightly worse even though we noticed that
semantic relatedness driven walk was generally faster. In Table 2, we highlight a
summary of the features of the considered systems.
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5.2 Node Classification

The goal of this task is to give the label of some test nodes based on the labels
of some training nodes. In order to predict the node labels, we use the node
embeddings obtained by training NESP, node2vec, Deepwalk, JUST, and meta-
path2vec. Node labels are predicted by using the embeddings as a training input
to a one-vs-rest logistic regression classifier. The results of this experiment are
given in Fig. 2, where the average (of 5 rounds) Micro-F1 and Macro-F1 scores for
classification is shown. For all the datasets and performance metrics (Micro-F1
and Macro-F1), NESP’s results are comparable with the baseline, slightly supe-
rior in some cases. We observe that as the percentage of training data increases,
the performance of all the systems improves, in general. We also observe that
when the percentage of training input is above 75%, NESP outperforms all the
baselines, including NESPred, which makes usage of a subset of predicates. In
general, we observe that this variant of NESP performs relatively well, espe-
cially in the PubMed and AIFB datasets. Unlike all the other systems, JUST’s
performance slightly decreases as more training input is provided on DBLP. On
the other hand, on the datasets PubMed, AIFB and BGS, NESP outperforms
all the other methods by a higher margin. Note that the results of methpath2vec
are not reported for some datasets since metapaths were unavailable and it was
difficult to identify meaningful ones. In addition, on the BGS dataset, although
not visible from the plot, increasing the size of the samples increases the accu-
racy. For instance, when we use 10% of the samples, the Micro-F1 is 0.9983 and
when we use 20%, it rises to 0.9986, i.e., we obtain a 0.0003 improvement.

Table 2. Walk generation techniques adopted by state of the art systems.

Network type Approach Walk guiding Metapath

Node type Edge type

Homogeneous Deepwalk No No /

Node2vec No No /

Heterogeneous metapath2vec Yes No Yes

JUST Yes No No

RDF2Vec No No No

Biased-RDF2Vec No Yes No

NESPred No Yes No

NESP No Yes No

5.3 Node Clustering

The goal of this task is to investigate how similar nodes can be grouped to form
communities. We follow the methodology described in Hussein et al. [12]. For
each of the graphs, we consider nodes having the same label as being part of the
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Fig. 2. Node classification results in terms of micro and macro F1.

same community. Then, we fed the node embeddings to the k-means algorithm
and evaluated cluster quality by computing the Normalized Mutual Information
(NMI). As in the Yago dataset, each movie could be part of more than a class,
we provided a classification such that each movie belongs only to one label. This
increases the number of possible labels. The results of this experiment are given
in Fig. 3. As can be seen, NESP outperforms all the baselines on all the datasets.
JUST comes second best in terms of clustering performance. Both NESP and
JUST provide a good indication that one does not need metapaths to outperform
state of the art heterogeneous embedding models. In fact, this is clearly visible
in the results over the Yago dataset. Interestingly, the performance of homoge-
neous embedding models, node2vec and Deepwalk is very competitive over the
graphs, DBLP and Foursquare. However, on the more schema-rich Yago, their
performance degrades showing that they are not well suited for heterogeneous
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Fig. 3. Clustering results.

graph embedding tasks. In both PubMed and AIFB datasets, which are richer
than the other datasets, NESP outperforms all the other methods by a very
high margin. We also observe that on BGS all approaches performed relatively
well with NESP reaching the maximum value. For metapath2vec results are not
reported for some datasets since metapaths were unavailable and it was difficult
to identify meaningful ones.

5.4 Comparison with Domain-Driven Embedding Approaches

In this section we focus on a comparison with Biased-RDF2Vec [16], another
approach, which focuses on learning domain-driven embeddings. There are cru-
cial differences with our approach. First, Biased-RDF2Vec is based on two fixed
edge weights; one high, for predicates that exactly match the input predicates
specifying a domain of interest and one low for the others. On the other hand,
NESP, relying on the notion of predicate relatedness, covers a more general edge
weighting approach. As an example for the input predicate director, while biased-
RDF2Vec matches only this predicate, NESP can also assign a high weight to
the semantically related predicate like editor. In this experiment, we use the
same setting (parameters and datasets) used to evaluate Biased-RDF2Vec [16].
In particular, we use k-NN (Nearest Neighbor) for node classification with the
settings k = 4 for AIFB and k = 10 for BGS. Below, we also include the results
of RDF2Vec [20] that were reported for those datasets. RDF2vec is used as a
baseline. Table 3 shows the results of classification accuracy for domain-driven
approaches (biased-RDF2Vec and NESP) as well as structural-driven approach
RDF2Vec. The results reported for RDF2Vec are obtained using k-NN. However,
higher results were achieved by using SVM (support vector machine), respec-
tively, 93.41% for AIFB and 96.33% for BGS. NESP reports a slighter lower
value on AIFB and a slightly higher value on BGS with respect to the direct
competitor biased-RDF2Vec. However, these two datasets were quite specific
and limited in the variety of edge types. While Biased-RDF2Vec only assigns
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Table 3. Accuracy comparison for classification on AIFB and BGS datasets.

Approach Dataset

AIFB BGS

Biased-RDF2Vec 99.86% 93.10%

RDF2Vec 88.66% 93.19%

NESP 99.74% 94.04%

Table 4. Evaluation of the embedding refinement strategy.

Approach Dataset

DBLP AIFB Foursquare PubMed

Deepwalk 8% 12% 6% 16%

Node2vec 9% 16% 7% 18%

JUST 4% 8% 4% 6%

NESP 5% 3% 5% 4%

two edge weights (high to the chosen predicate and low to the other) NESP
offers a broader spectrum of edge weights thus implicitly been able to smooth
the difference between predicates of interest for the domain and the others.

5.5 Embedding Refinement

In this set of experiments, the goal was to investigate whether the embedding
refinement strategy coupled with some definition of semantic proximity can bring
some benefit to embeddings computed by any existing mechanism. We consid-
ered embeddings found by: (i) the semantic approaches NESP and JUST and
(ii) the non-semantic approaches node2vec and Deepwalk. We report experi-
mental results on DBLP, AIFB, Foursquare, and PubMed. The evaluation was
carried out as follows. Given a method and a dataset, we computed the initial
embeddings, the walks used to learn these embeddings and the set of semantic
neighbors NK(u) for each node u according to Eq. 8. Then, we fed these three
inputs and the hyperparameter values to the refinement strategy described in
Sect. 4. The output is an updated set of embeddings for each approach and
dataset considered. In what follows we focus on the variation of performance in
the clustering experiment (see Fig. 3). The results, depicted in Table 4, show the
percentage of improvement for each system.

We observe two interesting things. First, the approaches that benefit more
from the refinement strategy are Deepwalk and node2vec that completely disre-
gard the semantics of nodes and edges in a graph when computing node embed-
dings. It shows that refining the embeddings originally found by these approaches
by incorporating the notion of semantic proximity is a viable strategy. Second,
JUST and NESP obtain some improvement, with JUST obtaining a higher mar-
gin than NESP. This comes as no surprise since the walk generation technique
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used by NESP (Eq. 4) shares commonalities with the definition of semantic
proximity used in the refinement (Eq. 3).

5.6 Parameter Sensitivity

In this section, we investigate the impact of the algorithm parameters related
to the Skip-gram model. In particular, we consider the context window size w.
We fixed the other parameters to their best values and vary the context window
size w from 2 to 12. The results are shown in Fig. 4. We observe that larger
values of w lead to better performance. This can be explained by the fact that
a larger context window allows to better characterize the notion of neighbors
and thus place nodes having a similar neighborhood closer in the embedding
space. Nevertheless, when the value of w increases above 10, the benefits are
lost, as too long node proximity does not reflect into node similarity. Therefore,
we considered w = 10 in all previous experiments. We want to stress the fact
that NESP can capture semantic proximity by favoring the traversal of edge
types that are most semantically related to the input edges.
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Fig. 4. Impact of the parameter w (context size) for the classification task.

5.7 Discussion

We have observed in the experimental evaluation that NESP offers performance
comparable or higher than the state of the art in the datasets considered. There
are some aspects that make the system more flexible than its competitors. First,
NESP can be used to learn both domain-specific and general relatedness-driven
embeddings. The usage of relatedness allows to implement a sort of seman-
tic proximity during the construction of the walks, which favorably reflects in
the fact that nodes with similar neighbors (relatedness-wise) will have closer
representations in the embedding space. Second, differently from metapath2vec,
NESP when used to build domain-specific embeddings, requires a much simpler
input, that is, an edge set instead of a complex metapath. We also mention the
fact that an input metapath may not even have a counterpart in the underlying
data. As compared to domain-driven approaches like biased-RDF2Vec, NESP
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is more flexible as it considers a broader range of edge weights than the only
two weights considered by the former. Another important aspect is that NESP
(besides those necessary for Word2vec) does not require to set any parameter
while biased-RDF2Vec needs to manually assign the two weights and JUST
requires to input both the number of domain to memorize (parameter m) and
the initial stay probability (parameter α), the choice of which affects the overall
quality of the walks generated as well as the embeddings. Finally, the embed-
ding refinement strategy showed to be potentially very useful in combination
with simpler approaches like Deepwalk and node2vec besides providing some
improvement to the embeddings found by other systems too.

6 Related Work

There are two broad directions in the area of graph representation learning:
homogeneous and heterogeneous graph embeddings. Homogeneous graph embed-
ding models include DeepWalk, node2vec, LINE and others. Recently, there is a
growing interest in adapting random walk generation techniques from these mod-
els to heterogeneous graphs. As a result, IPE [13] (and an earlier version ProxEm-
bed [14]), JUST, metapath2vec, HIN2Vec [8], PTE [23], ESim [21], HINE [11] and
biased-RDF2Vec [16] have been proposed. While IPE uses an interactive path (a
directed acyclic graph) for semantic proximity search, SHNE [28], metapath2vec,
HIN2Vec, PTE and HINE rely on metapaths. However, generating metapaths is
a difficult task and often involves a domain expert [12]. JUST is a heterogeneous
graph embedding model which gets ride off metapaths to generate walks. It takes
into account the types of nodes in order to compute a jump probability from
one node to another when creating random walks. Instead of using node types
like JUST, NESP uses edge types and their relatedness. Moreover, when giv-
ing a specific subset of predicates as input, NESP can generate domain-driven
embeddings. The approach of [16] also generates domain-specific embeddings.
However, it is based on the manual assignment of weights for the predicates
given as input while for the others weights are assigned using different strate-
gies (e.g., predicate frequency). NESP is more general, domain-independent and
does not require an expert for weight assignment as weights are automatically
derived from the co-occurrences of predicates in the graph considered.

MetaGraph2Vec [29] uses metagraphs instead of metapaths in order to guide
walk generation. However, similar to metapaths, building metagraphs is chal-
lenging. Along the same line, RDF2Vec [20] extracts subtree graph kernels from
RDF graphs using the Weisfeiler-Lehman method. For each node in a given RDF
graph, a subtree up to some depth k is extracted and this subtree is used as a
walk to learn node embeddings of RDF graphs using two models: continuous
bag of words (CBOW) and Skip-gram. In addition, RDF2Vec provides an alter-
native way of walk generation using a breadth-first algorithm. Unlike NESP,
which takes into account the semantics of edges, RDF2Vec picks the next node
relying on structural information. Other relevant literature in the area of hetero-
geneous embeddings [11,22,26]. There exist also semi-supervised approaches that
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leverage user feedback to improve the learned embeddings for heterogeneous net-
works [3]. Away from approaches that are based on local patterns (graph walks,
subgraphs and kernels), RDF vector embeddings based on the GloVe (Global
Vectors) model have been proposed in [4]. Glove-RDF embedding method cre-
ates a global co-occurrence matrix from graphs instead of random walks. For
a more detailed discussion on heterogeneous and homogeneous embeddings, we
refer the reader to the survey [2,25].

Finally, our notion of semantic proximity, used for embedding refinement,
has been inspired by the notion of collective homophily from social networks. In
particular [1] used collective homophily to refine embeddings of edges from social
networks (including only one edge type). However, our formulation is based on
a general notion of semantic neighborhood.

7 Concluding Remarks and Future Work

We described NESP a novel approach to heterogeneous graph embeddings
including two components. The first features four different walk generation
approaches based on predicate relatedness and not only structural information.
NESP does not require metapaths, node types or other parameters to generate
such walks. The second features an embedding refinement strategy that can be
applied to embeddings learned by any existing system. It is based on the notion
of semantic proximity, which first identifies the semantic neighbors of each node
according to any notion of neighborhood (e.g., nodes sharing the same type,
nodes linked by specific paths, etc.) and then strive to arrange the positions of
a node and those of its neighbor as close as possible in the vector space. The
experimental evaluations show that NESP is competitive and that the embed-
ding refinement strategy is a viable solution, especially for approaches originally
designed for homogeneous networks. Further investigating the refinement strat-
egy and performing experiments on other domains is in our research agenda.
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Abstract. We study the problem of structure-based entity alignment
between knowledge graphs (KGs). The recent mainstream solutions for
it apply KG embedding techniques to map entities into a vector space,
where the similarity between entities could be measured accordingly.
However, these methods which are mostly based on TransE and its vari-
ants treat relation triples in KGs independently. As a result, they fail to
capture some advanced interactions between entities that are implicit in
the surrounding and multi-hop entities: One is the differences between
the one-hop and two-hop neighborhood of an entity, which we call as
short-term differences, while the other is the dependencies between enti-
ties that are far apart, which we call as long-term dependencies. Based
on the above observations, this paper proposes a novel approach learning
to capture both the short-term differences and the long-term dependen-
cies in KGs for entity alignment using graph neural networks and self-
attention mechanisms respectively. Our empirical study conducted on
four couples of real-world datasets shows the superiority of our model,
compared with the state-of-the-art methods.

Keywords: Knowledge graph · Entity alignment · KG embedding

1 Introduction

Entity alignment (EA) aims at associating entities across different knowledge
graphs (KGs) if they refer to the same real-world object. As numerous KGs
have been constructed and applied in recent years, it is necessary to connect
or merge them to comprehensively represent the knowledge in one domain or a
specific cross-domain. To measure the similarity between entities across different
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Fig. 1. Two implicit advanced interactions between entities in the EA scenario (Color
figure online)

KGs, traditional methods mainly rely on designing proper features [12,14] which
are labor-intensive and hard to transfer, while recent work [4,16] focus on apply-
ing various kinds of KG embedding models, which have shown their effectiveness
on entity alignment. Although much other information such as the attributes,
attribute values, and descriptions of entities could be utilized to enhance the
embedding results for entity alignment, the mainstream studies always concen-
trate on using structure information, i.e., the relation triples in KGs.

The key idea of embedding-based methods is to encode entities and rela-
tions into vector spaces and then find alignment between entities according
to their embedding similarities. Most embedding-based methods are developed
from TransE [2], a seminal work in the KG embedding field, encoding entities
and relations into vector spaces and making them satisfy some specific math-
ematical operations. MTransE [4] and SEA [16] are extensions of the TransE
model for entity alignment task, they encode two KGs via TransE separately
and learn transitions to map an entity’s embedding in one KG to its counter-
part in the other one. Different from adjusting entities using mapping functions,
IPTransE [25] and BootEA [18] propose to swap aligned entities to calibrate the
embeddings of entities in two KGs into a unified embedding space and gener-
ate more aligned entities during the process of iteration. JAPE [17], KDcoE [3],
AttrE [19] and MultiKE [24] combine structure-based TransE with other exter-
nal embeddings, such as attribute-based TransE, name-based TransE and entity
description embeddings to get better representations for entities.

However, TransE and its variants learn embeddings from triples indepen-
dently and thus fail to capture some advanced interactions between entities that
are implicit in the surrounding and multi-hop entities. One implicit complex
interaction between entities is the differences between the one-hop and two-hop
neighborhood of an entity, which we call as short-term differences, while
the other is the dependencies between entities that are far apart, which we call
as long-term dependencies. As the example illustrated in Fig. 1, the tradi-
tional embedding results of “Geroge Walker Bush” and “Geroge Herbert Walker
Bush” learned from their one-hop neighbors (i.e., those within the blue circle)
may hardly distinguish them, but the short-term differences of the two entities
could let them be better represented and distinguished as many of their two-hop
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entities are different. Meanwhile, learning dependencies between an entity and
its multi-hop entities, for example, the entities linked by the red dotted line in
Fig. 1, could better represent entities than using TransE, which only learns one-
hop dependencies in the form of triples thus propagates information inefficiently.
Capturing the above two kinds of interactions prevents entities from suffering
from low expressiveness.

The recent progress in graph neural networks (GNNs) [21] and sequence
learning methods [5] have fueled a lot of research on applying these advanced
models to entity alignment. GCN-Align [22] is the first to train graph convo-
lutional networks (GCNs) on KGs, it quantifies relations in triples and embeds
entities of each KG into a unified space. However, like the TransE-based methods,
it also overlooks the differences in the surrounding entities and the dependen-
cies between multi-hop entities. Instead of directly modeling triples or neigh-
bors, RSNs [8] is proposed to learn from relational paths through an RNN-based
sequence model where long-term dependencies between entities can be captured.
Nevertheless, its sequence model precludes parallelization and the generated
paths are biased to entities and relations of high degree. Besides, it is also not
sensitive to short-term differences.

In this paper, we propose a novel model that can capture both the short-
term differences and long-term dependencies. First, we leverage the self-attention
mechanism [20] to model dependencies between entities without regard to the
distance between items in the sequences generated by a well-designed degree-
aware random walk. Second, unlike GCNs that update nodes’ vectors by incor-
porating first-order neighbors, we capture short-term differences of entities by
repeatedly mixing neighborhood information aggregated at various distances [1].
Then, a linear combination is used to concatenate embeddings learned from the
above two modules as the final representation. Finally, we find alignments by
calculating their embedding similarities.

In summary, our main contributions are listed as follows:

– This work is the first attempt to captures both the long-term dependencies
and the short-term differences in KGs for entity alignment.

– We propose to utilize the self-attention mechanism instead of RNN to model
long-term dependencies between entities and devise a degree-aware random
walk to generate high-quality sequences in KGs.

– To obtain the representation of the short-term differences of entities, we intro-
duce a new graph neural network, from which we can better interpret the
short-term semantics of an entity from its surrounding neighbors.

– Our extensive empirical study conducted on four real-world datasets shows
the superiority and efficacy of our method, compared with the state-of-the-art
structure-based methods.

2 Related Work

KG embedding techniques have evolved rapidly in recent years and their use-
fulness has been demonstrated in entity alignment. The current methods for
embedding-based entity alignment models fall into the following three categories:
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2.1 TransE-Based Entity Alignment

TransE [2] is the most representative model in KG embedding approaches. It
holds the assumption that when mapping a triple (h, r, t) in KGs into a vector
space, the triple should satisfy h+r ≈ t, where h, r and t are the corresponding
vectors of h, r, t in the vector space. MTransE [4] encodes triples of each KG
in a separated embedding space via TransE, and makes use of seed alignments
to learn transitions for each embedding vector to its counterpart in the other
space. IPTransE [25] and BootEA [18] learn to map embeddings of different KGs
into the same space and perform iterative entity alignment to update the joint
embeddings and provide more training samples. Instead of utilizing the limited
aligned entities, SEA [16] is proposed to learn transitions from both labeled and
unlabeled data. It also mitigates the effect of degree differences in the existing
KG embedding methods by adversarial training. Further, several works, such as
JAPE [17] and AttrE [19], considers to learn representations from the structure
and attribute information in KGs while KDcoE [3] and MultiKE [24] leverage
descriptions, names and attributes to enhance the structure-based embedding
methods. All the methods above focus on the utilization of existing TransE-based
methods that treat triples separately, including MultiKE, which learns compre-
hensive entity embeddings from different views. However, the hidden complex
information involved in the surrounding and multi-hop entities is neglected and
thus remained to be exploited.

2.2 GNN-Based Entity Alignment

As entities can be seen as nodes in graphs, GNN is then proposed for entity align-
ment. GCN-Align [22] is the first attempt to generate node-level embeddings by
encoding information about the nodes’ neighborhoods via GCN, which is a type
of convolutional network that directly operates on graph data. It assumes that
equivalent entities are usually neighbored by some other equivalent entities and
they tend to have similar attributes, so when GCN produces neighborhood-aware
embeddings of entities, alignment can be predicted by a pre-defined distance
function. Inga [15] introduces an iterative training mechanism on GCN-Align and
improves the initial attribute feature by considering local and global attribute
information. Unlike the above node-level matching, [23] formulates the align-
ment task as a graph matching problem. It proposes a topic graph structure and
matches all entities in two topic entity graphs by attentive node-level matching.
However, none of them considers the importance of differences in the surround-
ing entities of an entity. Besides, although high-order dependency information,
i.e., long-term dependencies, can be captured by increasing the number of GNN
propagation layers, embeddings tend to be the same for different nodes and the
noise introduced can not be ignored, as reported in [11].
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Fig. 2. The architecture of our proposed model

2.3 Sequence-Based Entity Alignment

Sequence is a ubiquitous data structure, employed extensively in natural lan-
guage processing and related fields. RSNs [8] is the first to investigate long-term
relational dependencies in KGs. It uses biased random walk to sample paths in
KGs which are composed of entities and relations alternately and then mod-
els relational paths through recurrent skipping networks rather than recurrent
neural networks due to the unique triple structure in KGs. In specific, RSNs
makes the output hidden states of relations learn a residual from their direct
former entities in the sequences. Though it achieves a significant performance
improvement and outperforms TransE-based and GCN-based methods, it is also
unaware of the short-term differences of entities and unable to capture long-term
dependencies between entities well enough. As pointed out in a recent study of
machine translation [20], without any recurrent or convolutional structures, long-
term dependencies between words in sequences can be captured effectively by
solely using self-attention mechanisms. Therefore, we seek to propose a model
that can capture both the long-term dependencies and the short-term differences
in KGs for entity alignment using self-attention mechanisms and graph neural
networks, respectively.

3 Our Proposed Model

In this section, we introduce the proposed model for entity alignment. We first
formulate the problem of entity alignment in KGs and then describe the proposed
model in detail.

3.1 Problem Formulation

In this paper, we consider structure-based entity alignment between KGs, which
aims to learn entity embeddings merely based on structure information in KGs
(i.e., relation triples). A KG can be noted as a 3-tuple G = (E,R, T ), where E,
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R, and T denote the set of entities, relations and triples, respectively. Triples
have three components: head entity h, relation r and tail entity t. A triple is
always presented as (h, r, t).

Our problem is formulated as follows: Given two KGs G1 = (E1, R1, T1),
G2 = (E2, R2, T2) and some pre-aligned entity pairs S = {(ei, ej)|ei ∈ E1, ej ∈
E2}, entity alignment is aimed at discovering new equivalent entities N =
{(ei′ , ej′)|ei′ ∈ E1, ej′ ∈ E2} based on S.

3.2 Capturing Long-Term Dependencies

The overview of our model is presented in Fig. 2. The first part is designed
to facilitate the learning of long-term dependencies between entities. It first
connects two KGs as one joint KG by pre-aligned entities and adds reverse
relations between entities to enhance connectivity. Then, after generating entity-
relation sequences for each triple through a degree-aware random walk method,
leverages a self-attention based sequence predicting model to capture the long-
term dependencies.

Sequence Generating. Sequence generating takes two KGs and a set of pre-
aligned entities as input to produce sequences P = {p1, p2, . . . pi, . . . , pl}, where
pi = (ei1 , ri2 , . . . , eim), made up of entities and relations alternately. To obtain
desired sequences, inspired by random walk which is widely used in networks [6],
we propose a degree-aware random walk for KG to maintain a balanced collection
of information between long-tail entities and frequent entities. More specifically,
we leverage the idea of node2vec [7] and introduce a depth bias and a degree bias
to reduce the likelihood of revisiting an entity’s one-hop neighbors and increase
the likelihood of visiting entities of low-degree, respectively. To formalize, when
the current entity is ei, the transition probability to the next entity ei+1, denoted
as P (ei+1|ei), is calculated as follows:

P (ei+1|ei) = αdp(ei, ei+1) · βdg(ei, ei+1) (1)

where αdp(ei, ei+1) is the depth bias and βdg(ei, ei+1) is the degree bias. They
are defined as follows:

αdp(ei, ei+1) =

{
q d(ei−1, ei+1) = 2
1 − q d(ei−1, ei+1) �= 2

(2)

where q is a hyperparameter ranging from 0 to 1 controlling the depths, ei−1

is the previous entity of ei and d(ei−1, ei+1) denotes the shortest distance from
ei−1 to ei+1.

βdg(ei, ei+1) =

{
1

dei+1+fr
∃r ∈ R, (ei, r, ei+1) ∈ T

0 otherwise
(3)

where dei+1 gains the number of entities linked with ei+1, and we name it the
degree of entity ei+1. fr indicates the occurrence number of relation r in all
triples.
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It is noticeable that the bias we designed favor entities that haven’t appeared
in a specific sequence and have a low degree, which ensures the high quality of
the generated sequences.

Self-attention-Based Sequence Predicting. The inputs of this module are
sequences P and the goal of it is to effectively capture the long-term dependen-
cies between items in P . The beginning of this module consists of three kinds of
embeddings: entity embedding E, relation embedding R, and position embed-
ding P . After adding the embeddings of items in sequences to their corresponding
positional embeddings, the output of the embedding layer Ê is obtained and fed
to the self-attention layer.

S = Concat(head1, . . . , headh)

where headh = softmax(
(ÊWQ

h )(ÊWK
h )T√

d
)(ÊW V

h )
(4)

where WQ
h , WK

h , and W V
h are projection matrices of headh, and the output of

self-attention layer is the simple concatenation of multiple heads.
Hereafter, distinct from the normal residual connection (Norm-R) in [20], we

use a specific crossed residual (Cross-R) connection C to better optimize the
model due to the unique triple structure in KGs. It means that when capturing
long-term dependencies, the importance of tripe structure should be reflected,
so when the input is a relation, a residual from its previous entity is needed.

Ci =

{
Si

i+1
2 ∈ N

+

Si + Ê i
2

i
2 ∈ N

+
(5)

Then, we employ a point-wise feed-forward network and a normal residual
connection (Norm-R) to allow interactions within different latent dimensions
inspired by [20].

F = C + ReLU(CW 1 + b1)W 2 + b2 (6)

where ReLU is activation function, W 1 and W 2 are trainable matrices and b1
and b2 are bias vectors.

We can further stack more layers to explore different types of dependencies.
Formally, for the k-th layer, we recursively formulate the representation as:

Ê
(k)

= SA
(
Ê

(k−1))
(7)

where k > 1, Ê
(1)

= Ê and SA is made up of the above self-attention layer
with crossed residual connection and feed-forward layer with normal residual
connection.
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After performing k layers, we obtain representations of long-term dependen-
cies for entities and relations. We optimize the embeddings of items in sequences
by adopting the sequence predicting method and leverage the idea used in [13]
to accelerate training. The prediction loss of one sequence is defined as follows:

L(1)
LD = −

m−1∑
i=1

(
log σ(Êi · yi) +

n∑
j=1

Ey′
j∼P (y′)

[
log σ(−Êi · y′

j)
])

(8)

where m is the number of items in the sequence, σ is an activation function,
yi is the object of the i-th item while y′

j is the j-th negative sample of it. n
is the number of negative samples and P (y′) is the noise distribution where
only items whose frequencies appear in the first three-quarters can be found, it
changes according to the current item is entity or relation, which indicates that
the object and its corresponding negative examples come from the same type.
Adding the prediction loss of all l sequences is the whole loss of the long-term
dependencies capturing model.

LLD =
l∑

i=1

L(i)
LD (9)

3.3 Capturing Short-Term Differences

Next, we build upon the architecture of graph neural networks to capture short-
term differences of entities. The major difference to [10] lies in that our graph
convolutional network encodes neighborhood information at various distances
rather than first-order neighborhood features, as such, short-term semantics of
an entity can be augmented.

Formally, this module takes the vectors learned from the above self-attention
based layers as input to produce embeddings of short-term differences for each
entity as follows:

H(i) =

⎧⎪⎨
⎪⎩
Ê

(k)
if i = 0∥∥

j∈A

σ(Â
j
H(i−1)W

(i)
j ) if i ∈ [1..t] (10)

where
∥∥ denotes column-wise concatenation, A is the hyperparameter containing

a set of integer adjacency powers, σ denotes an element-wise activation function,
Â

j
represents the self-defined adjacency matrix Â that is multiplied by itself j

times and W
(i)
j is the weight matrix when gathering the j-order neighborhood

information in the i-th layer. Note that, different from the commonly used adja-
cency matrix in GNNs: Â = D− 1

2 (A+ In)D− 1
2 , where D is the degree matrix,

A is the connectivity matrix indicating the graph structure and In is the n × n
identity matrix making Â symmetrically normalized with self-connections, we
remove In from Â since our goal is to capture short-term differences surround-
ing an entity. In addition, we set W

(1)
j to be identity matrix because there is
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Table 1. Statistics of datasets

Datasets Source KGs #Entity #Norm-R #Norm-T #Dense-R #Dense-T

DBP-WD DBPdeia (English) 15,000 253 38,421 220 68,598

Wikidata (English) 15,000 144 40,159 135 75,465

DBP-YG DBPdeia (English) 15,000 219 33,571 206 71,257

YAGO3 (English) 15,000 30 34,660 30 97,131

EN-FR DBPdeia (English) 15,000 221 36,508 217 71,929

DBPdeia (French) 15,000 177 33,532 174 66,760

EN-DE DBPdeia (English) 15,000 225 38,281 207 56,983

DBPdeia (German) 15,000 118 37,069 117 59,848

no need to transform the input features which have already captured long-term
dependencies into higher-level features.

The short-term differences for equivalent entities are expected to be alike,
hence we train the GNN model to encode equivalent entities as close as possible in
the embedding space by using the pre-aligned entity pairs. We use the following
loss function to measure its plausibility:

LSD =
∑

(ei,ej)∈S

∑
(e′

i,e
′
j)∈S′

[‖ei − ej‖ + γ − ‖e′
i − e′

j‖
]
+

(11)

where [x]+ = max{0, x}, ‖·‖ denotes either L1 or L2 vector norm, γ is a margin
hyperparameter which is greater than 0, and S′ denotes the set of negative-
sampled entity alignments by replacing ei or ej in S.

3.4 Combined Loss

To preserve both the long-term and short-term complex information of entities,
we jointly minimize the following loss function:

Ljoint = LLD + LSD (12)

Considering the complementarity between the embeddings of long-term
dependencies captured by the self-attention-based sequence model and that of
short-term differences captured by GNNs, we concatenate them linearly and use
the combined embeddings as entities’ final representations.

efi =
[
θeldi ; (1 − θ)esdi

]
(13)

where θ is a parameter balancing the distribution between eldi and esdi , which
are the embedding of long-term dependencies and the embedding of short-term
differences, respectively.

4 Experiments

This section covers four parts. We start by considering datasets and details of the
model in the experimental setup and then introduce baselines briefly. Ultimately,
experiments and analyses are shown to validate the proposed model.
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4.1 Experimental Setup

Datasets. To evaluate the effectiveness of our proposed model comprehensively,
we reuse four couples of real-world datasets, namely DBP-WD, DBP-YG, EN-FR
and EN-DE, recently proposed in [8]. It is worth mentioning that each dataset
is sampled from real-world KGs: DBPedia (DBP), YAGO3 (YG) and Wikidata
(WD) by the PageRank algorithm to ensure that their entity distributions keep
consistent with original KGs, and each has two kinds of entity distributions:
a normal one and a dense one. DBP-WD and DBP-YG are mono-lingual KGs
while EN-FR and EN-DE are cross-lingual KGs. The statistics of the datasets
are shown in Table 1 where #Norm-R denotes the number of relations in the
normal datasets while #Norm-T denotes that of triples in them, and similar
notations for the dense datasets. For both the normal and dense datasets, each
KG contains 15,000 entities.

Implementation Details. Our model is implemented with TensorFlow. We use
an embedding dimension of 256 for all methods compared in 4.2 on all datasets.
Adam [9] is adopted to optimize LLD and LSD in turn. For the sequence gener-
ating part, we set q = 0.9, m = 15 and for the sequence predicting phase, we use
8 head in the self-attention layer and set k = 3. When aggregate neighborhood
information, i and A in Eq. (10) are set to 2 and {0, 1, 2}, respectively and the
non-linearity function σ is tanh. Besides, dropout and layer normalization are
adopted to stabilize the training. For fair comparison, we sample 30% of the
aligned entity set as the training set and the rest for testing for all approaches.
We choose Hits@1, Hits@10 and MRR to evaluate the alignment results, where
Hits@k indicates the proportion of correctly aligned entities ranked in the top
k and MRR is the abbreviation of mean reciprocal rank measuring the average
reciprocal values of testing entities.

4.2 Baselines

We include the following methods for performance comparison, which have been
thoroughly discussed in Sect. 2:

– MTransE [4]: This is the first to leverage KG embeddings to cross-lingual
knowledge alignment. It explores different kinds of mapping functions between
two KGs to find alignment in an efficient way.

– IPTranE [25]: It jointly encodes different KGs into the same space and
improves alignment performance by iteration strategy.

– JAPE [17]: As the first attempt to learn embeddings of cross-lingual KGs
while preserving their attribute information, this model achieves a certain
improvement by updating its embeddings through attribute correlations
which comes from attribute type similarity.

– BootEA [18]: It introduces a bootstrapping approach to iteratively generate
more likely training data for alignment-oriented KG embedding and employs
an editing method to weaken error accumulation caused by iteration.
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Table 2. Results on the normal and mono-lingual datasets

Datasets DBP-WD DBP-YG

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 22.3 50.1 0.32 24.6 54.0 0.34

IPTransE 23.1 51.7 0.33 22.7 50.0 0.32

JAPE 21.9 50.1 0.31 23.3 52.7 0.33

BootEA 32.3 63.1 0.42 31.3 62.5 0.42

GCN-Align 17.7 37.8 0.25 19.3 41.5 0.27

SEA 31.0 51.9 0.38 30.3 45.9 0.36

RSNs 38.8 65.7 0.49 40.0 67.5 0.50

Ours w/o LD 24.4 54.9 0.34 29.8 58.9 0.40

Ours w/o SD 44.1 70.7 0.53 44.5 71.0 0.53

Ours 46.8 75.3 0.56 46.5 74.0 0.56

%Improv 20.62% 14.61% 14.29% 16.25% 9.63% 12.00%

Table 3. Results on the normal and cross-lingual datasets

Datasets EN-FR EN-DE

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 25.1 55.1 0.35 31.2 58.6 0.40

IPTransE 25.5 55.7 0.36 31.3 59.2 0.41

JAPE 25.6 56.2 0.36 32.0 59.9 0.41

BootEA 31.3 62.9 0.42 44.2 70.1 0.53

GCN-Align 15.5 34.5 0.22 25.3 46.4 0.33

SEA 25.8 40.0 0.31 42.5 59.6 0.49

RSNs 34.7 63.1 0.44 48.7 72.0 0.57

Ours w/o LD 22.0 51.1 0.32 37.1 62.7 0.46

Ours w/o SD 38.3 65.8 0.47 51.3 73.4 0.59

Ours 41.1 70.6 0.51 53.9 77.8 0.62

%Improv. 18.44% 11.89% 15.91% 10.68% 8.06% 8.77%

– GCN-Align [22]: It proposes a novel approach for cross-lingual KG align-
ment, whose core is graph convolutional networks. This GNN-based method
takes relations in triples as edges with weights and produces neighborhood-
aware embeddings of entities to discover entity alignments.

– SEA [16]: An extension of the MTransE-based alignment model, whose pur-
pose is to design a semi-supervised entity alignment model to leverage abun-
dant unlabeled data leaving unused before and improve the original KG
embedding with awareness of degree difference by an adversarial framework.
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Table 4. Results on the dense and mono-lingual datasets

Datasets DBP-WD DBP-YG

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 38.9 68.7 0.49 22.8 51.3 0.32

IPTransE 43.5 74.5 0.54 23.6 51.3 0.33

JAPE 39.3 70.5 0.50 26.8 57.3 0.37

BootEA 67.8 91.2 0.76 68.2 89.8 0.76

GCN-Align 43.1 71.3 0.53 31.3 57.5 0.40

SEA 67.2 85.2 0.74 68.1 84.1 0.74

RSNs 76.3 92.4 0.83 82.6 95.8 0.87

Ours w/o LD 53.5 84.7 0.64 65.4 88.2 0.74

Ours w/o SD 79.9 93.7 0.85 85.6 96.5 0.89

Ours 81.8 95.9 0.87 86.9 97.4 0.91

%Improv. 7.21% 3.79% 4.82% 5.21% 1.67% 4.60%

Table 5. Results on the dense and cross-lingual datasets

Datasets EN-FR EN-DE

Metrics Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 37.7 70.0 0.49 34.7 62.0 0.44

IPTransE 42.9 78.3 0.55 34.0 63.2 0.44

JAPE 40.7 72.7 0.52 37.5 66.1 0.47

BootEA 64.8 91.9 0.74 66.5 87.1 0.73

GCN-Align 37.3 70.9 0.49 32.1 55.2 0.40

SEA 62.3 85.7 0.71 65.2 79.4 0.70

RSNs 75.6 92.5 0.82 73.9 89.0 0.79

Ours w/o LD 51.6 86.0 0.63 60.9 82.2 0.68

Ours w/o SD 80.6 94.2 0.85 77.6 91.2 0.82

Ours 83.6 97.2 0.89 79.4 93.0 0.84

%Improv. 10.58% 5.08% 8.54% 7.44% 4.49% 6.33%

– RSNs [8]: It is a state-of-the-art structure-based alignment model, which
learns embeddings from relational paths instead of triples. It captures long-
term dependencies between KGs by a sequence model integrating recurrent
neural networks with residual learning.

4.3 Comparisons of Performance

The experimental results on the mono-lingual and cross-lingual datasets are
presented in Table 2, 3, 4 and 5, respectively. Table 2 and 3 are results on normal
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Fig. 3. Effect of the proposed Cross-R.

datasets while Table 4 and 5 are that on dense datasets. The best results are
shown in bold, along with the percentage of improvement when comparing our
method with the best baseline method. Ours w/o LD and Ours w/o SD denote
our model without capturing long-term dependencies and short-term differences,
respectively, and they are disabled by ignoring the loss. From the results, we have
the following findings:

For the baseline methods, TransE-based models perform better than GNN-
based GCN-Align in most cases. One possible reason is that GCN-Align weakens
the role of relations and only expresses them numerically in the adjacency matrix.
Among the TransE-based methods, BootEA always achieves better performance
than SEA as it finds alignments in an efficient and iterative manner while SEA
prevents entities of similar degree from being aggregated into the same region in
the embedding space without discovering more alignments. It is noticeable that
the sequence-based method RSNs outperforms all the other baselines, whether
it is a TransE-based or GNN-based, on both the normal and dense datasets,
which verifies the effectiveness and significance of capturing long-term relational
dependencies between entities in KGs.

Compared to RSNs, the performance of Ours w/o SD demonstrates that
introducing the self-attention mechanism is of importance to enhance the long-
term dependency representations of entities. Ours w/o LD outperforms GCN-
Align by a large margin and achieves comparable performance to some TransE-
based approaches mainly because its multi-hop neighborhood concatenating lay-
ers allows GNN to capture the complex and hidden interactions existing in the
surrounding entities. By considering both the long-term dependencies and short-
term differences in KGs, our complete method consistently yields the best perfor-
mance on all datasets in terms of all evaluation metrics, especially on Hits@1 and
MRR, indicating the complementarity between the self-attention-based sequence
model and the GNN-based model. In particular, our model improves over the
best baseline RSNs w.r.t. Hits@1 by more than 10% and 5% on the normal and
dense datasets, respectively. The superiority is more evident on the normal and
monolingual datasets with more than 15% improvement. One possible reason is
that cross-lingual datasets are extracted from one KG with different languages.
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Fig. 4. Effect of the number of GNN layers t.

Fig. 5. Effect of parameter θ.

Hence they are less heterogeneous than monolingual datasets and thus easier to
be represented. Moreover, compared with our model without long-term depen-
dencies and short-term differences, the results justify the validity and efficacy of
the complete model.

4.4 Model Analyses

In this subsection, we take a deep insight into the model to further understand
the proposed architecture. As Hits@1 is the preferable metric, we only show the
results on it. To evaluate the feasibility of our proposed crossed residual connec-
tion (Cross-R), we conduct experiments to compare it with the original norm
residual connection (Norm-R). Both of them are under the same settings of long-
term dependencies capturing model and disabled loss of short-term differences.
Besides, we select two representative parameters for in-depth discussion.

Effect of the Crossed Residual Connection. Figure 3 shows the results
of different residual connections on normal and dense DBP-WD dataset. Our
proposed Cross-R achieves better performance with less epoch on both of them,
which indicates that considering the unique triple structure is vital for learning
long-term dependencies in KGs.
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Table 6. Statistics of the person dataset

Datasets Source KGs #Entity #Relation #Triple

Person English 15,170 2,228 203,502

French 15,393 2,442 170,605

Table 7. Results on the person dataset

Model MTransE IPTransE JAPE GCN-Align BootEA SEA RSNs Ours

Hits@1 16.77 18.21 15.68 17.24 29.72 37.28 44.63 49.13

Hits@10 25.35 27.41 28.69 31.16 61.19 63.56 70.10 76.87

MRR 0.20 0.21 0.21 0.22 0.40 0.47 0.57 0.63

Effect of the Number of GNN Layers t. We vary the depth of GNN to
investigate the impact of usage of GNN in our model. In particular, the layer
number is searched in the range of {0,1,2,3} and the results are summarized in
Fig. 4. We find it beneficial to increase the depth of GNN to boost performance
on both normal and dense datasets. Two-layer GNN performs best across all
the board, suggesting that updating the differences between adjacent two hops
twice could be sufficient to capture short-term signals.

Effect of Parameter θ. Although we can infer the effectiveness of capturing
long-term dependencies and short-term differences implicitly from Table 2, 3, 4
and 5, we would like to see how the two different modules contribute to our
complete model. As depicted in Fig. 5, the parameter θ, which controls the con-
tribution of the long-term dependency representations, is capable of balancing
between the long-term dependencies and short-term differences. Jointly analyz-
ing Table 2, 3, 4 and 5 with Fig. 5, we find that adaptively combining these two
kinds of embeddings outperforms a single model and the best results are always
achieved at θ = 0.55. It indicates that the sequence model is of crucial signifi-
cance and the GNN model is indispensable to enable the model with short-term
differences capturing ability. Both of them play important roles in improving
entity alignment performance.

4.5 Case Study

In this subsection, we perform an extra experimental evaluation on a specific
domain provided in [16] to comprehensively evaluate the performance of our
approach. The statistics of this person dataset is given in Table 6, which includes
KGs in English and French, each of which contains more than 15,000 entities
and 2,000 relations. There are 10,108 aligned entities between the two KGs.

The evaluation results are presented in Table 7. Our proposed model still
outperforms other baselines on all metrics with about 10% improvement on
Hits@1 and MRR compared to the second best method, which is consistent with
the previous experiments and demonstrates the effectiveness of our model.
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5 Conclusions

In this paper, short-term differences and long-term dependencies in KGs for
entity alignment are illustrated for the first time. We propose a novel approach
to manage to capture both short-term differences and long-term dependencies in
KGs for our task. Specifically, we utilize and adapt the self-attention mechanism
instead of RNN to model long-term dependencies between entities and devise a
degree-aware random walk to generate high-quality sequences in KGs for learn-
ing. Next, to acquire the representation of the short-term differences of entities,
we introduce a new graph neural network to treat triples as a graph, from which
we can better interpret the short-term semantics of an entity by repeatedly
mixing neighborhood information aggregated at various distances. Eventually,
embeddings of entities can be obtained by combining short-term and long-term
semantics in a linear way. Extensive experiments and analyses on four couples of
real-world datasets demonstrate that our model consistently outperformed the
state-of-the-art methods.
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Abstract. Keyword search has been a prominent approach to querying
knowledge graphs. For exploratory search tasks, existing methods com-
monly extract subgraphs that are group Steiner trees (GSTs) as answers.
However, a GST that connects all the query keywords may not exist, or
may inevitably have a large and unfocused graph structure in contrast
to users’ favor to a compact answer. Therefore, in this paper, we aim at
generating compact but relaxable subgraphs as answers, i.e., we require a
computed subgraph to have a bounded diameter but allow it to only con-
nect an incomplete subset of query keywords. We formulate it as a new
combinatorial optimization problem of computing a minimally relaxed
answer with a compactness guarantee, and we present a novel best-first
search algorithm. Extensive experiments showed that our approach effi-
ciently computed compact answers of high completeness.

Keywords: Keyword search · Knowledge graph · Query relaxation

1 Introduction

Non-expert users have difficulty in querying a knowledge graph (KG) without
a prior knowledge of the specialized query language. Keyword search provides
users with convenient access to KGs, by automatically matching keyword queries
with KGs. For a lookup task where there is a specific search target that can be
represented as a precise formal query such as a SPARQL query over RDF-based
KGs, existing methods commonly transform the keyword query into a formal
query to execute [10,22,25]. For exploratory search [19] where the keyword query
and the underlying search target are vague and cannot be precisely interpreted
as a formal query, e.g., searching for relationships between a set of entities [2],
one promising solution is to directly extract subgraphs from KGs that contain
query keywords as answers [7,16,18,23]. The extracted subgraphs should satisfy
certain constraints and have high quality. For example, it has been standard to
c© Springer Nature Switzerland AG 2020
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Fig. 1. A keyword query Q over a KG G with two answers T1 and T2.

extract a group Steiner tree (GST) [13]. By assigning weights to vertices and/or
edges of KGs to represent salience, a GST is a tree of minimum total weight
that connects as least one matching vertex for each query keyword.

Motivation. The effectiveness of GST-based answers to human users in
exploratory search was recently challenged by the results of an extensive user
study [5]. Several popular weighting schemes were evaluated in [5] but, surpris-
ingly, none of them were assessed to be useful for shaping a favourable answer.
Instead, the study showed that users strongly favor answers that are structurally
compact subgraphs having a small diameter, thereby suggesting extracting such
subgraphs as answers. However, when some query keywords are absent, dis-
connected, or only connected by long paths in the KG, one cannot find any
structurally compact subgraph that connects all the query keywords. To address
this problem, we proposed to extract compact but relaxable subgraphs that have
a small diameter to ensure compactness but are not required to connect all the
query keywords, i.e., allowing query relaxation [17]. The preliminary search algo-
rithm we designed in [17], called CertQR+, has several limitations that will be
addressed in this paper.

Our Approach. We aim at computing compact and relaxable subgraphs as
answers to exploratory keyword search over KGs. Our algorithm is abbreviated
to CORE and is open source.1 To help understanding our approach, consider the
example in Fig. 1. For keyword query “united states yellowstone park trip”, a tra-
ditional GST-based answer has to contain the long path between Yellowstone
National Park and The Trip in the KG. This unfocused path is not interesting
to the user but prevents structurally compact subgraphs as answers. In compar-
ison, CORE can compute answers like T1 that is more compact and meaningful
though drops a keyword “trip” in the query. Answer completeness (i.e., cov-
ering all the query keywords) and compactness (i.e., having a small diameter)
are conflicting objectives. CORE achieves the following trade-off: computing a
minimally relaxed answer (i.e., covering the largest number of query keywords)
with a compactness guarantee (i.e., having a bounded diameter). To model this
1 https://github.com/nju-websoft/CORE.

https://github.com/nju-websoft/CORE
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trade-off, we formulate a combinatorial optimization problem, and we design an
efficient algorithm for computing an optimum answer.

Contributions. We summarize our contributions in the paper as follows.

– To generate compact and relaxable subgraphs as answers, we formulate a
new combinatorial optimization problem of computing a minimally relaxed
answer with a compactness guarantee (MRA).

– To solve MRA, we design a best-first search algorithm called CORE. The
efficiency of the algorithm benefits from a theoretical result proved in the
paper which exploits distance calculation.

– With public KGs and keyword queries, we demonstrate the necessity of trad-
ing off answer completeness for compactness, and we show that CORE per-
forms significantly faster than CertQR+.

The remainder of the paper is organized as follows. Section 2 formulates
MRA. Section 3 discusses related work. Section 4 describes CORE. Section 5
presents experiments. Finally we conclude the paper in Sect. 6.

2 Problem Formulation

2.1 Preliminaries

Below we define necessary terms used in the paper.

Knowledge Graph. A knowledge graph (KG) represents a set of linked and
annotated entities. We formulate it as a directed graph G = 〈V,E〉, where V is
a set of n annotated vertices representing entities, and E ⊆ V × V is a set of
m annotated edges representing relations between entities. We keep edge direc-
tions, but the edges in a path/tree can be oriented in different directions.

Keyword Query. Let K be the set of all keywords. A retrieval function
hits : K �→ 2V maps keywords to subsets of vertices from V . The concrete
implementation of hits, i.e., the exact way of matching keywords with entity
annotations, is not our research focus. For simplicity, edge matching is omitted
from our formulation but is supported by our approach. Indeed, we can sub-
divide an edge (u, v) by yielding a new vertex w with the annotations of the
edge (u, v) and then replacing (u, v) by two new edges (u,w) and (w, v). A key-
word query Q ⊆ K is a non-empty set of g keywords Q = {k1, . . . , kg}. For the
ease of notation we write hits(ki) as Ki for 1 ≤ i ≤ g and call them keyword
vertices.

Query Answer. A complete answer to Q is a subgraph T = 〈VT , ET 〉 such
that: (1) T is connected, (2) T covers all the query keywords, i.e., VT ∩ Ki 	= ∅
for 1 ≤ i ≤ g, and (3) T is minimal, i.e., none of its proper subgraphs satisfy
both (1) and (2). Minimality indicates T ’s tree structure where leaves are key-
word vertices. For example, in Fig. 1, T1 is a complete answer to “united states
yellowstone park”, and T2 is a complete answer to “united yellowstone trip”.
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Graph Terminology. N(u) is the set of vertex u’s neighbors, i.e., vertices adja-
cent from/to u. The degree of a vertex is the number of incident edges. We define
path in a standard way, except that the edges can be oriented differently. The
length (len) of a path is the number of edges. The distance (d) between two
vertices is the length of a shortest path connecting them. The eccentricity of
vertex u is the greatest distance between u and other vertices. The radius (rad)
and diameter (diam) of a graph are the minimum and maximum eccentricity of
the vertices, respectively. A central vertex is a vertex of minimum eccentricity.

2.2 Problem Statement

We assess the quality of an answer by its degrees of relaxation and compactness.

Degree of Relaxation. We allow an answer to cover an incomplete subset
of Q. For ∅ ⊂ Q′ ⊂ Q, a complete answer to Q′ is called a partial answer to Q.
Complete and partial answers are collectively called answers. We measure the
degree of relaxation (dor) of answer T to Q as follows:

dor(T ) = |Q \ CQ(T )| , CQ(T ) = {ki ∈ Q : Ki ∩ VT 	= ∅} , (1)

where CQ(T ) represents the subset of keywords in Q that are covered by T . For
example, T1 and T2 in Fig. 1 are partial answers to “united states yellowstone
park trip” with dor(T1) = 1 and dor(T2) = 2.

Degree of Compactness. Following [3–5], we measure the degree of compact-
ness (doc) of an answer by its diameter:

doc(T ) = diam(T ) . (2)

For example, in Fig. 1 we have doc(T1) = 2 and doc(T2) = 3.

MRA Problem. To achieve a trade-off between answer completeness and com-
pactness, we aim at computing a minimally relaxed answer with a compactness
guarantee, abbreviated to the MRA problem. Such an answer has a bounded
degree of compactness and the smallest degree of relaxation:

arg min
T : doc(T )≤D

dor(T ) , (3)

where D ≥ 0 is a predetermined integer bound.

3 Related Work

Our work is related to but different from the following research in the literature.

Semantic Parsing. One way to interpret a keyword query over a KG is to
turn it into a formal query such as a SPARQL query to be executed using a
standard back end [10,22,25]. Such methods are suitable for lookup tasks where
there is a specific search target that can be formally and precisely represented.
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Some of these methods support representing as a basic graph pattern while other
methods support expressive constructs. However, they are not very suitable for
exploratory search with a vague search target.

Answer Extraction. Methods in the style of subgraph extraction are flexi-
ble, thus suitable for exploratory search. Their effectiveness relies on the scoring
function used to rank subgraphs. In theory, all the functions for ranking candi-
date formal queries in semantic parsing can be adapted here to take account of
the semantics of a keyword query. However, existing methods commonly extract
GSTs [13] using exact [7,16,18] or approximation algorithms [23]. The weight-
ing schemes used are simple and seem not very effective [5]. The computed
min-weight subgraphs are not necessarily structurally compact as favored by
human users [5]. Therefore, we are motivated to compute structurally compact
subgraphs as answers, leaving the incorporation of weights for future work.

Answer Compactness. We follow [3–5,12] to bound the diameter of an answer.
As we will see in Sect. 4, our MRA problem based on such a bound admits a
polynomial-time solution. Alternatively, if we bound the number of vertices as
in [1,14,24], the problem will be intractable because one can easily reduce to it
from the GST problem with unit weights. In [8,15], all possible radius-bounded
answers are offline extracted and indexed. They allow fast online retrieval of
answers but their bounds cannot be online tuned as in our approach.

Answer Completeness. Our CORE extends CertQR+ [17] by overcoming
several limitations. First, CORE is a more general approach. It supports keyword
search where a keyword is mapped to a set of vertices, whereas CertQR+ only
supports entity relationship search [2] where a keyword is mapped to a single
vertex. Second, CORE has a better overall performance. It directly computes a
minimally relaxed answer, whereas CertQR+ only computes a minimally relaxed
query which needs further execution. Third, as we will see in Sect. 4, the depth of
search

⌊
D
2

⌋
in CORE is smaller than

⌈
D
2

⌉
in CertQR+ when D is odd. There are

other studies of query relaxation in the Semantic Web community such as [9,21,
26]. They relax SPARQL queries, e.g., by making some triple patterns optional.
These methods could not directly apply to our MRA problem.

4 Approach

In this section, we firstly give some theoretical foundations, and then we design
and analyze our algorithm CORE.

4.1 Theoretical Foundations

In the following proposition, we establish a necessary and sufficient condition for
the existence of a compactness-bounded complete answer to a keyword query. It
describes the existence of a vertex v that is fairly close to all the query keywords.
Later in the paper we will employ this proposition to design CORE.
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Proposition 1. A complete answer T = 〈VT , ET 〉 to Q with diam(T ) ≤ D
exists if and only if a vertex v ∈ V exists such that

1. ∀1 ≤ i ≤ g, ∃u ∈ Ki, d(u, v) ≤ ⌈
D
2

⌉
;

2. if D is odd and Q̂ = {ki ∈ Q : minu∈Ki
d(u, v) =

⌈
D
2

⌉} 	= ∅, then ∃v′ ∈
N(v), ∀ki ∈ Q̂, ∃u ∈ Ki, d(u, v′) =

⌊
D
2

⌋
;

3. ∃1 ≤ i ≤ g, ∃u ∈ Ki, d(u, v) ≤ ⌊
D
2

⌋
.

Proof. We present a constructive proof.

Necessity. Let v be an arbitrary central vertex of T . Below we will show that
v satisfies all the three conditions in the proposition.

For Condition 1, since T is a tree, graph theory tells us that

rad(T ) =
⌈
diam(T )

2

⌉
≤

⌈
D

2

⌉
. (4)

Let d and dT be the distances between two vertices in G and in T , respectively.
Since T is a complete answer to Q, we have CQ(T ) = Q, i.e., ∀1 ≤ i ≤ g, ∃u ∈
(Ki ∩VT ). Because T is a subgraph of G, and v is a central vertex of T , we have

d(u, v) ≤ dT (u, v) ≤ rad(T ) ≤
⌈
D

2

⌉
. (5)

For Condition 2, if D is odd and |Q̂| 	= ∅, we choose an arbitrary ki ∈ Q̂ and
ui = arg minu′∈(Ki∩VT )d(u′, v), i.e., d(ui, v) ≥ ⌈

D
2

⌉
. Since T is a tree, consider

the unique path Pi between ui and v in T . We have len(Pi) = dT (ui, v), and

dT (ui, v) ≤ rad(T ) ≤
⌈
D

2

⌉
and dT (ui, v) ≥ d(ui, v) ≥

⌈
D

2

⌉
. (6)

Therefore, len(Pi) = dT (ui, v) = d(ui, v) =
⌈
D
2

⌉
and hence Pi is a shortest path

between ui and v in G. Let v′ ∈ N(v) be the unique neighbor of v in Pi. Below
we show that v and v′ satisfy Condition 2. We trivially have d(ui, v

′) =
⌊
D
2

⌋
.

Then ∀kj ∈ (Q̂ \ {ki}), let uj = arg minu′∈(Kj∩VT )d(u′, v). Similar to the above
proof, we know d(uj , v) =

⌈
D
2

⌉
and the unique path Pj between uj and v in T is

their shortest path in G with len(Pj) =
⌈
D
2

⌉
. This path has to pass through v′

and hence d(uj , v
′) =

⌊
D
2

⌋
because otherwise

dT (ui, uj) = len(Pi) + len(Pj) =
⌈
D

2

⌉
+

⌈
D

2

⌉
= D + 1 , (7)

which contradicts diam(T ) ≤ D.
For Condition 3, when D is even, it is easily derived from Condition 1. When

D is odd, we prove by contradiction and assume: ∀1 ≤ i ≤ g, ∀u ∈ Ki, d(u, v) >⌊
D
2

⌋
. Combined with Condition 1 we obtain ∀1 ≤ i ≤ g, minu∈Ki

d(u, v) =
⌈
D
2

⌉

and hence Q = Q̂. Now we discuss the cardinality of |Q|. When |Q| = 1, T is a
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trivial graph, and Condition 3 is satisfied. When |Q| = |Q̂| ≥ 2, if we consider v′

in Condition 2 as a new v, the above assumption will be contradicted as one can
easily verify that this new v satisfies all the conditions.

Sufficiency. If D is even, we call GenAnsEven(G,Q,D, v) in Algorithm 3 to
construct T . If D is odd, we call GenAnsOdd(G,Q,D, v, v′, Q̂) in Algorithm 4.
We will detail these algorithms later in the paper.

��

Certificate Vertex. In Proposition 1, vertex v is a certificate of the existence
of a compactness-bounded complete answer to Q. We refer to v as a certificate
vertex for Q. For example, in Fig. 1, under D = 2, v = Montana is a certificate
vertex for “united states yellowstone park”. Under D = 3, v = London is a
certificate vertex with v′ = BBC for “united yellowstone trip”.

Proposition 1 helps to solve the MRA problem in two aspects. First, if we
want to decide the existence of a compactness-bounded complete answer to Q or
to some Q′ ⊂ Q, we can avoid actually searching for an answer which would be
an expensive process. Instead, we only need to calculate a few distances. Distance
calculation can be efficiently implemented based on the proper graph indexes.
Second, once the above existence of an answer is confirmed, i.e., a certificate
vertex v is found, we will be able to easily construct such an answer using v.
These two benefits form the foundation of our algorithms.

4.2 Algorithm Design

Below we overview and then detail CORE, and finally show a running example.

Overview. Under a compactness bound D, our main algorithm CORE adopts
a best-first search strategy. Iteratively, the most promising search direction is
explored, which may update the current best (i.e., minimally relaxed) answer.
The search process will be terminated if it is guaranteed that unexplored answers
cannot exceed the current best answer. In the search process, rather than directly
searching for a better (i.e., less relaxed) answer, our subroutine FindAns firstly
searches for a certificate vertex for a larger subset of Q, and then constructs a
complete answer to this sub-query using the subroutine GenAnsEven or GenAn-
sOdd, depending on the parity of D. These two steps in FindAns are both
supported by Proposition 1.
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Algorithm 1: CORE
Input: G = 〈V,E〉,

Q = {k1, . . . , kg}, D.
Output: An optimum answer Topt.

1 Topt ← null;
/* CQ(null) = ∅, dor(null) = |Q| */

2 foreach u ∈ ⋃g
i=1 Ki do

3 visited[u][u] ← true;
4 foreach w ∈ (V \ {u}) do
5 visited[u][w] ← false;

6 PQ ← an empty min-priority queue
of ordered pairs of vertices;

7 foreach u ∈ ⋃g
i=1 Ki do

8 PQ.Insert(〈u, u〉);
9 foreach u ∈ V do

10 checked[u] ← false;

11 while PQ is not empty do
12 〈u, v〉 ← PQ.Pull();
13 if pri(u, v) ≥ dor(Topt) then
14 break the while loop;
15 if checked[v] is false then
16 T ←

FindAns(G,Q,D, v, Topt);
17 checked[v] ← true;
18 if T is not null then
19 Topt ← T ;

20 if d(u, v) < �D
2  then

21 foreach w ∈ N(v) do
22 if visited[u][w] is false

then
23 visited[u][w] ← true;
24 PQ.Insert(〈u,w〉);
25 return Topt;

Algorithm CORE. Our main algorithm is presented in Algorithm 1. Topt rep-
resents the current best answer (line 1). We run one independent search starting
from each keyword vertex in

⋃g
i=1 Ki. Each search maintains a separate set

of visited vertices; visited[u][w] represents whether w has been visited in the
search starting from u (lines 2–5). The frontiers of all these searches are kept
in a shared priority queue PQ where each element is an ordered pair of ver-
tices 〈u, v〉 representing a vertex v to be explored in the search starting from u
(line 6). Initially, PQ is fed with all the keyword vertices (lines 7–8). A vertex
can be visited multiple times, at most one time in each search, but is checked
using the subroutine FindAns at most once; checked[u] represents whether u has
been checked (lines 9–10). We will describe the implementation of FindAns later.
Briefly, for vertex v, FindAns either returns an answer better than Topt, which
is a compactness-bounded complete answer to the largest subset of Q which v is
a certificate vertex for, or returns null if such a better answer does not exist.

Iteratively, vertices that are at most
⌊
D
2

⌋
hops away from each keyword

vertex are searched and checked in a best-first manner (lines 11–24). In each
iteration, the pair 〈u, v〉 in PQ with the minimum priority pri(u, v) is pulled
out of PQ (line 12). We will compute pri(u, v) later in the paper; it represents
a lower bound on the number of keywords dropped by subsets of Q which v or
its descendant in the search starting from u is a certificate vertex for. If this
lower bound is not better than the dor of Topt, the algorithm will be terminated
because Topt is guaranteed to be optimum (lines 13–14). Otherwise, v or some of
its descendants may be a certificate vertex for a larger subset of Q and hence a
better answer may exist. So if v has not been checked in other searches, it will be
checked using FindAns which either returns a better answer T and updates Topt,
or returns null (lines 15–19). The search starting from u continues, and the
unvisited neighbors of v are expanded (lines 20–24). By requiring d(u, v) < �D

2 �,
the search is restricted to vertices that are at most

⌊
D
2

⌋
hops away from u.
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Algorithm 2: FindAns
Input: G, Q = {k1, . . . , kg}, D, v, Topt.
Output: An answer T better than Topt,

or null if not found.
1 for i ← 1 to g do
2 U [1][i] ← {u ∈ Ki : d(u, v) ≤

�D
2 �};

3 U [2][i] ← {u ∈ Ki : d(u, v) =

�D
2 �};

4 Q1 ← {ki ∈ Q : U [1][i] �= ∅};
5 Q2 ← {ki ∈ Q : U [1][i] = U [2][i] �= ∅};
6 if D is even then
7 if |Q1| > |CQ(Topt)| then
8 return

GenAnsEven(G,Q1, D, v);

9 if D is odd then

10 Q̂max ← ∅, v′
max ← null;

11 foreach v′ ∈ N(v) do

12 Q̂ ← ∅;
13 foreach ki ∈ Q2 do
14 if

∃u ∈ U [2][i], d(u, v′) = �D
2 

then

15 Q̂ ← Q̂ ∪ {ki};
16 if |Q̂| > |Q̂max| then

17 Q̂max ← Q̂, v′
max ← v′;

18 Qmax ← (Q1 \ Q2) ∪ Q̂max;
19 if |Qmax| > |CQ(Topt)| then
20 return

GenAnsOdd(G,Qmax, D, v, v′
max, Q̂max);

21 return null;

Subroutine FindAns. This subroutine is presented in Algorithm 2. It employs
Proposition 1 to find the largest subset of Q which v is a certificate vertex for, and
then construct a compactness-bounded complete answer to this sub-query. The
answer will be returned only if it is better than Topt. According to Condition 1
in the proposition, Q1 (line 4) represents the largest possible subset of Q which
v can be a certificate vertex for. Q2 (line 5) represents the largest possible Q̂ in
Condition 2.

When D is even (line 6), Q1 is indeed the largest subset of Q which v is
a certificate vertex for. If Q1 is larger than the set of query keywords covered
by Topt, we will return T constructed by the subroutine GenAnsEven (lines 7–8).

When D is odd (line 9), the vertices in Q2 may not all satisfy Condition 2
for the same v′ ∈ N(v). We look for Q̂max, the largest subset of Q2 that can
satisfy Condition 2 for the same neighbor of v, denoted by v′

max (line 10). We
compute Q̂max and v′

max by going over all the neighbors of v (lines 11–17).
Finally, Qmax (line 18) is the largest subset of Q which v is a certificate vertex
for. If Qmax is larger than the set of query keywords covered by Topt, we will
return T constructed by the subroutine GenAnsOdd (lines 19–20).

Subroutine GenAnsEven. This subroutine is presented in Algorithm 3. It
employs Proposition 1 to construct a complete answer to Q1 using its certificate
vertex v under an even D. Following Condition 1 in the proposition, for each
ki ∈ Q1, we find ui ∈ Ki and a shortest path Pi between ui and v in G such
that len(Pi) ≤ ⌈

D
2

⌉
(lines 2–4). All such |Q1| shortest paths are merged into a

connected subgraph T (line 5), which covers all the keywords in Q1 and satisfies
diam(T ) ≤ D. Here, to ensure that T has a tree structure, when there are multi-
ple shortest paths between two vertices, we consistently choose one throughout
our algorithm, e.g., the alphabetically smallest shortest path in terms of vertex
identifiers. Still, T may not be minimal when some ui covers not only keyword ki
but also some kj 	= ki so that uj should be removed from T for the minimality
of T . To handle this, we repeatedly remove an unnecessary leaf from T until T is
minimal and hence is a complete answer to Q1 (lines 6–7).
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Subroutine GenAnsOdd. This subroutine is presented in Algorithm 4. It
employs Proposition 1 to construct a complete answer to Qmax using its cer-
tificate vertex v and a neighbor v′

max thereof under an odd D. The difference
between GenAnsEven and GenAnsOdd is that, following Condition 2 in the
proposition, for each ki ∈ Q̂max, we find ui ∈ Ki and a shortest path P ′

i

between ui and v′
max such that len(P ′

i ) =
⌊
D
2

⌋
(lines 3–5), and then we extend P ′

i

from v′
max to v by adding one edge to form Pi (line 6); furthermore, for each

ki ∈ (Qmax \ Q̂max), we find ui ∈ Ki such that Pi connecting ui and v satisfies
len(Pi) ≤ ⌊

D
2

⌋
(lines 7–9). These modifications ensure that diam(T ) ≤ D.

Algorithm 3: GenAnsEven
Input: G, Q1, D, v.
Output: A complete answer T to Q1.

1 T ← a null graph;
2 foreach ki ∈ Q1 do
3 ∃ui ∈ Ki, d(ui, v) ≤ ⌈

D
2

⌉
;

4 Pi ← a shortest path between ui

and v in G;
5 T ← T merged with Pi;

6 while T is not minimal do
7 Remove an unnecessary leaf from T ;
8 return T ;

Algorithm 4: GenAnsOdd
Input: G, Qmax, D, v, v′

max, Q̂max.
Output: A complete answer T to Qmax.

1 T ← a null graph;
2 foreach ki ∈ Qmax do

3 if ki ∈ Q̂max then
4 ∃ui ∈ Ki, d(ui, v

′
max) =

⌊
D
2

⌋
;

5 P ′
i ← a shortest path between ui

and v′
max in G;

6 Pi ← P ′
i extended by adding the

edge between v′
max and v;

7 else
8 ∃ui ∈ Ki, d(ui, v) ≤ ⌊

D
2

⌋
;

9 Pi ← a shortest path between ui

and v in G;

10 T ← T merged with Pi;

11 while T is not minimal do
12 Remove an unnecessary leaf from T ;
13 return T ;

Priority Computation. Priority pri(u, v) represents a lower bound on the
number of keywords dropped by subsets of Q which v or its descendant in the
search starting from u is a certificate vertex for. A complete answer to such a
sub-query satisfies diam ≤ D and should contain u. It inspires us to define the
following heuristic lower bound:

pri(u, v) = |UQ(u, v)|, UQ(u, v) = {ki ∈ Q : ∀ui ∈ Ki, d(u, v) + d(v, ui) > D} . (8)

We will later prove that this heuristic guarantees the optimality of Topt returned
at the end of Algorithm 1.

Further, observe that pri(u, v) is an integer. There can be ties in the priority
queue. We break ties based on the degree of v. If multiple vertices have the same
value of pri, we will give priority to one that has the smallest degree because
the cost of expanding its neighbors in Algorithm 1 (lines 21–24) is minimal.

Running Example. In Fig. 2 we illustrate the process of CORE using the
example in Fig. 1 under D = 2. Initially, PQ is fed with five keyword vertices. In
the first iteration, 〈YSNP, YSNP〉 has the smallest priority; in particular, YSNP has
a smaller degree than US. For YSNP, it is checked using FindAns which computes
an answer that consists of a single vertex YSNP and assigns this answer to Topt.
The only neighbor of YSNP, namely MT, is then expanded. In the second iteration,
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Fig. 2. A running example where vertices are written in abbreviations.

MT is checked using FindAns which computes T1 in Fig. 1 and updates Topt. In
the third iteration, we terminate the search process because the priority of the
head of PQ is not better than dor(Topt). Therefore, T1 is returned.

4.3 Algorithm Analysis

We analyze the correctness and time complexity of CORE.

Correctness. The following proposition gives the correctness of CORE.

Proposition 2. CORE returns an optimum solution to the MRA problem.

Proof. We prove by contradiction.
Assume CORE returns a suboptimal answer Topt whose dor is larger than

that of an optimum answer T ∗. Below we will show that when CORE is termi-
nated, T ∗ should have been found, leading to a contradiction.

Let v be a certificate vertex for CQ(T ∗). Without loss of generality, assume
that T ∗ is composed of shortest paths between keyword vertices and v in G,
i.e., T ∗ can be constructed by calling subroutine GenAnsEven or GenAnsOdd.
Following Condition 3 in Proposition 1, let u be a keyword vertex in T ∗ that
satisfies d(u, v) ≤ ⌊

D
2

⌋
, and let Puv be the unique path between u and v in T ∗,

which is a shortest path in G and hence satisfies len(Puv) ≤ ⌊
D
2

⌋
.

Following Condition 1 in Proposition 1, ∀ki ∈ CQ(T ∗) that is not covered
by u, ∃ui ∈ Ki such that ui is in T ∗ and d(ui, v) ≤ ⌈

D
2

⌉
. Let Pvui

be the unique
path between v and ui in T ∗, which is a shortest path in G and hence satisfies
len(Pvui

) ≤ ⌈
D
2

⌉
. For every vertex w in Puv, we have

d(u,w) + d(w, ui) ≤ len(Puv) + len(Pvui
) ≤

⌊
D

2

⌋
+

⌈
D

2

⌉
= D . (9)

Therefore, ki /∈ UQ(u,w) and hence CQ(T ∗) ∩ UQ(u,w) = ∅. It gives us

pri(u,w) = |UQ(u,w)| ≤ |Q \ CQ(T ∗)| = dor(T ∗) < dor(Topt) . (10)

Due to the best-first search strategy, it is impossible that CORE returns Topt

before checking each w in Puv from u to v using subroutine FindAns, which
would have found T ∗ when checking v, leading to a contradiction.

��
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Time Complexity. Recall that |V | = n, |E| = m, |Q| = g. We precompute a
hub labeling [23]; this index structure supports computing distance in O(n) and
computing a shortest path in O(n log n). The run time of CORE consists of

– O(ng) for collecting query vertices,
– O(n(n + m)) for O(n) searches starting from different keyword vertices,
– O(n4g) for computing priority for O(n) vertices in O(n) searches,
– O(n2 log n) for O(n2) insert/pull operations over a Fibonacci heap for priority

queue, and
– O(n2(n+m)g) for O(n) calls of FindAns, including O(n3g) for computing U ,

O(n2mg) for computing distances to v′, and O(n2g log n) for calling GenAn-
sEven or GenAnsOdd.

Therefore, the total run time of CORE is in O(n4g), i.e., the MRA problem
admits a polynomial-time solution. As we will see in the next section, the run
time in practice is much faster than O(n4g) because: g is commonly much smaller
than n, distance and shortest path computation based on a hub labeling is nearly
in constant time, and the search process is usually terminated early.

5 Experiments

We carried out experiments to verify three research hypotheses (RH). First,
compared with traditional GST-based answers, our approach trades off answer
completeness for compactness. We showed the necessity of this trade-off (RH1).
We did not evaluate the effectiveness of compact answers to human users in
exploratory search because it has been demonstrated in [5]. Still, we showed that
the completeness of our computed answers is very high (RH2), thereby having
little influence on effectiveness. Last but not least, we demonstrated the efficiency
of CORE and showed that it significantly outperformed CertQR+ [17] (RH3).

Table 1. KGs and keyword queries.

KG Keyword query

Vertices (n) Edges (m) Quantity Size (g): avg; Max

MONDIAL (about geography) 8,478 34,868 40 2.03; 4

LinkedMDB (about movies) 1,326,784 2,132,796 200 5.38; 10

DBpedia (an encyclopedia) 5,356,286 17,494,749 438 3.92; 10

5.1 Experiment Setup

We used a 3.10 GHz CPU with 80 GB memory for Java programs.
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KGs. We used three popular KGs in RDF format: MONDIAL,2 LinkedMDB,3

and DBpedia.4 Their sizes (n and m) are shown in Table 1.

Keyword Queries. We used public queries. For MONDIAL we reused 40 key-
word queries in [6]. For LinkedMDB we randomly sampled 200 natural language
questions from [20] and transformed each question into a keyword query by
removing stop words and punctuation marks. For DBpedia we reused 438 key-
word queries in [11]. Their sizes (g) are shown in Table 1.

Keyword Mapping. Our retrieval function hits maps each keyword k to ver-
tices K whose human-readable names (rdfs:label) contain k. To test scalabil-
ity, we set the maximum allowable number of keyword vertices retrieved by hits
to different values: |K| ≤ 1, |K| ≤ 10, and |K| ≤ 100.

Compactness Bound. Following [3,4], we used two settings: D ∈ {3, 4}.
Other experiment settings, e.g., using more advanced hits functions, would

be left for the future work.

5.2 Baselines

We implemented two baseline methods for comparison. We did not compare with
semantic parsing such as [10,22,25] since we focused on exploratory search tasks.

CertQR+. CORE is the first algorithm for the MRA problem. However, we
could adapt CertQR+ [17] to MRA. CertQR+ originally addresses a special case
of MRA where each keyword is mapped to a single vertex, and it only computes
a minimally relaxed query rather than an answer. In our adaptation, for Q =
{k1, . . . , kg} in MRA, we: (1) for each combination of keyword vertices in K1 ×
· · ·×Kg, feed the combined set of keyword vertices as input into CertQR+, which
outputs a minimally relaxed set of keyword vertices, (2) choose the maximum
output set over all the combinations, and (3) find a complete answer to connect
the chosen set of keyword vertices using a state-of-the-art search algorithm [3,4].
Therefore, we remark that the performance of this baseline relies on the search
algorithm used, which may affect the fairness of its comparison with CORE.

GST-Based Answers. We implemented an algorithm [16] to compute tradi-
tional GST-based answers. We assigned unit weights to the edges of KGs. We
also tried several other weighting schemes [5] but obtained similar findings.

5.3 Experiment 1: Compactness of GST-Based Answers (RH1)

To show the necessity of trading off answer completeness for compactness (RH1),
we computed the degree of compactness (doc) of traditional GST-based answers
2 http://www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.

rdf.
3 http://www.cs.toronto.edu/∼oktie/linkedmdb/linkedmdb-latest-dump.zip.
4 http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased objects en.tql.

bz2.

http://www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.rdf
http://www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.rdf
http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.tql.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.tql.bz2
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(a) |K| ≤ 1,
LinkedMDB

(b) |K| ≤ 1,
DBpedia

(c) |K| ≤ 10,
LinkedMDB

(d) |K| ≤ 10,
DBpedia
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Fig. 3. Distribution of doc of GST-based answers for all the queries.
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Fig. 4. Distribution of dor of relaxable answers for all the queries under D = 4.

according to Eq. (2). The distributions of doc (i.e., diameter) of answers for all
the queries over two large KGs are presented in Fig. 3. When |K| ≤ 1, GST-based
answers cannot be found (i.e., doc = ∞) for 56% of queries over LinkedMDB
and for 11% on DBpedia because keyword vertices are not pairwise connected.
Even for |K| ≤ 100, it happens for a few queries over LinkedMDB. Apart from
that, doc is as large as up to 8 on LinkedMDB and to 7 on DBpedia. When
|K| ≤ 10, we observe doc > 4 for 27% of queries over LinkedMDB and for 32%
on DBpedia. These many failing queries and structurally large answers are not
favored by human users [5], thereby demonstrating the necessity of trading off
answer completeness for compactness (RH1).

5.4 Experiment 2: Completeness of Relaxable Answers (RH2)

To show the completeness of our relaxable answers (RH2), we computed their
degree of relaxation (dor) according to Eq. (1). The distributions of dor
(i.e., number of dropped query keywords) of answers for all the queries over
two large KGs under D = 4 are presented in Fig. 4. Only in the extreme
case of |K| ≤ 1, the dor of our answers is not satisfying due to the discon-
nectivity between keyword vertices. At least 3 keywords have to be dropped
(i.e., dor ≥ 3) in more than half of the queries over LinkedMDB, and at least 2
(i.e., dor ≥ 2) on DBpedia. With |K| increased to 10 and 100, relaxation is not
needed (i.e., dor = 0) for over 80% and 90% of the queries, respectively. When
relaxation takes place (i.e., dor > 0), typically only 1 and very rarely 2 keywords
are dropped. These results show that the completeness of our relaxable answers
is very high in normal cases (RH2).
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Table 2. Number of completed queries (CP), timeout exceptions (TO), and mean run
time (ms) for a query.

MONDIAL LinkedMDB DBpedia

CP TO Time CP TO Time CP TO Time

|K| ≤ 1 D = 3 CertQR+ 40 0 55.60 200 0 30.91 438 0 62.65

CORE 40 0 1.88 200 0 5.38 438 0 27.87

D = 4 CertQR+ 40 0 15.13 200 0 127.36 438 0 221.68

CORE 40 0 2.80 200 0 96.33 438 0 193.47

|K| ≤ 10 D = 3 CertQR+ 40 0 85.10 125 75 436,566.95 321 117 327,641.86

CORE 40 0 3.95 200 0 23.45 438 0 1,017.26

D = 4 CertQR+ 40 0 6.80 113 87 475,926.77 319 119 319,777.02

CORE 40 0 2.23 200 0 179.17 438 0 4,181.92

|K| ≤ 100 D = 3 CertQR+ 40 0 39.23 82 118 611,297.51 211 227 547,598.42

CORE 40 0 5.15 200 0 506.62 437 1 6,107.36

D = 4 CertQR+ 40 0 5.70 90 110 561,819.84 253 185 453,752.70

CORE 40 0 4.13 200 0 324.22 437 1 4,307.86

5.5 Experiment 3: Efficiency of CORE (RH3)

To show the efficiency of CORE (RH3), we compared the run time of CORE and
CertQR+. We set a timeout of 1,000 s. Each run of an algorithm for a query that
reached timeout was terminated, and its run time was defined to be the timeout
value. Therefore, the longest run time reported below is at most 1,000 s. The
overall results are presented in Table 2. When |K| ≤ 1, CertQR+ and CORE
complete all the queries before timeout. CORE is faster because it fuses query
relaxation and answer generation into a single search process. When |K| ≤ 10,
CertQR+ is called up to 10g times for each query. On LinkedMDB and DBpedia,
it reaches timeout for many queries and uses several hundred seconds. CORE
never reaches timeout and performs at least two orders of magnitude faster
because it fuses at most 10g searches into a single best-first search process. For
|K| ≤ 100, the comparison is similar.

Furthermore, we visualize the distributions of run time for all the queries as
box plots in Fig. 5. CORE uses less than 1 s for most queries, except for a small
number of outliers. Comparing the median run time of CORE and CertQR+
represented by vertical lines going through boxes, on large KGs (LinkedMDB
and DBpedia), for non-trivial settings of the retrieval function (|K| ≤ 10 and
|K| ≤ 100), CORE is about 2–4 orders of magnitude faster than CertQR+.
All the above results demonstrate the efficiency of CORE, which significantly
outperforms CertQR+ (RH3).

5.6 Experiment 4: Effectiveness in Lookup Tasks

Although our approach is mainly developed for supporting exploratory search,
one may be interested in its effectiveness in lookup tasks. We conducted the fol-
lowing experiment to accommodate such interests. Since CORE only returns an
optimum answer, we computed the precision at 1 (P@1) of the answers returned
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(a) MONDIAL, |K| ≤ 1 (b) MONDIAL, |K| ≤ 10 (c) MONDIAL, |K| ≤ 100

(d) LinkedMDB, |K| ≤ 1 (e) LinkedMDB, |K| ≤ 10 (f) LinkedMDB, |K| ≤ 100

(g) DBpedia, |K| ≤ 1 (h) DBpedia, |K| ≤ 10 (i) DBpedia, |K| ≤ 100

Fig. 5. Distribution of run time for all the queries.

Table 3. Mean P@1 for a lookup query on DBpedia.

CertQR+ CORE GST-Based Answers FSDM

|K| ≤ 1 D = 3 0.17 0.17 0.27 0.98

D = 4 0.23 0.23

|K| ≤ 10 D = 3 0.21 0.23 0.31

D = 4 0.24 0.28

|K| ≤ 100 D = 3 0.17 0.29 0.30

D = 4 0.21 0.23

by each algorithm. We compared CORE with CertQR+ and traditional GST-
based answers. We conducted this experiment on DBpedia since the keyword
queries we used for this dataset were originally extracted from entity lookup tasks
with gold-standard answers [11] so that we could compute precision. Specifically,
we defined P@1 = 1 if a computed answer contained a gold-standard answer
entity, otherwise P@1 = 0. The mean P@1 for a lookup query over DBpedia is
presented in Table 3. CORE and CertQR+ show similar results since they essen-
tially aim at the same goal. For compactness, they trade off answer completeness
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and hence we observe a very small loss of P@1 compared with traditional GST-
based answers (up to 0.29 versus up to 0.31). However, none of these methods
are comparable with those specifically designed for lookup tasks, and such com-
parisons would be unfair. For example, FSDM [27] as a state-of-the-art method
for entity lookup reaches P@1 = 0.98.

6 Conclusion and Future Work

We have presented the first study of generating compact and relaxable answers
for exploratory keyword search over KGs. With real KGs and queries, we showed
the necessity of trading off answer completeness for compactness, and showed the
high completeness of answers we maintained in practice. Our polynomial-time
best-first search algorithm CORE for solving the new MRA problem builds on
a theoretical result proved in the paper. Experiments demonstrated that CORE
was fast and significantly outperformed its previous version CertQR+.

In the future, we plan to incorporate vertex and edge weights into our app-
roach to exploit the various semantics of different types of entities and relations.
By computing weights to represent the semantic relevance of an answer to a
keyword query, our approach can be extended to better support lookup tasks.

Acknowledgments. This work was supported in part by the National Key R&D
Program of China (2018YFB1005100), in part by the NSFC (61772264), and in part
by the Six Talent Peaks Program of Jiangsu Province (RJFW-011).
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1 Sapienza Università di Roma, Rome, Italy
{cima,lembo,marconi,rosati}@diag.uniroma1.it
2 Università degli Studi di Bergamo, Bergamo, Italy

domenicofabio.savo@unibg.it

Abstract. In this paper we study the problem of information disclo-
sure in ontology-based data access (OBDA). Following previous work
on Controlled Query Evaluation, we introduce the framework of Policy-
Protected OBDA (PPOBDA), which extends OBDA with data protec-
tion policies specified over the ontology and enforced through a censor,
i.e., a function that alters answers to users’ queries to avoid the dis-
closure of protected data. We consider PPOBDA systems in which the
ontology is expressed in owl 2 ql and the policies are denial constraints,
and show that query answering under censors in such a setting can be
reduced to standard query answering in OBDA (without data protection
policies). The basic idea of our approach is to compile the policies of
a PPOBDA system into the mapping of a standard OBDA system. To
this aim, we analyze some notions of censor proposed in the literature,
show that they are not suited for the above-mentioned compilation, and
provide a new definition of censor that enables the effective realization of
our idea. We have implemented our technique and evaluated it over the
NPD benchmark for OBDA. Our results are very promising and show
that controlled query evaluation in OBDA can be realized in the practice
by using off-the-shelf OBDA engines.

Keywords: Ontology-based data access · Information disclosure ·
Data protection · First-order rewritability

1 Introduction

Controlled Query Evaluation (CQE) is an approach to privacy-preserving
query answering that recently has gained attention in the context of ontolo-
gies [7,13,14,20]. In this paper, we consider the more general Ontology-based
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Data Access (OBDA) framework, where an ontology is coupled to external data
sources via a declarative mapping [23,26], and extend OBDA with CQE fea-
tures. In this new framework, which we call Policy-Protected Ontology-based
Data Access (PPOBDA), a data protection policy is specified over the ontology
of an OBDA system in terms of logical statements declaring confidential infor-
mation that must not be revealed to the users. As an example, consider the
following formula:

∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y) → ⊥

which says that the existence of an oil company issuing a license to another
company (to operate over its properties) is a private information.

More formally, we define a PPOBDA specification E as a quadruple
〈T ,S,M,P〉, where T is a Description Logic (DL) TBox [2], formalizing inten-
sional domain knowledge, S is the relational schema at the sources, M is the
mapping between the two, i.e., a set of logical assertions defining the semantic
correspondence between T and S, and P is the data protection policy expressed
over T . The components T , S, and M are exactly as in OBDA specifications,
and, as in standard OBDA, a user can only ask queries over the TBox T . Then,
query answering is filtered through a censor, i.e., a function that alters the
answers to queries, in such a way that no data are returned that may lead
a malicious user to infer knowledge declared confidential by the policy, even in
case he/she accumulates the answers he/she gets over time. Among possible cen-
sors, optimal ones are preferred, i.e., those altering query answers in a minimal
way.

Within this framework, we initially consider two different notions of censor,
called censor in CQ and censor in GA, previously defined for CQE over DL
ontologies [14,20], and which can be naturally extended to PPOBDA. More
precisely, given a PPOBDA specification E = 〈T ,S,M,P〉, an optimal censor
in CQ (resp., GA) for E is a function that, taken as input a database instance
D for the source schema S, returns a maximal subset C of the set of Boolean
conjunctive queries (resp., ground atoms) inferred by 〈T ,S,M〉 and D, such
that C ∪ T does not entail information protected by the policy. Since in general,
for such notions of censor, several of these maximal sets (incomparable to each
other) exist, for both cases we define query answering under optimal censors in
PPOBDA as a form of skeptical reasoning over all such sets, in the same spirit
of [20].

Our basic idea to solve query answering under censors is to transform a
PPOBDA specification E into a classical OBDA specification J (i.e., without
policies), in such a way that, whatever database D instantiates the source schema
S, query answering under censors in E over D is equivalent to standard query
answering in J over D. In this transformation, we require that J has the same
TBox of E , so that this reduction is transparent to the user, who can continue
asking to J exactly the same queries he/she could ask to E . We also impose
that J maintains the same source schema as E , since, as typical in OBDA, the
data sources to be accessed are autonomous, and cannot be modified for OBDA



130 G. Cima et al.

purposes. Moreover, we aim at a transformation that is independent from the
underlying data and from the user queries, so that it can be computed only
once, at design-time. This enables us to use off-the-shelf OBDA engines, like
Mastro1 or Ontop2 to realize CQE in OBDA. The problem we study can be
thus summarized as follows: Given a PPOBDA specification E = 〈T ,M,S,P〉,
construct an OBDA specification J = 〈T ,S,M′〉 such that, for any database D
for S, conjunctive query answering under censors in E over D is equivalent to
standard conjunctive query answering in J over D.

We investigate the above problem for the relevant case in which the TBox is
expressed in DL-LiteR, the DL underpinning owl 2ql [21], the standard profile
of owl 2 designed for ontology-based data management and prominently used
in OBDA, and the policy is a set of denial assertions, i.e., conjunctive queries for
which an empty answer is imposed due to confidential reasons (as in our initial
example). Our contributions are as follows.

– We show that the above problem has in general no solution when censors in
either CQ or GA are considered. We in fact prove this result for an empty
TBox, and thus it holds for TBoxes in any DL, and not only for owl 2 ql
ones.

– To overcome this issue, we propose a further, semantically well-founded
approximated notion of censor, which we call IGA censor. Intuitively, an IGA
censor for a PPOBDA specification E is a function that, for any database D
instantiating the source schema S of E , returns the intersection of the sets of
ground atoms computed by the optimal censors in GA for E applied to D.

– We provide an algorithm that solves our problem for owl 2 ql PPOBDA
specifications under IGA censors.

– We provide an experimental evaluation of our approach. We have imple-
mented our algorithm in Java, and tested it over the OBDA NPD bench-
mark [18], whose TBox has been suitably approximated from owl 2 to
owl 2 ql. We have compared query answering in the case in which no data
protection policy is specified (i.e., in standard OBDA) with query answering
under IGA censors for an increasing number of policy assertions. We have
used Mastro as OBDA engine. Our results show that the cost of the off-line
transformation performed by our tool is negligible, and answering queries in
the presence of a data protection policy in our approach does not cause a
significant overhead with respect to the case without policy.

We remark that our main objective was to devise a practical, though theo-
retically well-founded, approach to policy-protected query answering in OBDA,
allowing for the exploitation of existing OBDA engines. We believe that the
pipeline we have realized and the experimental results we have obtained show
the achievement of our goal.

The rest of the paper is organized as follows. In Sect. 2 we discuss some related
work. In Sect. 3 we provide preliminaries. In Sect. 4 we present our framework

1 http://obdasystems.com/mastro.
2 https://ontop-vkg.org/.

http://obdasystems.com/mastro
https://ontop-vkg.org/
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for PPOBDA. In Sect. 5 we show that query answering under censors in both
CQ and GA cannot be reduced to standard query answering in OBDA. In
Sect. 6 we give the notion of IGA censor and provide our algorithm for reducing
conjunctive query answering under IGA censors to query answering in OBDA.
In Sect. 7 we describe our experiments, and in Sect. 8 we conclude the paper.

2 Related Work

Existing OBDA solutions do not provide any explicit support to the protection
of confidential data, and the research has so far produced only initial theoretical
contributions in this direction. In [4], the authors study the problem of deter-
mining whether information that is declared confidential at the sources through
a protection policy, as in CQE, can be inferred by a user on the basis of the
answers to the queries posed over the OBDA system, assuming that he/she is
knowledgeable about the OBDA specification. Both [4] and the present paper
focus on the role of the mapping in filtering data coming from the sources with
respect to a declarative data protection policy. However, we consider the policy
expressed over the TBox of the OBDA specification and look at the mapping as
a means to enforce data protection, whereas in [4] the policy is declared at the
source level and the mapping is seen as a potential cause for secret disclosure.
Possible disclosure of confidential source-level information has also been studied
in [3,9,22], in the context of data integration or exchange, possibly in the pres-
ence of integrity constraints at the sources. In these works, the integrated target
schema is a flat relational one, thus not an expressive TBox, as in OBDA, and
secrets are specified in terms of queries over the sources, thus not policies over
the target schema, as in our framework. Also, the focus is on disclosure analysis
and not confidentiality enforcement.

Initially, CQE has been studied in the context of propositional theories under
closed world assumption (see, e.g., [5,24]), thus in a framework substantially
different from ours. The more recent works on CQE over DL ontologies are
instead closer to our research. In [7], the authors propose a method for computing
secure knowledge views over DL ontologies in the presence of user background
knowledge and investigate the computational complexity of the approach for
ontologies and policies specified in various expressive DLs. In [13], the authors
generalize the CQE paradigm for incomplete databases proposed in [6], and study
CQE for owl 2 rl ontologies and policies represented by a set of ground atoms.
The same authors continued their investigation in [14], for ontologies and policies
specified in Datalog or in one of the owl 2 profiles [21], mainly focusing on the
problem of the existence of a censor under two incomparable different notions
of censors. In [20], the authors revisited CQE as the problem of computing the
answers to a query that are returned by all optimal censors, which is also the
approach we adopt in this paper. However, like all the above mentioned papers
on CQE over ontologies, [20] does not consider OBDA mappings to external data
sources.
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We finally point out that forms of privacy-preserving query answering over
DL ontologies have been studied also, e.g., in [12,25], but not according to the
CQE approach, or in an OBDA context.

3 Preliminaries

We use standard notions of function-free first-order (FO) logic and relational
databases. We assume to have the pairwise disjoint countably infinite sets ΣR,
ΣT , ΣC , and ΣV for relational database predicates, ontology predicates, con-
stants (a.k.a. individuals), and variables, respectively. Given a symbol p ∈
ΣR∪ΣT , with p/n we denote that p has arity n, i.e., n is the number of arguments
of r.

Ontologies. With FO we indicate the language of all FO sentences over ΣT , ΣC ,
and ΣV . An FO ontology O is a finite set of FO sentences, i.e., O ⊆ FO. With
Mod(O) we denote the set of the models of O, i.e., the FO interpretations I such
that φI (i.e., the interpretation of φ in I) evaluates to true, for each sentence
φ ∈ O. We say that O is consistent if Mod(O) �= ∅, inconsistent otherwise,
and that O entails an FO sentence φ, denoted O |= φ, if φI is true in every
I ∈ Mod(O). The set of logical consequences of an ontology O in a language
L ⊆ FO, denoted clL(O), is the set of sentences in L entailed by O.

Queries. A query q is a (possibly open) FO formula φ(x), where x are the free
variables of q. The number of variables in x is the arity of q. We consider queries
over either relational databases or ontologies. Given a query q of arity n over a
database D, we use Eval(q,D) to denote the evaluation of q over D, i.e., the set
of tuples t ∈ Σn

C such that D |= φ(t), where φ(t) is the sentence obtained by
substituting x with t in q.

A conjunctive query (CQ) q is an FO formula of the form ∃y.α1(x,y)∧ . . .∧
αn(x,y), where n ≥ 1, x is the sequence of free variables, y is the sequence of
existential variables, and each αi(x,y) is an atom (possibly containing constants)
with predicate αi and variables in x ∪ y. Each variable in x ∪ y occurs in at
least one atom of q. Boolean CQs (BCQs) are queries whose arity is zero (i.e.,
BCQs are sentences). The length of a CQ q is the number of its atoms. The set
of certain answers to a CQ q of arity n over an ontology O is the set cert(q,O)
of tuples c ∈ Σn

C such that O entails the sentence ∃y.α1(c,y) ∧ . . . ∧ αn(c,y).
As usual [1], when a BCQ q is entailed by O, i.e., O |= q, we may also say
cert(q,O) = {〈〉}, i.e., the set of certain answers contains only the empty tuple,
cert(q,O) = ∅, otherwise.

For ease of exposition, in our technical development we will focus on the
entailment of BCQs from DL ontologies. However, our results can be straight-
forwardly extended to non-Boolean CQs through a standard encoding of open
formulas into closed ones.

In the following, we denote by CQ the languages of BCQs, and by GA the
language of ground atoms, i.e., BCQs with only one atom and no variables, both
specified over ΣT , ΣC , and ΣV .



Controlled Query Evaluation in Ontology-Based Data Access 133

OWL 2 QL and DL-LiteR. We consider ontologies expressed in DL-LiteR [8],
i.e., the DL that provides the logical underpinning of owl 2 ql [21]. DLs are
decidable FO languages using only unary and binary predicates, called concepts
and roles, respectively [2]. Concepts denote sets of objects, whereas roles denote
binary relationships between objects. A DL ontology O is a set T ∪A, where T is
the TBox and A is the ABox, specifying intensional and extensional knowledge,
respectively.

A TBox T in DL-LiteR is a finite set of axioms of the form: B1 � B2,
B1 � ¬B2, R1 � R2, and R1 � ¬R2, where each Ri, with i ∈ {1, 2} is an
atomic role Q (i.e, Q/2 ∈ ΣT ), or its inverse Q−; each Bi, with i ∈ {1, 2} is an
atomic concept A (i.e., A/1 ∈ ΣT ), or a concept of the form ∃Q or ∃Q−, i.e.,
unqualified existential restrictions, which denote the set of objects occurring as
first or second argument of Q, respectively. Assertions of the form B1 � B2 and
R1 � R2 indicate subsumption between predicates, those of the form B1 � ¬B2

and R1 � ¬R2 indicate disjointness between predicates.
An ABox A is a finite set of ground atoms, i.e., assertions of the form A(a),

Q(a, b), where A/1, Q/2 ∈ ΣT , and a, b ∈ ΣC . The semantics of a DL-LiteR
ontology O is given in terms of FO models over the signature of O in the standard
way [8].

OBDA. An OBDA specification is a triple J = 〈T ,S,M〉, where T is a DL
TBox over the alphabet ΣT , S, called source schema, is a relational schema over
the alphabet ΣR, and M is a mapping between S and T .

The mapping M is a finite set of mapping assertions from S to T . Each of
these assertions m has the form φ(x) � ψ(x), where φ(x), called the body of
m, and ψ(x), called the head of m, are queries over (the signature of) S and T ,
respectively, both with free variables x. We consider the case in which φ(x) is
an FO query, and ψ(x) is a single-atom query without constants and existential
variables (i.e., each m is a GAV mapping assertion [17]). This is the form of
mapping commonly adopted in OBDA, and a special case of the W3C standard
R2RML [15].

In the above definition, for ease of exposition, we have assumed that the
source database directly stores the identifiers (e.g., the URIs) of the instances of
the ontology predicates. However, all our results hold also when such identifiers
are constructed in the mapping using the database values, as usual in OBDA [23]
and in R2RML.

The semantics of J is given with respect to a database instance for S, called
source database for J . Given one such database D, the retrieved ABox for J
w.r.t. D, denoted ret(J ,D), is the ABox that contains all and only the facts
ψ(t) such that ψ(x) occurs in the head of some mapping assertion m ∈ M, and
t is a tuple of constants such that t ∈ Eval(φ(x),D), where φ(x) is the body
of m. Then, a model for J w.r.t. D is a model of the ontology T ∪ ret(J ,D).
The set of models of J w.r.t. D is denoted by Mod(J ,D). Also, we call (J ,D)
an OBDA setting and say that (J ,D) is inconsistent if Mod(J ,D) = ∅, and
denote by (J ,D) |= α the entailment of a sentence α by (J ,D), i.e., the fact
that αI is true in every I ∈ Mod(J ,D).
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4 Framework

We start by introducing the formal notion of policy-protected OBDA specifi-
cation. Our framework is a generalization to the OBDA context of the CQE
framework for DL ontologies provided in [10,20].

First thing, we define a denial assertion (or simply a denial) as an FO
sentence of the form ∀x.φ(x) → ⊥, such that ∃x.φ(x) is a BCQ. Given one
such denial δ and a DL ontology O, then O ∪ {δ} is a consistent FO theory if
O �|= ∃x.φ(x), and is inconsistent otherwise. We then give the following defini-
tion.

Definition 1 (PPOBDA specification). A policy-protected ontology-based
data access (PPOBDA) specification is a quadruple E = 〈T ,S,M,P〉 such that
〈T ,S,M〉 is an OBDA specification, and P is a policy, i.e., a set of denial
assertions over the signature of T , such that T ∪ P is a consistent FO theory.

Example 1. Consider the following PPOBDA specification E = 〈T ,S,M,P〉,
where

T = { OilComp � Comp, ∃IssuesLic− � Comp,
∃PipeOp � Pipeline, ∃PipeOp− � Comp }

S = { company/2, license/2, operator/2 }
M = {m1: ∃y.company(x, y) � Comp(x),

m2: company(x,‘oil’ ) � OilComp(x),
m3: license(x, y) � IssuesLic(x, y),
m4: operator(x, y) � PipeOp(x, y) }

P = { d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y) → ⊥,
d2: ∀x, y.PipeOp(x, y) ∧ OilComp(y) → ⊥}

In words, the TBox T specifies that oil companies (concept OilComp) are
a special kind of companies (concept Comp), individuals (e.g., companies) can
issue licenses (role IssuesLic) to companies (over the properties of the issuer),
and companies can be operators (role PipeOp) of pipelines (concept Pipeline).
The schema S has three tables: company, which contains data about companies
and their type, license, which contains data about license issuance, and operator,
which contains operators of pipelines. The policy P specifies as confidential the
fact that an oil company issues a license to a company, and the fact that an oil
company is the operator of a pipeline. ��

The semantics of a PPOBDA specification E = 〈T ,S,M,P〉 coincides with
that of the OBDA specification 〈T ,S,M〉, and thus we naturally extend to
PPOBDA the notion of source database D, retrieved ABox (denoted ret(E ,D)),
set of models (denoted Mod(E ,D)), and setting (denoted (E ,D)).

We now give a notion of censor in PPOBDA that is parametric with respect to
the language L used for enforcing the policy (similarly to [20]). In the following,
given a TBox T , with L(T ) we denote the subset of L containing all and only
the sentences specified only over the predicates occurring in T and the constants
in ΣC . For instance, with FO(T ) we denote the set of FO sentences having the
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above mentioned characteristics. Moreover, given a database D, with LD we
denote the formulas in L mentioning only constants in D.

Definition 2 (censor in L). Given a PPOBDA specification E = 〈T ,S,M,P〉
and a language L ⊆ FO(T ), a censor for E in L is a function cens(·) such that,
for each source database D for E, returns a set cens(D) ⊆ LD such that:

(i) (〈T ,S,M〉,D) |= φ, for each φ ∈ cens(D), and
(ii) T ∪ P ∪ cens(D) is a consistent FO theory.

We call L the censor language.

Given two censors cens(·) and cens′(·) for E in L, we say that cens′(·) is more
informative than cens(·) if:

(i) for every database instance D for E , cens(D) ⊆ cens′(D), and
(ii) there exists a database instance D′ for E such that cens(D′) ⊂ cens′(D′).

Then, a censor cens(·) for E in L is optimal if there does not exist a censor
cens′(·) for E in L such that cens′(·) is more informative than cens(·). The set of
all optimal censors in L for a PPOBDA specification E is denoted by L-OptCensE .

In this paper we consider censors in the languages CQ(T ) and GA(T ), i.e.,
we instantiate L in Definition 2 to either the language of Boolean conjunctive
queries or the language of ground atoms, respectively, both over the predicates
occurring in T . These are the censor languages studied in [20] over DL ontologies.
In the following, when T is clear from the context, we simply denote them as
CQ and GA, respectively.

Example 2. Consider the PPOBDA specification E of Example 1, and let cens1
be the function such that, given a source database D for E , cens1(D) is the set
of ground atoms clGA(T ∪ A1), where A1 is the ABox obtained from ret(E ,D)
by adding the assertion Comp(c) and removing the assertion OilComp(c), for
each individual c such that T ∪ret(E ,D) |= (OilComp(c)∧∃x.IssuesLic(c, x)∧
Comp(x)) ∨ (∃x.PipeOp(x, c) ∧ OilComp(c)). It is easy to verify that cens1 is
an optimal censor for E in GA, i.e. cens1 ∈ GA-OptCensE . ��

In answering users’ queries, one might choose to select a single optimal cen-
sor. However, as already pointed out in [10,20], in the lack of further meta-
information about the application domain, picking up just one optimal censor
may end up in arbitrary behaviour. Thus, following the approach studied in
[10,20], we prefer to reason about all the optimal censors. In particular, for the
censor languages CQ and GA, we define the following entailment problems.

Definition 3. Given a PPOBDA specification E = 〈T ,S,M,P〉, a database
instance D for S, and a BCQ q, we consider the following decision problems:

(CQ-Cens-Entailment): decide whether T ∪ cens(D) |= q for every cens ∈
CQ-OptCensE . If this is the case, we write (E ,D) |=cqe

CQ q.
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(GA-Cens-Entailment): decide whether T ∪cens(D) |= q for every cens ∈
GA-OptCensE . If this is the case, we write (E ,D) |=cqe

GA q.

Our ultimate goal is to solve the above problems by reducing them to classical
entailment of BCQs in OBDA. To this aim, we define below the notion of query
equivalence under censor between PPOBDA and OBDA specifications.

Definition 4 (query equivalence). Given a PPOBDA specification E =
〈T ,S,M,P〉 and an OBDA specification J = 〈T ,S,M′〉, we say that E and
J are query-equivalent under censors in CQ (resp. GA) if for every database
instance D for S and every BCQ q, (E ,D) |=cqe

CQ q (resp. (E ,D) |=cqe
GA q) iff

(J ,D) |= q.

Based on the above definition, we can decide CQ-cens-entailment of a BCQ
q from a PPOBDA E coupled with a source database D for S by constructing an
OBDA specification J such that E and J are query-equivalent under censors in
CQ and checking whether (J ,D) |= q (analogously for GA-cens-entailment).
We remark that, besides the policy, the mapping is the only component in which
E and J differ (see also Sect. 1). Intuitively, M′ in J implements a censor (in
either CQ or GA) for E .

5 Inexpressibility Results

In this section, we start investigating how to reduce query entailment in
PPOBDA to query entailment in OBDA, based on the query equivalence defini-
tion given in the previous section.

Before proceeding further, we notice that, given a PPOBDA specification
E = 〈T ,S,M,P〉, a natural question is whether the OBDA specification J =
〈T ,S,M〉, i.e., obtained by simply eliminating the policy P from E , is query-
equivalent to E under censors in either CQ or GA. In other terms, one might
wonder whether the mapping M is already realizing a filter on the data such
that denials in P are never violated by the underlying data retrieved through
M, whatever source database for J is considered3. If this would be the case,
the entailment problems we are studying would become trivial. However, since
the bodies of mapping assertions are FO queries, to answer the above question
we should decide entailment in FO, which is an undecidable problem.

The following result says that, under censors in CQ, constructing an OBDA
specification query-equivalent to E is in general not possible, already for the case
of an empty TBox, i.e., a TBox that does not contain axioms. As a consequence,
entailment of BCQs under censors in CQ cannot be solved through transfor-
mation in a query-equivalent OBDA specification, whatever logic is used for the
TBox.

Theorem 1. There exists a PPOBDA specification E = 〈T ,S,M,P〉 with T =
∅ for which there does not exist an OBDA specification J such that E and J are
query-equivalent under censors in CQ.
3 Note that this is not the problem studied in [4] (see also the discussion in Sect. 2).
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Proof. Consider the PPOBDA specification E = 〈T ,S,M,P〉 such that T = ∅,
S contains the relation T/2, where T ∈ ΣR, M = {T (x, y) � Q(x, y)}, where
Q/2 ∈ ΣT , and P is as follows:

P = {∀x .Q(a, x) → ⊥, ∀x .Q(x, a) → ⊥},

where a belongs to ΣC . Assume that J is an OBDA specification such that E
and J are query-equivalent under censors in CQ, and let M′ be the mapping
of J . Consider now the case when the source database D consists of the fact
T (a, a). First, it is immediate to see that, given the policy P, no BCQ mentioning
the individual a can belong to any censor cens(·) in CQ-OptCensE . Then, since
a is the only individual appearing in D, it follows that no BCQ mentioning any
individual can belong to any censor cens(·) in CQ-OptCensE . This implies that
the mapping M′ of J cannot retrieve any instance from D, i.e., ret(J ,D) is
empty, and therefore no BCQ is entailed by (J ,D). On the other hand, the
OBDA setting (〈T ,S,M〉,D) infers purely existential BCQs. For instance, all
the BCQs expressing existential cycles of any length over the role Q, that is all
the queries of the form

∃x0, . . . , xn .Q(x0, x1) ∧ Q(x1, x2) ∧ . . . ∧ Q(xn, x0)

where n ∈ N. All such queries can be positively answered by the PPOBDA set-
ting (E ,D) without revealing a secret: so, all such queries belong to every censor
cens(·) in CQ-OptCensE . Since they are not entailed by (J ,D), this contradicts
the hypothesis that E and J are query-equivalent under censors in CQ, thus
proving the theorem. ��

Hereinafter, we focus on DL-LiteR PPOBDA specifications, i.e., whose TBox
is expressed in the logic DL-LiteR. The following theorem states that the same
issue of Theorem 1 arises also under censors in GA.

Theorem 2. There exists a DL-LiteR PPOBDA specification E for which there
does not exist an OBDA specification J such that E and J are query-equivalent
under censors in GA.

Proof. From Theorem 6 in [20], it follows that, for DL-LiteR PPOBDA specifica-
tions, GA-Cens-Entailment is coNP-hard in data complexity. Instead, standard
conjunctive query entailment for OBDA specifications with a DL-LiteR TBox is
in AC0 in data complexity [23]. This clearly shows the thesis. ��

6 Embedding a Policy into the Mapping

Towards the identification of a notion of censor that allows us to always transform
a PPOBDA specification E into a query-equivalent OBDA one, we define below
a new notion of censor that suitably approximates censors for E in GA.
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Definition 5 (Intersection GA censor). Given a PPOBDA specification
E = 〈T ,S,M,P〉, the intersection GA (IGA) censor for E is the function
censIGA(·) such that, for every database instance D for S, censIGA(D) =⋂

cens∈GA-OptCensE
cens(D).

Example 3. Let E be the PPOBDA specification of Example 1, and
let D = {company(c1, ‘oil’), company(c2, ‘oil’), company(c3, ‘oil’), license(c1, c4),
operator(p1, c2)} be a source database for E . One can verify that censIGA(D) =
{Comp(c1), Comp(c2), Comp(c3), OilComp(c3), Comp(c4), P ipeline(p1)}. ��

Notice that, differently from the previous notions of censors, the IGA censor
is unique. Then, given a source database instance D for E and a BCQ q, IGA-
Cens-Entailment is the problem of deciding whether T ∪ censIGA(D) |= q. If
this is the case, we write (E ,D) |=cqe

IGA q.
The following proposition, whose proof is straightforward, says that IGA-

Cens-Entailment is a sound approximation of GA-Cens-Entailment.

Proposition 1. Given a PPOBDA specification E, a source database D for E
and a BCQ q, if (E ,D) |=cqe

IGA q then (E ,D) |=cqe
GA q.

We now naturally extend Definition 4 to IGA censors. Given a PPOBDA
specification E = 〈T ,S,M,P〉 and an OBDA specification J = 〈T ,M′,S〉, we
say that E and J are query-equivalent under IGA censor if for every source
database D for E and every BCQ q, (E ,D) |=cqe

IGA q iff (J ,D) |= q.
We point out that we could in principle consider a counterpart of Definition 5

also for censors in CQ. However, BCQ entailment under a censor that for every
source database D returns the intersection of all the sets of BCQs returned
by censors in CQ applied to D coincides with CQ-Cens-Entailment, and thus
Theorem 1 says that a query-equivalent PPOBDA to OBDA transformation is
not possible in this case.

In the rest of this section, we prove that every DL-LiteR PPOBDA specifi-
cation E admits an OBDA specification J that is query-equivalent under IGA
censor to E , and provide an algorithm to build J . The intuition behind our
algorithm is as follows. For any source database D, we want that ret(J ,D) does
not contain all those facts of ret(E ,D) that together with the TBox T lead to
the violation of the policy P. At the same time, we want this elimination of facts
to be done in a minimal way, according to our definition of IGA censor. Thus
only “really dangerous” facts have to be dropped from ret(E ,D). These facts
actually belong to at least one minimal (w.r.t. set containment) ABox A such
that T ∪ A ∪ P is inconsistent. Note that in this case, for each fact α ∈ A there
is at least a censor cens(·) ∈ GA-OptCensE such that cens(D) does not contain
α. Therefore α does not belong to the set censIGA(D), where censIGA(·) is the
IGA censor for E .

Identifying such facts is easier if we can reason on each denial in isolation.
For this to be possible, the policy P must enjoy the following property: for every
denial δ ∈ P, every minimal (w.r.t. set containment) ABox A such that {δ} ∪
T ∪A is inconsistent is also a minimal ABox such that P ∪T ∪A is inconsistent.
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This is, however, not always the case. Consider, e.g., the policy P = {∀x.A(x) ∧
B(x) → ⊥;∀x.A(x) → ⊥}. The ABox {A(d), B(d)} is a minimal ABox violating
the first denial, but is not a minimal ABox violating P, since {A(d)} violates the
second denial (in this example T = ∅). We thus first transform P into a policy
P ′ enjoying the above property.

To this aim we introduce the notion of extended denial assertion (or simply
extended denial), which is a formula of the form ∀x.φ(x) ∧ ¬π(x) → ⊥ such that
∃x.φ(x) is a BCQ and π(x) is a (possibly empty) disjunction of conjunctions of
equality atoms of the form t1 = t2, where t1 and t2 are either variables in x or
constants in ΣC . An extended policy is a finite set of extended denials.

Definition 6. Given a policy P and an extended policy P ′. We say that P ′ is
a non-redundant representation of P if the following conditions hold: (i) for
every ABox A, P ∪ A is inconsistent iff P ′ ∪ A is inconsistent; (ii) for every
extended denial δ′ occurring in P ′, every minimal ABox A such that {δ′} ∪ A is
inconsistent is also a minimal ABox such that P ∪ A is inconsistent.

One might think that computing a non-redundant representation of P means
simply eliminating from P each denial δ such that P \{δ}∪T |= δ. In fact, only
eliminating denials that are (fully) logically inferred by other denials (and the
TBox) is not sufficient, since some redundancies can occur for specific instantia-
tions of the denials. For example, δ1 = ∀x, y.Q(x, y) ∧ C(y) → ⊥ is not inferred
by δ2 = ∀x.Q(x, x) → ⊥, but it becomes inferred when x = y. This implies
that a minimal violation of δ1 where the two arguments of Q are the same (e.g.,
{Q(a, a), C(a)}) is not a minimal violation of {δ1, δ2} (since Q(a, a) alone is
already a violation of δ2). A non-redundant representation of this policy would
be {δ′

1, δ2}, where δ′
1 = ∀x, y.Q(x, y) ∧ C(y) ∧ ¬(x = y) → ⊥. Our algorithm to

compute a non-redundant policy P ′, called policyRefine, takes into account also
this situation, applying a variant of the saturate method used in [19] to solve a
similar problem in the context of consistent query answering over ontologies.

Hereinafter, we assume that P has been expanded w.r.t. T , that is, P contains
every denial δ such that P ∪T |= δ. In this way, to establish non-redundancy we
can look only at P, getting rid of T . To expand the policy, we use the rewriting
algorithm perfectRef of [8] to reformulate (the premise of) denials in P with
respect to the assertions in T .

Example 4. Consider the same PPOBDA specification E of Example 1. By
rewriting each denial in P w.r.t. T through perfectRef4, we obtain the following
set of denials.

d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y) → ⊥
d2: ∀x, y.PipeOp(x, y) ∧ OilComp(y) → ⊥
d3: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ OilComp(y) → ⊥
d4: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) → ⊥
d5: ∀x, y, z.OilComp(x) ∧ IssuesLic(x, y) ∧ PipeOp(z, y) → ⊥

4 For details on perfectRef, we refer the reader to [8].
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Algorithm 1: PolicyEmbed

input: a DL-LiteR TBox T , a mapping M, a policy P;
output: a mapping M′;
(1) let P̂ be the expansion of the policy P w.r.t T ;

(2) P ′ → policyRefine(P̂ );
(3) M′ ← ∅;
(4) for each atomic concept C do
(5) ψ ← addPolicyConditions(C(x), P ′);
(6) φp ← expand(C(x), T );
(7) φn ← expand(ψ, T );
(8) M′ ← M′ ∪ {unfold(φp ∧ ¬φn, M) � C(x)}
(9) for each atomic role Q do
(10) ψ ← addPolicyConditions(Q(x, y), P ′);
(11) φp ← expand(Q(x, y), T );
(12) φn ← expand(ψ, T );
(13) M′ ← M′ ∪ {unfold(φp ∧ ¬φn, M)) � Q(x, y)}
(14) return M′;

Intuitively, perfectRef adds to the original denials d1 and d2 the new denials
d3, d4 and d5, obtained by rewriting the atom Comp(y) in d1 according to
the inclusions OilComp � Comp, ∃IssuesLic− � Comp, and ∃PipeOp− �
Comp, respectively (for d4, perfectRef also unifies two atoms having IssuesLic
as predicate). It is easy then to verify that d1, d3 and d5 are implied by d4, and
thus must be discarded. So the non-redundant policy P ′ in this case contains
only d2 and d4. ��

We recall that the only means we have to avoid retrieving the “dangerous
facts” is to embed suitable conditions in the mapping assertions of M′. Algo-
rithm 1 shows our overall procedure, called PolicyEmbed.

Step 1 expands the input policy P into the policy P̂ by using
perfectRef(P, T ). Step 2 produces the non-redundant policy P ′ by means of
policyRefine(P̂). Then, the algorithm constructs one mapping assertion for each
ontology predicate. We discuss steps 4–8 for concepts (steps 9–13 for roles are
analogous).

The algorithm addPolicyConditions(C(x),P ′) constructs an FO query ψ
expressing the disjunction of all CQs corresponding to the premise of a denial δ ∈
P ′ such that C(x) unifies with an atom of δ. For instance, if P ′ contains ∀x.C(x)∧
D(x) → ⊥ and ∀x, y.C(x) ∧ Q(x, y) ∧ E(y) → ⊥, addPolicyConditions(C(x),P ′)
returns ((C(x) ∧ D(x)) ∨ (∃y.C(x) ∧ Q(x, y) ∧ E(y))). This is actually the union
of all the conditions that lead to the generation of dangerous facts for C.

Then, the algorithm expand(ϕ, T ) rewrites every positive atom α occur-
ring in the formula ϕ according to the TBox T . More precisely, the expansion
expand(C(x), T ) of a positive concept atom is the disjunction of the atoms of the
form A(x) (resp. ∃y.Q(x, y), ∃y.Q(y, x)), where A is an atomic concept (resp. Q is
an atomic role), such that T |= A � C (resp. T |= ∃Q � C, T |= ∃Q− � C).
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For example, if T infers A � C and ∃Q � C, then expand(C(x), T ) returns
C(x) ∨ A(x) ∨ ∃y.Q(x, y). The expansion expand(Q(x, y), T ) of a role atom is
defined analogously. Finally, the expansion expand(ϕ, T ) of an arbitrary formula
ϕ is obtained by replacing each occurrence of a positive atom α in ϕ with the
formula expand(α, T ).

At step 8, the mapping is incremented with the mapping assertion for C.
The function unfold realizes a typical unfolding for GAV mapping [26], i.e., it
substitutes each atom a with the union of the body of all mapping assertions
having a in their heads. The presence of (the expansion of) the subformula ψ
in ¬φn guarantees that no fact causing a violation of a denial involving C is
retrieved.

Example 5. In our ongoing example, PolicyEmbed(T ,M,P) returns

M′ = { m′
1: ∃y.company(x, y) ∨ company(x,‘oil’ ) ∨ ∃y.license(y, x) ∨

∃y.operator(y, x) � Comp(x),
m′

2: company(x,‘oil’ ) ∧ ¬((∃y.company(x,‘oil’ ) ∧ license(x, y))∨
(∃z.operator(z, x) ∧ company(x,‘oil’ ))) � OilComp(x),

m′
3: license(x, y) ∧ ¬(license(x, y) ∧ company(x,‘oil’ )) � IssuesLic(x, y)

m′
4: operator(x, y) ∧ ¬(operator(x, y) ∧ company(x,‘oil’ )) � PipeOp(x, y)

m′
5: ∃y.operator(x, y) � Pipeline(x) }

For the database instance D for S provided in Example 3, one can verify
that censIGA(D) = ret(〈T ,S,M′〉,D). ��

PolicyEmbed can be used to realize a PPOBDA-OBDA transformation, as stated
below.

Theorem 3. Let E = 〈T ,S,M,P〉 be a DL-LiteR PPOBDA specification, and
let J be the OBDA specification 〈T ,S,M′〉, where M′ is the mapping returned
by PolicyEmbed(T ,M,P). Then, J is query-equivalent to E under IGA censor.

Proof. Let D be a source database for S. We prove the theorem by showing that
ret(J ,D) is equal to censIGA(D), where censIGA(·) is the IGA censor for E .

We start by showing a lemma that is crucial for this proof. From now on,
we denote by A the ABox ret(〈T ,S,M〉,D), i.e., the ABox retrieved from
D through the initial mapping M. Moreover, we denote by A′′ the ABox
ret(〈T ,S,M′′〉,D), where M′′ is the mapping obtained from the algorithm by
discarding the formulas φn, i.e., when unfold(φp ∧ ¬φn,M) is replaced with
unfold(φp,M) in steps 8 and 13 of the algorithm.

The next lemma follows immediately from the definition of the algorithm
expand:

Lemma 1. A′′ = clGA(T ∪ A).

Informally, the lemma states that the “positive” part of the mapping com-
puted by the algorithm retrieves from D exactly the set of ground atoms deriv-
able by the TBox T from the ABox A retrieved from D through the initial
mapping M.



142 G. Cima et al.

In the following, we prove that every concept assertion C(a) belongs to
ret(J ,D) iff C(a) belongs to censIGA(D) (the proof for role assertions is anal-
ogous). From now on, let φp be the formula computed for C(x) at step 6 of
the algorithm, and let φn be the formula computed for C(x) at step 7 of the
algorithm.

First, assume that the concept assertion C(a) belongs to ret(J ,D) but does
not belong to censIGA(D). Then, there exists a censor cens′(·) in GA for E such
that C(a) �∈ cens′(D). Now, there are two possible cases:

(i) C(a) �∈ clGA(T ∪ A). In this case, by Lemma 1 it follows that C(a) �∈ A′′,
hence unfold(φp,M) (that is, the positive part of the mapping for the con-
cept C in M′) is false in D for x = a, and therefore C(a) does not belong
to ret(J ,D);

(ii) C(a) belongs to a minimal violation of P in clGA(T ∪A): then, from Defini-
tion 6 it follows that there exists a denial δ in P ′ such that C(a) belongs to a
minimal violation of δ in clGA(T ∪ A). Consequently, from the definition of
the algorithms addPolicyConditions and expand it follows that unfold(φn,M)
(that is, the negative part of the mapping for the concept C in M′) is true
in D for x = a, and therefore C(a) does not belong to ret(J ,D).

Conversely, assume that the concept assertion C(a) belongs to censIGA(D)
but does not belong to ret(J ,D). Then, the mapping for the concept C in M′

is false for x = a. Now, there are two possible cases:

(i) unfold(φp,M) is false in D for x = a. This immediately implies by Lemma 1
that C(a) �∈ clGA(T ∪ A): hence, in every censor cens′ in GA for E , C(a) �∈
cens′(D), and therefore C(a) �∈ censIGA(D);

(ii) unfold(φn,M) is true in D for x = a. From the definition of the algorithms
addPolicyConditions and expand, this immediately implies that there exists
δ ∈ P ′ such that C(a) belongs to a minimal violation of δ in clGA(T ∪ A):
then, from Definition 6 it follows that C(a) belongs to a minimal violation
of P in clGA(T ∪ A). Consequently, there exists a censor cens′ in GA for E
such that C(a) �∈ cens′(D), and therefore C(a) �∈ censIGA(D). ��

7 Experiments

In this section, we report the results of the experimentation we carried out using
the NPD benchmark for OBDA [18]. The benchmark is based on real data coming
from the oil industry: the Norwegian Petroleum Directorate (NPD) FactPages.
It provides an owl 2 ontology, the NPD database, the mapping between the
ontology and the database, an RDF file specifying the instances of the ontol-
ogy predicates, i.e., the retrieved ABox of the OBDA setting, and a set of 31
SPARQL queries. We remark that we tested non-Boolean CQs adapted from
this set (details later on).

For our experimentation, we produced an approximation [11] in owl 2 ql of
the owl 2 benchmark ontology. Moreover, we made use of the benchmark RDF
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file containing the retrieved ABox to populate a relational database constituted
by unary and binary tables (a unary table for each concept of the ontology and
a binary table for each role and each attribute). Finally, we specified a mapping
between the ontology and this database. In this case, the mapping in simply a
set of one-to-one mapping assertions, i.e., every ontology predicate is mapped
to the database table containing its instances. This kind of OBDA specification,
with the simplest possible form of mapping assertions, allowed us to verify the
feasibility of our technique for data protection, leaving aside the impact of more
complex queries in the mapping.

In the resulting OBDA setting, the TBox comprises 1377 axioms over 321
atomic concepts, 135 roles, and 233 attributes. There are in total 2 millions of
instances circa, which are stored in a MySQL database of 689 tables.

For the experiments, we specified a policy P constituted by the following
denials:

d1: ∀d, l.DevelopmentWellbore(d) ∧ developmentWellboreForLicence(d, l)∧
ProductionLicence(l) → ⊥

d2: ∀d, t, w, b, q, f.Discovery(d) ∧ dateIncludedInField(d, t) ∧ containsWellbore(b, w)∧
wellboreForDiscovery(w, d) ∧ ExplorationWellbore(w) ∧ quadrantLocation(b, q)∧
explorationWellboreForField(w, f) → ⊥

d3: ∀c, w.WellboreCore(c) ∧ coreForWellbore(c, w) ∧ DevelopmentWellbore(w) → ⊥
d4: ∀c, f, d.Company(c) ∧ currentFieldOperator(f, c) ∧ Field(f)∧

includedInField(d, f) ∧ Discovery(d) → ⊥
d5: ∀w, e, f, l.belongsToWell(w, e) ∧ wellboreAgeHc(w, l) ∧ drillingFacility(w, f)∧

ExplorationWellbore(w) → ⊥
d6: ∀f, p, l.Field(f) ∧ currentFieldOwner(f, p) ∧ ProductionLicence(p)

∧licenseeForLicence(l, p) → ⊥.

As queries, we considered nine (non-Boolean) CQs from the ones provided
with the NPD benchmark. Strictly speaking, some of these queries in the bench-
mark are not CQs, since they use aggregation operators, but we have extracted
from them their conjunctive subqueries. The resulting queries are reported below.

q3 : ∃li.ProductionLicence(li) ∧ name(li, ln) ∧ dateLicenceGranted(li, d)∧
isActive(li, a) ∧ licensingActivityName(li, an)

q4 : ∃li, w.ProductionLicence(li) ∧ name(li, n)explorationWellboreForLicence(w, li)∧
dateWellboreEntry(w, e)

q5 : ∃le, li, c.licenseeForLicence(le, li) ∧ ProductionLicence(li) ∧ name(li, ln)∧
licenceLicensee(le, c) ∧ name(c, n) ∧ dateLicenseeValidFrom(le, d)

q9 : ∃li, w.ProductionLicence(li) ∧ name(li, n) ∧ belongsToWell(w,we)∧
explorationWellboreForLicence(w, li) ∧ name(we,wn)

q12 : ∃w, lu, c.wellboreStratumTopDepth(w, st) ∧ wellboreStratumBottomDepth(w, sb)∧
stratumForWellbore(w, u) ∧ name(u, n) ∧ inLithostratigraphicUnit(w, lu)∧
name(lu, un) ∧ WellboreCore(c) ∧ coreForWellbore(c, u) ∧ coreIntervalTop(c, ct)∧
coreIntervalBottom(c, cb)

q13 : ∃wc,we, c.WellboreCore(wc) ∧ coreForWellbore(wc,we) ∧ name(we,wn)∧
Wellbore(we) ∧ wellboreCompletionYear(we, y) ∧ drillingOperatorCompany(we, c)∧
name(c, cn)

q14 : ∃we, c.Wellbore(we) ∧ name(we, n) ∧ wellboreCompletionYear(we, y)∧
drillingOperatorCompany(we, c) ∧ name(c, cn)
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q18 : ∃p,m, f, op.productionYear(p, ‘2010’) ∧ productionMonth(p,m)∧
producedGas(p, g) ∧ producedOil(p, o) ∧ productionForField(p, f) ∧ name(f, fn)∧
currentFieldOperator(f, op) ∧ Field(f) ∧ shortName(op, ‘statoil petroleum as’)

q44 : ∃y, f, c.wellboreAgeTD(w, a) ∧ explorationWellboreForField(w, f)∧
wellboreEntryYear(w, y) ∧ Field(f) ∧ name(f, fn) ∧ coreForWellbore(c, w)

We executed each query in seven different settings, in each of which we con-
sidered an incremental number of denials in the policy among those given above.
For each setting, we computed a new mapping through a Java implementation of
the algorithm illustrated in Sect. 6. So, in the first setting, we used the mapping
computed by considering the empty policy P∅; in the second one, we considered
the policy P1 containing only the denial d1; in the third one, we considered the
policy P2 containing the denials d1 and d2; and so on. For each query, we report
in Table 1 the size of the result and the query evaluation time, columns “res”
and columns “time” in the table, respectively. The number in square brackets
near each query name indicates the length of the query.

Table 1. CQE test results. The “res” columns contain the size of the results while the
“time” columns contain the query evaluation times in milliseconds.

Policy q3 [5] q4 [4] q5 [6] q9 [5] q12 [10] q13 [7] q14 [5] q18 [9] q44 [6]

res time res time res time res time res time res time res time res time res time

P∅ 910 4789 1558 4625 17254 4545 1566 4648 96671 7368 22541 6410 141439 20150 339 6933 5078 4179

P1 910 3871 1558 4111 17254 4782 1566 4401 96671 7133 22541 6886 130341 15544 339 6128 5078 4078

P2 910 4154 880 4078 17254 4628 888 4204 96671 6852 22541 5007 126679 16566 339 5887 12 4413

P3 910 4080 880 4189 17254 4902 888 3953 96641 7746 15340 5623 124248 16807 339 5873 12 4653

P4 910 4419 880 4089 17254 5015 888 4487 96641 7836 15340 6011 124248 17393 339 6893 12 4318

P5 910 5548 880 4373 17254 6224 888 4422 96641 8683 15340 6499 123816 20116 339 7201 12 4491

P6 910 4309 880 4029 14797 5189 888 4785 96641 8297 15340 6796 123816 17513 339 6176 12 4475

For our experiments, we used the OBDA Mastro system [16], and a standard
laptop with Intel i5 @1.6 GHz processor and 8 Gb of RAM.

Values in Table 1 show the effect of the policy on the size of the result of the
queries. Specifically, we have that the queries q0, q3, and q18 are not censored
in any of the considered settings. The answers to the queries q4, q9, and q44 are
affected by the introduction of the denial d2 in the policy, while the denial d3
alters the answers of the queries q12 and q13. Some answers to the query q5 are
cut away by the introduction of the denial d6 in the policy. Moreover, the query
q14 is affected by the denials d1, d2, d3, and d5. Finally, the denial d4 alters
no queries. Notably, although the policy alters the query results, one can see
that the execution time is only slightly affected. This suggests that our proposed
technique can be effectively used for protecting data in OBDA setting.

8 Conclusions

Our current research is mainly focused on modifying the user model formalized
in our framework in order to capture richer data protection scenarios. In par-
ticular, the user model we adopted (which we inherited from previous works
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on CQE over ontologies) assumes that an attacker has only the ability of mak-
ing standard inference reasoning on the ontology and the query answers. Under
these assumptions, data declared as confidential are certainly protected in our
framework.

We are also investigating more expressive forms of policy to improve the
abilities of our framework in the enforcement of confidentiality. Finally, while
our experimental evaluation clearly shows the practical feasibility of our app-
roach, we still have to consider the issue of optimization of our algorithms and
implementation.
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Abstract. In recent years, misinformation on the Web has become
increasingly rampant. The research community has responded by propos-
ing systems and challenges, which are beginning to be useful for (various
subtasks of) detecting misinformation. However, most proposed systems
are based on deep learning techniques which are fine-tuned to specific
domains, are difficult to interpret and produce results which are not
machine readable. This limits their applicability and adoption as they
can only be used by a select expert audience in very specific settings.
In this paper we propose an architecture based on a core concept of
Credibility Reviews (CRs) that can be used to build networks of dis-
tributed bots that collaborate for misinformation detection. The CRs
serve as building blocks to compose graphs of (i) web content, (ii) exist-
ing credibility signals –fact-checked claims and reputation reviews of
websites–, and (iii) automatically computed reviews. We implement this
architecture on top of lightweight extensions to Schema.org and services
providing generic NLP tasks for semantic similarity and stance detec-
tion. Evaluations on existing datasets of social-media posts, fake news
and political speeches demonstrates several advantages over existing sys-
tems: extensibility, domain-independence, composability, explainability
and transparency via provenance. Furthermore, we obtain competitive
results without requiring finetuning and establish a new state of the art
on the Clef’18 CheckThat! Factuality task.

Keywords: Disinformation detection · Credibility signals ·
Explainability · Composable semantics

1 Introduction

Although misinformation is not a new problem, the Web –due to the pace of
news cycles combined with social media, and the information bubbles it creates–
has increasingly evolved into an ecosystem where misinformation can thrive [8]
with various societal effects. Tackling misinformation1 is not something that can
be achieved by a single organization –as evidenced by struggling efforts by the

1 https://ec.europa.eu/digital-single-market/en/tackling-online-disinformation.
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major social networks– as it requires decentralisation, common conceptualisa-
tions, transparency and collaboration [3].

Technical solutions for computer-aided misinformation detection and fact-
checking have recently been proposed [1,6] and are essential due to the scale of
the Web. However, a lack of hand-curated data, maturity and scope of current AI
systems, means assessing veracity [12] is not feasible. Hence the value of the cur-
rent systems is not so much their accuracy, but rather their capacity of retrieving
potentially relevant information that can help human fact-checkers, who are the
main intended users of such systems, and are ultimately responsible for veri-
fying/filtering the results such systems provide. Therefore, a main challenge is
developing automated systems which can help the general public, and influencers
in particular, to assess the credibility of web content, which requires explainable
results by AI systems. This points towards the need for hybrid approaches that
enable the use of the best of deep learning-based approaches, but also of sym-
bolic knowledge graphs to enable better collaboration between large platforms,
fact-checkers, the general public and other stakeholders like policy-makers, jour-
nalists, webmasters and influencers.

In this paper, we propose a design on how to use semantic technologies to
aid in resolving such challenges. Our contributions are:

– a datamodel and architecture of distributed agents for composable credibility
reviews, including a lightweight extension to schema.org to support prove-
nance and explainability (Sect. 3)

– an implementation of the architecture demonstrating feasibility and value
(Sect. 4)

– an evaluation on various datasets establishing state-of-the-art in one dataset
(Clef’18 CheckThat! Factuality task) and demonstrating capabilities and lim-
itations of our approach, as well as paths for improvements (Sect. 5).

2 Related Work

The idea of automating (part of) the fact-checking process is relatively recent
[1]. ClaimBuster [6] proposed the first automated fact-checking system and its
architecture is mostly still valid, with a database of fact-checks and components
for monitoring web sources, spotting claims and matching them to previously
fact-checked claims. Other similar services and projects include Truly media2,
invid3 and CrowdTangle4. These systems are mainly intended to be used by
professional fact-checkers or journalists, who can evaluate whether the retrieved
fact-check article is relevant for the identified claim. These automated systems
rarely aim to predict the accuracy of the content; this is (rightly) the job of the
journalist or fact-checker who uses the system. Many of these systems provide
valuable REST APIs to access their services, but as they use custom schemas,

2 https://www.truly.media/ https://www.disinfobservatory.org/.
3 https://invid.weblyzard.com/.
4 https://status.crowdtangle.com/.

https://www.truly.media/
https://www.disinfobservatory.org/
https://invid.weblyzard.com/
https://status.crowdtangle.com/
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they are difficult to compose and inspect as they are not machine-interpretable
or explainable.

Besides full-fledged systems for aiding in fact-checking, there are also various
strands of research focusing on specific computational tasks needed to iden-
tify misinformation or assess the accuracy or veracity of web content based on
ground credibility signals. Some low-level NLP tasks include check-worthiness
[11] and stance detection [14,15], while others aim to use text classification as
a means of detecting deceptive language [13]. Other tasks mix linguistic and
social media analysis, for example to detect and classify rumours [20]. Yet oth-
ers try to assess veracity of a claim or document by finding supporting evidence
in (semi)structured data [18]. These systems, and many more, claim to provide
important information needed to detect misinformation online, often in some
very specific cases. However without a clear conceptual and technical framework
to integrate them, the signals such systems provide are likely to go unused and
stay out of reach of users who are exposed to misinformation.

The Semantic Web and Linked Data community has also started to con-
tribute ideas and technical solutions to help in this area: perhaps the biggest
impact has been the inclusion in Schema.org [5] of the ClaimReview markup5,
which enables fact-checkers to publish their work as machine readable struc-
tured data. This has enabled aggregation of such data into knowledge graphs
like ClaimsKG [17], which also performs much needed normalisation of labels,
since each fact-checker uses its own set of labels. A conceptual model and RDF
vocabulary was proposed to distinguish between the utterance and propositional
aspects of claims [2]. It allows expressing fine-grained provenance (mainly of
annotations on the text of the claim), but still relies on ClaimReview as the
main accuracy describing mechanism. It is unclear whether systems are actually
using this RDF model to annotate and represent claims as the model is heavy-
weight and does not seem to align well with mainstream development practices.
In this paper, we build on these ideas to propose a lightweight model which
focuses on the introduction of a new type of Schema.org. Review that focuses
on credibility rather than factuality6.

The focus on credibility, defined as an estimation of factuality based on avail-
able signals or evidence, is inspired by MisinfoMe [9,10] which borrows from
social science, media literacy and journalism research. MisinfoMe focuses on
credibility of sources, while we expand this to credibility of any web content and
integrate some of MisinfoMe’s services in our implementation to demonstrate
how our approach enables composition of such services. There is also ongoing
work on W3C Credibility Signals7, which aims to define a vocabulary to specify
credibility indicators that may be relevant for assessing the credibility of some

5 https://www.blog.google/products/search/fact-check-now-available-google-search-
and-news-around-world/.

6 In our opinion, current AI systems cannot truly assess veracity since this requires
human skills to access and interpret new information and relate them to the world.

7 https://credweb.org/signals-beta/.

https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world/
https://credweb.org/signals-beta/


150 R. Denaux and J. M. Gomez-Perez

web content. To the best of our knowledge, this is still work in progress and no
systems are implementing the proposed vocabularies.

3 Linked Credibility Reviews

This section presents Linked Credibility Reviews (LCR), our proposed linked
data model for composable and explainable misinformation detection. As the
name implies, Credibility Reviews (CR) are the main resources and outputs of
this architecture. We define a CR as a tuple 〈d, r, c, p〉, where the CR:

– reviews a data item d, this can be any linked-data node but will typically
refer to articles, claims, websites, images, social media posts, social media
accounts, people, publishers, etc.

– assigns a credibility rating r to the data item under review and qualifies that
rating with a rating confidence c.

– provides provenance information p about:
• credibility signals used to derive the credibility rating. Credibility Sig-
nals (CS) can be either (i) CRs for data items relevant to the data item
under review or (ii) ground credibility signals (GCS) resources (which are
not CRs) in databases curated by a trusted person or organization.
• the author of the review. The author can be a person, organization
or bot. Bots are automated agents that produce CRs for supported data
items based on a variety of strategies, discussed below.

The credibility rating is meant to provide a subjective (from the point-of-
view of the author) measure of how much the credibility signals support or refute
the content in data item. Provenance information is therefore crucial as it allows
humans—e.g. end-users, bot developers—to retrace the CRs back to the ground
credibility signals and assess the accuracy of the (possibly long) chain of bots
(and ultimately humans) that were involved in reviewing the initial data item.
It also enables the generation of explanations for each step of the credibility
review chain in a composable manner as each bot (or author) can describe its
own strategy to derive the credibility rating based on the used credibility signals.

Bot Reviewing Strategies. CR bots are developed to be able to produce CRs
for specific data item types. We have identified a couple of generic strategies
that existing services seem to implement and which can be defined in terms of
CRs (these are not exhaustive, though see Fig. 2 for a depiction of how they can
collaborate):

– ground credibility signal lookup from some trusted source. CR bots that
implement this strategy will (i) generate a query based on d and (ii) convert
the retrieved ground credibility signal into a CR;

– linking the item-to-review d with n other data items d′
i of the same type,

for which a CRd′
i

is available. These bots define functions fr, fc and fagg.
The first two, compute the new values ri and ci based on the original values
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and the relation or similarity between d and d′
i i.e. ri = fr(CRd′

i
, d, d′). These

produce n credibility reviews, CRi
d, which are then aggregated into CRd =

fagg({CRi
d | 0 ≤ i < n}).

– decomposing whereby the bot identifies relevant parts d′
i of the item-to-

review d and requests CRs for those parts CRd′
i
. Like the linking bots, these

require deriving new credibility ratings CRdi
and confidences based on the

relation between the whole and the parts; and aggregating these into the CR
for the whole item. The main difference is that the parts can be items of
different types.

Representing and Aggregating Ratings. For ease of computation, we opt to rep-
resent credibility ratings and their confidences as follows:

– r ∈ �, must be in the range of [−1.0, 1.0] where −1.0 means not credible and
1.0 means credible

– c ∈ �, must be in the range of [0.0, 1.0] where 0.0 means no confidence at
all and 1.0 means full confidence in the accuracy of r, based on the available
evidence in p.

This representations makes it possible to define generic, relatively straight-
forward aggregation functions like:

– fmostConfident which selects CRi which has the highest confidence value c
– f leastCredible which selects the CRi which has the lowest value r

3.1 Extending schema.org for LCR

While reviewing existing ontologies and vocabularies which could be reused to
describe the LCR model, we noticed that schema.org [5] was an excellent start-
ing point since it already provides suitable schema types for data items on the
web for which credibility reviews would be beneficial (essentially any schema
type that extends CreativeWork). It already provides suitable types for Review,
Rating, as well as properties for expressing basic provenance information and
meronymy (hasPart). Some basic uses and extensions compliant with the orig-
inal definitions are:

– Define CredibilityReview as an extension of schema:Review, whereby the
schema:reviewAspect is credibility8

– use schema:ratingValue to encode r.
– add a confidence property to schema:Rating which encodes the rating con-

fidence c.
– use isBasedOn to record that a CR was computed based on other CRs. We

also use this property to describe dependencies between CR Bots, even when
those dependencies have not been used as part of a CR.

– use author to link the CR with the bot that produced it.
8 Note that ClaimReview is not suitable since it is overly restrictive: it can only review
Claims (and it assumes the review aspect is, implicitly, accuracy).
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The main limitation we encountered with the existing definitions was that
CreativeWorks (including Reviews) are expected to be created only by Persons
or Organizations, which excludes reviews created by bots. We therefore propose
to extend this definition by:

– introducing a type Bot which extends SoftwareApplication
– allowing Bots to be the authors of CreativeWorks.

Finally, in this paper we focus on textual misinformation detection and found
we were missing a crucial type of CreativeWork, namely Sentences. Recently,
a Claim type was proposed, to represent factually-oriented sentences and to
work in tandem with the existing ClaimReview, however, automated systems
still have trouble determining whether a sentence is a claim or not, therefore,
CR bots should be able to review the credibility of Sentences and relevant
aspects between pairs of sentences such as their stance and similarity. The overall
schema.org based data model is depicted in Fig. 1, focused on CRs for textual
web content (we leave other modalities as future work).

Fig. 1. Linked credibility review data model, extending schema.org.

4 acred – Deep Learning-Based CR Bots

To demonstrate the potential of the Linked Credibility Review architecture, we
have implemented a series of CR bots capable of collaborating to review articles,
tweets, sentences and websites.9 We present the conceptual implementation in
Sects. 4.1 to 4.4 and provide further details in Sect. 4.5.

9 The source code is available at https://github.com/rdenaux/acred.

https://github.com/rdenaux/acred
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4.1 Ground Credibility Signal Sources

Ultimately we rely on two ground credibility signal sources:

– A database of ClaimReviews which provide accuracy ratings for factual claims
by a variety of fact-checkers.

– Third-party, well-established services for validating WebSites, such as News-
Guard and Web Of Trust10, which rely on either expert or community-based
ratings.

4.2 GCS Lookup Bots

The two GCS sources are mediated via two GCS lookup bots.
The LookupBotClaimReview returns a CR for a Claim based on a ClaimReview

from the database. In order to derive a CR from a ClaimReview, the accu-
racy rating in the ClaimReview need to be converted into equivalent cred-
ibility ratings. The challenge here is that each fact-checker can encode their
review rating as they see fit. The final review is typically encoded as a textual
alternateName, but sometimes also as a numerical ratingValue. ClaimsKG
already performs this type of normalisation into a set of “veracity” labels, but
for other ClaimReviews we have developed a list of simple heuristic rules to
assign a credibility and confidence score.

The LookupBotWebSite returns a CR for a WebSite. This is a simple wrapper
around the existing MisinfoMe aggregation service [10], which already produces
credibility and confidence values.

4.3 Linking Bots

Although the GCS lookup bots provide access to the basic credibility signals,
they can only provide this for a relatively small set of claims and websites.
Misinformation online often appears as variations of fact-checked claims and can
appear on a wide variety of websites that may not have been reviewed yet by a
human. Therefore, to increase the number of sentences which can be reviewed,
we developed the following linking bots (see Sect. 4.5 for further details).

The LinkBotPreCrawledSentence uses a database of pre-crawled sentences extracted
from a variety of websites. A proprietary NLP system11 extracts the most rele-
vant sentences that may contain factual information in the crawled documents.
This is done by identifying sentences that (i) are associated with a topic (e.g.
Politics or Health) and (ii) mentions an entity (e.g. a place or person). The CR
for the extracted sentence is assigned based on the website where the sentence
was found (i.e. by using the LookupBotWebSite). Since not all sentences published
by a website are as credible as the site, the resulting CR for the sentence has a
lower confidence than the CR for the website itself.

10 https://www.newsguardtech.com/, https://www.mywot.com/.
11 http://expert.ai.

https://www.newsguardtech.com/
https://www.mywot.com/
http://expert.ai
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The LinkBotSemSimSentence is able to generate CRs for a wide variety of sentences by
linking the input sentence si to sentences sj for which a CR is available (via other
bots). This linking is achieved by using a neural sentence encoder fenc : S �→ �d

–where S is the set of sentences and d ∈ N+–, that is optimised to encode
semantically similar sentences close to each other in an embedding space. The
bot creates an index by generating embeddings for all the sentences reviewed
by the LookupBotClaimReview and the LinkBotPreCrawledSentence . The incoming sentence,
si is encoded and a nearest neighbor search produces the closest matches along
with a similarity score based on a similarity function fsim : �d × �d �→ �[0,1].
Unfortunately, most sentence encoders are not polarity aware so that negations
of a phrase are considered similar to the original phrase; therefore we use a
second neural model for stance detection fstance : S × S �→ SL, where SL is
a set of stance labels. We then define fpolarity : SL �→ {1,−1}, which we use
to invert the polarity of rj if si disagrees with sj . We also use the predicted
stance to revise the similarity score between si and sj by defining a function
freviseSim : SL,�[0,1] �→ �[0,1]. For example, stances like unrelated or discuss
may reduce the estimated similarity, which is used to revise the confidence of the
original credibility. In summary, the final CR for si is selected via fmostConfident

from a pool of CRi,j for the matching sj ; where the rating and confidences for
each CRi,j are given by:

ri = rj × fpolarity(fstance(si, sj))

ci = cj × freviseSim

(
fstance(si, sj), fsim

(
fenc(si), fenc(sj)

))

4.4 Decomposing Bots

By combining linking and GCS lookup bots we are already capable of review-
ing a wide variety of sentences. However, users online encounter misinforma-
tion in the form of high-level CreativeWorks like social media posts, articles,
images, podcasts, etc. Therefore we need bots which are capable of (i) dissecting
those CreativeWorks into relevant parts for which CRs can be calculated and
(ii) aggregating the CRs for individual parts into an overall CR for the whole
CreativeWork. In acred, we have defined two main types:

– DecBotArticle reviews Articles, and other long-form textual CreativeWorks
– DecBotSocMedia reviews SocialMediaPosts

In both bots, decomposition works by performing NLP and content analysis
on the title and textual content of the CreativeWork di. This results in a set of
parts P = {dj} which include Sentences, linked Articles or SocialMediaPosts
and metadata like the WebSite where d was published. Each of these can be
analysed either recursively or via other bots, which results in a set of reviews
{CRj} for the identified parts. We define a function fpart which maps CRj onto
CRi,j, which takes into account the relation between di and dj as well as the
provenance of CRj to derive the credibility rating and confidence. The final CRi

is selected from all CRi,j via f leastCredible.
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Figure 2 shows a diagram depicting how the various CR bots compose and
collaborate to review a tweet.

Fig. 2. Depiction of acred bots collaborating to produce a CR for a tweet.

4.5 Implementation Details

Our database of ClaimReviews contains 45K claims and was based on public
resources such as ClaimsKG [17] (32K), data-commons (9.6K) and our in-house
developed crawlers (4K). The database of pre-crawled sentences contained 40K
sentences extracted from a variety of generic news sites on-line between april
2019 and april 2020. It consisted primarily in relatively well-regarded news sites
like expressen.se, krone.at, zdf.de, which combined for about 35K of the
sentences, and a long tail of other sites including theconversation.com and
heartland.org. For reproducibility, we will publish the list of sentences along
associated URLs.

Our heuristic rules to normalise ClaimReviews are implemented in about
50 lines of python to map numeric ratingValues (in context of specified
bestRating and worstRating values) and 150 lines of python to map about
100 alternateName values (e.g. “inaccurate”, “false and misleading”, “this is
exaggerated”) and about 20 patterns (e.g. “wrong.*”, “no, *”) into estimated c,
r values.

The sentence encoder, fenc in LinkBotSemSimSentence is implemented as a RoBERTa-
base [7] model finetuned on STS-B [4]. We employ a siamese structure as this
enables us to perform encoding of the claims off-line (slow) and comparison
on-line (fast) at the cost of some accuracy. Our model achieves 83% Pearson
correlation on STS-B dev.
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The stance detector, fstance, is also a RoBERTa-base model trained on FNC-
1 [14], which assigns a stance label (either “agree”, “disagree”, “discuss” or
“unrelated”) to pairs of texts: about 50K for training and about 25K for testing.
Our model achieves 92% accuracy on the held-out test set. See our GitHub
repository for links to model weights and jupyter notebooks replicating our fine-
tuning procedure.

Each implemented bot defines a set of templates to generate textual expla-
nations. These reflect processing performed by the bot in a way that can be
inspected by a user. Produced CRs use the schema:ratingExplanation prop-
erty to encode the generated explanations and use markdown to take advantage
of hypertext capabilities like linking and formatting of the explanations. Exam-
ples are presented in Table 1.

Different CR bots are deployed as separate Docker images and expose a REST
API accepting and returning JSON-LD formatted requests and responses. They
are all deployed on a single server (64 GB RAM, Intel i7-8700K CPU @ 3.70
GHzn with 12 cores) via docker-compose. The ClaimReview and pre-crawled
sentence databases are stored in a Solr instance. The index of encoded sentences
is generated off-line on a separate server with a GPU by iterating over the claims
and sentences in Solr, and loaded into memory on the main server at run-time.

5 Evaluation

One of the main characteristics of the LCR architecture is that CR bots can be
distributed across different organizations. This has the main drawback that it
can be more difficult to fine-tune bots to specific domains since top-level bots do
not have direct control on how lower-level bots are implemented and fine-tuned.
Therefore in this paper we first evaluated our acred implementation, described
above, on a variety of datasets covering social media posts, news articles and
political speeches. Our rationale is that existing, non-distributed fact-checking
approaches have an edge here as they can fine-tune their systems based on train-
ing data and therefore provide strong baselines to compare against. We used the
explanations, along with the provenance trace, to perform error analysis12 on
the largest dataset, described in Sect. 5.2. This showed acred was overly confi-
dent in some cases. To address this, we introduced a modified version, acred+

with custom functions to reduce the confidence and rating values of two bots
under certain conditions: DecBotArticle when based only on a website credibility;
LinkBotSemSimSentence when the stance is “unrelated” or “discuss”.

5.1 Datasets

The first dataset we use is the Clef’18 CheckThat! Factuality Task [11] (clef18).
The task consists in predicting whether a check-worthy claim is either true,

12 Note that usability evaluation of the generated explanations is not in the scope of
this paper.
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Table 1. Example explanations generated by our bots.

Bot Example explanation

LookupBotClaimRev Claim ‘Ford is moving all of their small-car

productin to Mexico.’ is mostly not credible based on a
fact-check by politifact with normalised numeric ratingValue
2 in range [1–5]

LookupBotWebSite Site www.krone.at seems mostly credible based on 2
review(s) by external rater(s) NewsGuard or Web Of Trust

LinkBotPreCrawledSentence Sentence Now we want to invest in the greatest

welfare program in modern times. seems credible as it
was published in site www.expressen.se. (Explanation for
WebSite omitted)

LinkBotSemSimSentence Sentence When Senator Clinton or President Clinton

asserts that I said that the Republicans had better

economic policies since 1980, that is not the case.

seems not credible as it agrees with sentence:
Obama said that ‘since 1992, the Republicans have

had all the good ideas...’ that seems not credible based
on a fact-check by politifact with textual rating ‘false’. Take
into account that the sentence appeared in site
www.cnn.com that seems credible based on 2 review(s) by
external rater(s) NewsGuard or Web Of Trust

LinkBotSemSimSentence Sentence Can we reduce our dependence on foreign oil

and by how much in the first term, in four years? is
similar to and discussed by:
Drilling for oil on the Outer Continental Shelf and

in parts of Alaska will ‘immediately reduce our

dangerous dependence on foreign oil.’ that seems not
credible, based on a fact-check by politifact with textual
rating ‘false’

DecBotArticle Article “Part 1 of CNN Democratic presidential debate”
seems not credible based on its least credible sentence.
(explanation for sentence CR omitted)

DecBotSocMedia Sentence Absolutely fantastic, there is know

difference between the two facist socialist powers

of today’s EU in Brussels, and the yesteryears of

Nazi Germany in tweet agrees with:
‘You see the Nazi platform from the early 1930s ...

look at it compared to the (Democratic Party)

platform of today, you’re saying, ‘Man, those things

are awfully similar.’’ that seems not credible based on a
fact-check by politifact with textual claim-review rating
‘false”’

http://www.politifact.com/truth-o-meter/statements/2016/oct/23/donald-trump/donald-trump-says-ford-moving-all-small-car-produc/
http://www.politifact.com
http://www.krone.at
https://www.newsguardtech.com/
https://mywot.com/
http://www.expressen.se
http://www.politifact.com/truth-o-meter/statements/2008/jan/21/bill-clinton/obama-not-a-reagan-democrat/
http://www.politifact.com
http://www.cnn.com
https://www.newsguardtech.com/
https://mywot.com/
http://www.politifact.com/ohio/statements/2011/may/04/rob-portman/sen-rob-portman-says-easing-access-drilling-would-/
http://www.politifact.com
http://www.cnn.com/2008/POLITICS/01/21/debate.transcript/index.html
https://twitter.com/yhwhuniversity/status/1131891504522375168
http://www.politifact.com/truth-o-meter/statements/2018/aug/03/donald-trump-jr/did-nazi-platform-echo-democratic-platform-donald-/
http://www.politifact.com
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half-true or false. The dataset was derived from fact-checked political debates
and speeches by factcheck.org. For our evaluation we only use the English part
of this dataset13 which contains 74 and 139 claims for training and testing.

FakeNewsNet [16] aims to provide a dataset of fake and real news enriched
with social media posts and context sharing those news. In this paper we only
use the fragment derived from articles fact-checked by Politifact that have tex-
tual content, which consists of 420 fake and 528 real articles. The articles were
retrieved by following the instructions on the Github page14.

Finally, coinform25015 is a dataset of 250 annotated tweets. The tweets and
original labels were first collected by parsing and normalising ClaimReviews
from datacommons and scraping fact-checker sites using the MisinfoMe data
collector [9,10]. Note that acred’s collection system is not based on MisinfoMe16.
The original fact-checker labels were mapped onto six labels (see Table 2) by 7
human raters achieving a Fleiss κ score of 0.52 (moderate agreement). The fine-
grained labels make this a challenging but realistic dataset.

Table 2. Mapping of credibility
ratingValue r and confidence c for
coinform250.

Label r c

Credible r ≥ 0.5 c > 0.7

Mostly credible 0.5 > r ≥ 0.25 c > 0.7

Uncertain 0.25 > r ≥ −0.25 c > 0.7

Mostly not credible −0.25 > r ≥ −0.5 c > 0.7

Not credible −0.5 > r c > 0.7

Not verifiable Any c ≤ 0.7

For each dataset our predic-
tion procedure consisted in steps
to (i) read samples, (ii) convert
them to the appropriate schema.org
data items (Sentence, Article or
SocialMediaPost), (iii) request a
review from the appropriate acred CR
bot via its REST API; (iv) map the
produced CR onto the dataset labels
and (v) optionally store the generated
graph of CRs. For clef18 we set t = 0.75, so that r ≥ t has label TRUE,
r ≤ −0.75 has label FALSE and anything in between is HALF-TRUE. See Table 2
for coinform250 threshold definitions.

5.2 Results

On clef18, acred establishes a new state-of-the-art result as shown in Table 3,
achieving 0.6835 in MAE, the official metric in the competition [11]. This result
is noteworthy as, unlike the other systems, acred did not use the training set
of clef18 at all to finetune the underlying models. With acred+, we further
improved our results achieving 0.6475 MAE.

13 Our implementation has support for machine translation of sentences, however this
adds a confounding factor hence we leave this as future work.

14 https://github.com/KaiDMML/FakeNewsNet, although we note that text for many
of the articles could no longer be retrieved, making a fair comparison difficult.

15 https://github.com/co-inform/Datasets.
16 acred’s data collector is used to build the ClaimReview database described in Sect. 4;

it does not store the itemReviewed URL values; only the claimReviewed strings.

https://github.com/KaiDMML/FakeNewsNet
https://github.com/co-inform/Datasets
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Table 3. Results on clef18 English test dataset compared to baselines. The bottom
rows shows results on the English training set.

System MAE Macro MAE Acc Macro F1 Macro AvgR

acred 0.6835 0.6990 0.4676 0.4247 0.4367

acred+ 0.6475 0.6052 0.3813 0.3741 0.4202

Copenhagen [19] 0.7050 0.6746 0.4317 0.4008 0.4502

Random [11] 0.8345 0.8139 0.3597 0.3569 0.3589

acred “training” 0.6341 0.7092 0.4878 0.4254 0.4286

acred+ “training” 0.6585 0.6386 0.4024 0.3943 0.4020

Table 4. Results on FakeNewsNet
Politifact compared to baselines that
only use article content.

System Accuracy Precision Recall F1

acred 0.586 0.499 0.823 0.622

acred+ 0.716 0.674 0.601 0.713

CNN 0.629 0.807 0.456 0.583

SAF/S 0.654 0.600 0.789 0.681

On FakeNewsNet, acred+ obtained
state of the art results and acred obtained
competitive results in line with strong
baseline systems reported in the original
paper [16], shown in Table 4. We only con-
sider as baselines systems which only use
the article content, since acred does not
use credibility reviews based on social con-
text yet. Note that baselines used 80% of
the data for training and 20% for testing, while we used the full dataset for
testing.

We performed a manual error analysis on the acred results for FakeNews-
Net17:

– 29 errors of fake news predicted as highly credible (r ≥ 0.5): 16 cases (55%)
were due to acred finding pre-crawled sentence matches in that appeared in
snopes.com, but not ClaimReviews for that article. A further 7 cases (24%)
were due to finding unrelated sentences and using the WebSiteCR where
those sentences appeared, while being over-confident about those credibilities.

– 41 errors of fake news predicted with low-confidence (c ≤ 0.7). 30 of these
cases (73%) are due to the FakeNewsNet crawler as it fails to retrieve valid
content for the articles: GDPR or site-for-sale messages instead of the orig-
inal article content. In these cases, acred is correct in having low-confidence
credibility ratings. In the remaining 27% of cases, acred indeed failed to find
evidence to decide on whether the article was credible or not.

– 264 real articles were rated as being highly not credible (r < −0.5). This
is by far the largest source of errors. We manually analysed 26 of these,
chosen at random. In 13 cases (50%), the real stance should be unrelated,
but is predicted as discussed or even agrees; often the sentences are indeed
about a closely related topics, but still about unrelated entities or events. In
a further 7 cases (27%) the stance is correctly predicted to be unrelated, but

17 As stated above, we used the results of this analysis to inform the changes imple-
mented in acred+.



160 R. Denaux and J. M. Gomez-Perez

the confidence still passess the threshold. Hence 77% of these errors are due
to incorrect or overconfident linking by the LinkBotSemSimSentence.

– 48 real articles were rated as being somewhat not credible (−0.25 < r ≤ 0.25),
in a majority of these cases, the r was obtained from LinkBotPreCrawledSentence rather
than from LinkBotSemSimSentence.

Finally, for the coinform250 dataset, acred+ obtains 0.279 accuracy which
is well above a baseline of random predictions, which obtains 0.167 accuracy. The
confusion matrix shown in Fig. 3f shows that the performance is in line with that
shown for FakeNewsNet (Fig. 3d) and clef18 (Fig. 3e). It also shows that acred
tends to be overconfident in its predictions, while acred+ is more cautious.

(a) FakeNewsNet (b) clef18 (test) (c) coinform250

(d) FakeNewsNet (e) clef18 (test) (f) coinform250

Fig. 3. Confusion matrices for acred (top) and acred+ (bottom row) in evaluation
datasets. We use ≈ for mostly and ¬ for not in the coinform250 labels.

5.3 Discussion

The Good. Our approach obtains competitive results in challenging datasets;
these results are especially impressive when you take into account that we do
not train or fine-tune our underlying models on these datasets. With acred+,
we also showed we can substantially improve results by performing some simple
optimization of aggregation functions; however doing this in a systematic manner
is not in the scope of this paper where we are focusing on validating the LCR
design. Since the results were consistent across the different datasets, this shows
that our network of bots have certain domain independence and validate our
design for composable CR bots as our lookup and linking bots can successfully
be reused by the high-level decomposing bots. We think this is largely due to our
choice of generic deep-learning models for linguistic tasks like semantic similarity
and stance detection where fairly large datasets are available.
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We obtain state of the art results in all datasets. This shows that our approach
excels at identifying misinformation, which is arguably the primary task of these
kinds of systems. Furthermore, in many cases, our system correctly matches
the misinforming sentence to a previously fact-checked claim (and article). Even
when no exact match is found, often the misinforming sentence is linked to a
similar claim that was previously reviewed and that is indicative of a recurring
misinforming narrative. Such cases can still be useful for end-users to improve
their awareness of such narratives.

The Bad. The acred implementation is overly sceptical, which resulted in poor
precision for data items which are (mostly) accurate or not verifiable. This is an
important type of error preventing real-world use of this technology. As prevalent
as misinformation is, it still only represents a fraction of the web content and
we expected such errors to undermine confidence in automated systems. The
presented error analysis shows that this is largely due to (i) errors in the stance-
detection module or (ii) incorrect weighting of predicted stance and semantic
similarity. The former was surprising as the stance prediction model obtained
92% accuracy on FNC-1. This seems to be due to the fact that FNC-1 is highly
unbalanced, hence errors in under-represented classes are not reflected in the
overall accuracy. Note that we addressed this issue to a certain extent with
acred+, which essentially compensates for errors in the underlying semantic
similarity and stance prediction modules.

The poor precision on real news is especially apparent in FakeNewsNet and
coinform250. We think this is due to our naive implementation of our pre-
crawled database of sentences extracted from websites. First, the relevant sen-
tence extractor does not ensure that the sentence is a factual claim, therefore
introducing significant noise. This suggests that the system can benefit from
adding a check-worthiness filter to address this issue. The second source of noise
is our selection of pre-crawled article sources which did not seem to provide rele-
vant matches in most cases. We expect that a larger and more balanced database
of pre-crawled sentences, coming from a wider range of sources, should provide
a better pool of credibility signals and help to improve accuracy.

The Dubious. Fact-checking is a recent phenomenon and publishing fact-checked
claims as structured data even more so. It is also a laborious process that requires
specialist skills. As a result, the pool of machine-readable high-quality reviewed
data items is relatively small. Most of the datasets being used to build and
evaluate automated misinformation detection systems are therefore ultimately
based on this same pool of reviews. A percentage of our results may be based
on the fact that we have exact matches in our database of ClaimReviews. On
manual inspection, this does not appear to occur very often; we estimate low,
single digit, percentage of cases.

Although we did a systematic error analysis, presented in the previous
section, we have not yet done a systematic success analysis. Cursory inspection
of the successful cases shows that in some cases, we predicted the label correctly,
but the explanation itself is incorrect; this tends to happen when a sentence is
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matched but is deemed to be unrelated to a matched sentence. Note that other
systems based on machine learning may suffer of the same issue, but unlike our
approach they behave as black boxes making it difficult to determine whether
the system correctly identified misinforming content for the wrong reasons.

6 Conclusion and Future Work

In this paper we proposed a simple data model and architecture for using seman-
tic technologies (linked data) to implement composable bots which build a graph
of Credibility Reviews for web content. We showed that schema.org provides
most of the building blocks for expressing the necessary linked data, with some
crucial extensions. We implemented a basic fact-checking system for sentences,
social media posts and long-form web articles using the proposed LCR archi-
tecture and validated the approach on various datasets. Despite not using the
training sets of the datasets, our implementations obtained state of the art results
on the clef18 and FakeNewsNet datasets.

Our experiments have demonstrated the capabilities and added value of our
approach such as human-readable explanations and machine aided navigation of
provenance paths to aid in error analysis and pinpointing of sources of errors. We
also identified promising areas for improvement and further research. We plan
to (i) further improve our stance detection model by fine-tuning and testing on
additional datasets [15]; (ii) perform an ablation test on an improved version
of acred to understand the impact of including or omitting certain bots and
datasets; (iii) perform crowdsourcing to evaluate both the understandability,
usefulness and accuracy of the generated explanations. Beside our own plans, it
is clear that a single organization or team cannot tackle all the issues which need
to be resolved to achieve high-accuracy credibility analysis of web content. This
is exactly why we propose the Linked Credibility Review, which should enable
the distributed collaboration of fact-checkers, deep-learning service developers,
database curators, journalists and citizens in building an ecosystem where more
advanced, multi-perspective and accurate credibility analyses are possible.
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Abstract. Collective entity linking is a core natural language processing
task, which consists in jointly identifying the entities of a knowledge base
(KB) that are mentioned in a text exploiting existing relations between
entities within the KB. State-of-the-art methods typically combine local
scores accounting for the similarity between mentions and entities, with
a global score measuring the coherence of the set of selected entities. The
latter relies on the structure of a KB: the hyperlink graph of Wikipedia
in most cases or the graph of an RDF KB, e.g., BaseKB or Yago, to
benefit from the precise semantics of relationships between entities. In
this paper, we devise a novel RDF-based entity relatedness measure for
global scores with important properties: (i) it has a clear semantics, (ii) it
can be calculated at reasonable computational cost, and (iii) it accounts
for the transitive aspects of entity relatedness through existing (bounded
length) property paths between entities in an RDF KB. Further, we
experimentally show on the TAC-KBP2017 dataset, both with BaseKB
and Yago, that it provides significant improvement over state-of-the-art
entity relatedness measures for the collective entity linking task.

Keywords: Collective entity linking · Entity relatedness measure ·
RDF KBs

1 Introduction

Entity linking is a crucial task for textual document engineering in both natural
language processing and information retrieval, with applications such as semantic
search [2] and information extraction [16]. It aims at identifying the mentions of
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entities in a document and linking each mention to a unique referential such as
a URI in Wikipedia or in an RDF knowledge base (KB). Entity linking is thus
instrumental for semantic search and retrieval [2,16].

The literature on entity linking distinguishes two main approaches, depending
on whether mentions within a single document are linked to entities indepen-
dently one from another [10,12,20] or collectively [5,11,13,19,24,27]. The former
uses the KB at hand to generate and select candidate entities independently for
each entity mention in the text, while collective linking further uses the KB to
select the best global mapping between mentions and candidate entities based
on the entity interrelationships recorded in the KB. State-of-the-art methods
for this collective linking step typically combine within a classifier a local score
accounting for the string similarity between the mention and an entity’s name,
with a global score that measures the coherence of the set of selected entities.
In particular, the cornerstone of global score computation is a measure of relat-
edness between two entities that indicates to which extent these entities may
co-occur in a document.

In this paper, we focus on improving collective entity linking performance
by devising a novel entity relatedness measure. Notably, we advocate that, in
addition to showing significant performance improvement on standard bench-
marks w.r.t. state-of-the-art competitors, a well-founded measure should meet
the following three requirements to the extent possible: (R1) it must have a
clear semantics so that linking decisions can be easily understood or explained,
in particular it must build on a knowledge base with formal semantics (e.g., an
RDF or OWL one, as opposed to Wikipedia) and avoid tuning parameters or
knobs that are hard to set by end-users, (R2) it must be calculated at reasonable
computational cost to be of practical interest and (R3) it must consider related-
ness as a transitive relation, to capture that entities may be related within the
KB either directly or indirectly, i.e., through paths. The last requirement (R3)
is crucial as it allows encoding implicit links between entities. For instance, if X
worksFor Y and Y isLocatedIn Z then, the path from X to Z implicitly encodes
X worksIn Z, which is an information not stored in the KB that can be captured
by measures meeting (R3).

To the best of our knowledge, no entity relatedness measure in the lit-
erature meets all three requirements. Approaches making use of Wikipedia,
e.g., [1,4,6,11,13,17,24], consider Wikipedia’s web page URIs as entities, web
pages as textual entity descriptions, and hyperlinks between web pages as generic
relations between entities. It is worth noting that, although a hyperlink from an
entity to another states a direct relation between them, it carries very loose
semantics: it solely indicates that the target entity somehow occurs in the
description of the source one, be it central to this description or unimportant.
Hence, Wikipedia-based entity relatedness measures do not meet (R1), at least.
A few other approaches [14,15,22,26] rely on RDF KBs, like BaseKB, DBpedia
or Yago, instead of Wikipedia. Such KBs encode in a formal knowledge graph
model, the precise semantics of entities (e.g., types) and of their direct relations
called properties (e.g., property names and cardinalities). While the Ref mea-
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sure [1,18] just provides a binary indicator of whether or not a relation exists
between two entities in the RDF KB, the recent WSRM measure [9], which
can be viewed as an extension of Ref, further considers the amount of relations
between two entities. Though they both have (simple) clear semantics (R1) and
are cheap to calculate with edge lookups (R2), they only consider properties
between entities to compute relatedness, thus do not meet (R3). By contrast,
the relkExcl relatedness measure [15] exploits the top-k property paths between
two entities (more details in Sect. 2), hence meets (R3). However, it does not
fully meet (R1) because though its definition has a clear semantics, its relies on
user-defined constants that are non-trivial to set due to their unforeseeable con-
sequences on the measure results. Also, relkExcl does not meet (R2) because it
requires computing all paths between entity pairs so as to select the top-k ones;
this is not feasible in general in the setting of entity linking, which relies on large
encyclopedic RDF KBs. Finally, the cosine similarity is used as an entity relat-
edness measure in approaches based on RDF KB embeddings [3,25], i.e., when
entities are mapped into coordinates of a multidimensional space. Though the
cosine similarity itself has a clear semantics (R1) and is not costly to compute
(R2), the machine learning-based computation of embeddings cannot guarantee
that cosine similar entities within the multidimensional space are indeed related
in the KB, hence does not meet (R3).

Our main contribution is the novel ASRMPm entity relatedness measure for
RDF KBs, which satisfies the three requirements stated above. In particular, for
two entities e1 and e2, it uses the fuzzy logic AND and OR operators [7] to com-
pute, respectively, the score of every e1-to-e2 path of length up to m within the
KB, by aggregating the WSRM values between the entity pairs found along the
path, the final measure being obtained by aggregating over all paths of length m
between e1 and e2. In particular, ASRMP1 boils down to WSRM. Importantly,
ASRMPm is not tied to WSRM (i.e., another measure could have been used like
Ref). We adopt it here because, in addition to satisfying (R1) and (R2), it is
currently the relatedness measure showing best performance for collective entity
linking in the literature [9]. Our fuzzy logic-based aggregation scheme allows
ASRMPm to inherit both (R1) and (R2) from WSRM. Further, while comput-
ing the paths of length up to m between entities rapidly becomes unfeasible as m
grows, (R3) is met by the need for considering low m values only. Indeed, it has
been widely observed (e.g., in [15] for relkExcl that also consider paths) that the
longer the path between two entities, the less significant the relation it encodes.
To evaluate ASRMPm for entity linking, we first define a collective entity link-
ing system within which we experimentally show on the TAC-KBP2017 dataset,
both with the BaseKB and Yago RDF KBs, that ASRMPm with m > 1 improves
linking performance w.r.t. the above-mentioned relatedness measures from the
literature. We also show significant improvement over popular collective linking
techniques using standard entity linking benchmarks.1

The paper is organized as follows. We first present in Sect. 2 the main entity
relatedness measures used for collective entity linking. In Sect. 3, we define the

1 https://gitlab.inria.fr/celvaigh/celasrmp.

https://gitlab.inria.fr/celvaigh/celasrmp
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ASRMPm entity relatedness measure. In Sect. 4, we describe our collective entity
linking system with which ASRMPm is experimentally compared to state-of-
the-art competitors in Sect. 5. Finally, we conclude and discuss perspectives in
Sect. 6.

2 Related Work

Most of the entity relatedness measures proposed so far in the context of collec-
tive entity linking rely on Wikipedia’s hyperlink structure [1,4,6,11,13,17,24].
As pointed out above, such hyperlinks do not encode the precise semantics of
the relations between entities they model, hence can hardly be used within well-
founded entity relatedness measures, i.e., that meet the three requirements stated
above.

A handful of measures rely on RDF KBs [1,3,9,15,18,25]. Such KBs model
both data (facts) and knowledge (ontological description of the application
domain) using explicit and implicit triples; the latter can be derived through
reasoning based on an RDF-specific consequence relation, a.k.a. entailment. In
particular, within RDF KBs, the precise relation (a.k.a. property) r that directly
relates an entity ei to another entity ej is encoded by the triple (ei, r, ej). The
use of RDF KBs can therefore be seen as an important step towards devising
well-founded entity relatedness measures. We recall below the few relatedness
measures that use RDF KBs, and discuss to which extent they meet the three
requirements of well-foundedness introduced above: (R1), (R2) and (R3).

The Binary Indicator. Ref [1,18] is defined between two entities ei and ej as:

Ref(ei, ej) =

{
1 ∃r s.t. (ei, r, ej) ∈ KB;
0 otherwise.

The above definition shows that Ref has a clear semantics (R1) and a low
computational cost (R2) since it can be computed using edge lookups. We how-
ever remark that, though clear, its semantics is very simple: it does not take
into account the various properties between ei and ej , nor those that ei and ej

may have with other entities. Further, Ref does not allow entities to be related
through a property path within the RDF KB, hence does not meet (R3): they
can only be related through a single property, i.e., a single edge or triple.

The Weighted Semantic Relatedness Measure. WSRM [9] improves on
Ref by not only accounting for the existence of some property between two
entities using a Boolean value, but also by weighting how related they are in
the [0,1] interval, assuming that the more properties between them, the stronger
their relatedness. Formally, WSRM is defined between two entities ei and ej as

WSRM(ei, ej) =
|{r | (ei, r, ej) ∈ KB}|∑

e′∈E

|{r′ | (ei, r
′, e′) ∈ KB}|

, (1)
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where E denotes the set of entities in the KB and |S| the cardinality of the set
S.

In spirit, WSRM is comparable to the Wikipedia popularity often used in local
entity linking scores, e.g., [8,10], as the probability that a mention m is used
as the text (anchor) of a hyperlink referring to an entity e. WSRM is however
conceptually different, being applied between two entities rather than between a
mention and an entity. It can be interpreted as the probability that ei is directly
related to ej through some property.

The above definition shows that WSRM has a clear and more fine-grained
semantics than Ref (R1). Also, clearly, it can be computed at low computational
cost (R2) based on edge lookups. However, like Ref, it does not allow entities
to be related through property paths within the RDF KB, hence does not meet
(R3).

The Path-Based Semantic Relatedness Measure. [15] between two enti-
ties, denoted rel

(k)
Excl, is an aggregation of path weights for the top-k paths with

highest weights between those entities; path weights are computed using the
so-called exclusivity measure

exclusivity(x τ−→ y) =
1

|x τ−→ ∗| + |∗ τ−→ y| − 1
, (2)

where |x τ−→ ∗| is the number of outgoing τ relations for x, while |∗ τ−→ y| is
the number of incoming τ relations for y; 1 is subtracted to avoid counting the
relation |x τ−→ y| twice. Given a path P = x1

τ1−→ x2
τ2−→ . . .

τk−1−−−→ xk within the
KB, its weight is

weight(P) =
1

k−1∑
i=1

1/exclusivity(xi
τi−→ xi+1)

. (3)

Finally rel
(k)
Excl is defined as the weighted sum of the top-k paths with highest

weight between x and y

rel
(k)
Excl(x, y) =

∑
P∈P k

xy

αlength(P)weight(P) (4)

where P k
xy denotes the top-k paths with highest weight between x and y, and

α ∈ [0, 1] is a constant length decay factor introduced to give preference to
shorter paths.

We remark that the above definition relies on paths between entities to mea-
sure their relatedness (R3). However, we note that the semantics of rel

(k)
Excl is

controlled with parameters whose “good” values are hard to guess, though k = 5
and α = 0.25 are recommended default values based on empirical observations.
Thus rel

(k)
Excl hardly meets (R1). Further, the above definition requires to com-

pute all the paths within the KB, which may not be computationally feasible
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since in large KBs, like the encyclopedic ones used for entity linking, the number
of paths blows up as the considered path length increases; hence rel

(k)
Excl does

not meet (R2).

Cosine Similarity. [3,25] is used to measure the semantic relatedness between
two entities in entity linking systems based on embeddings, e.g., [5,19,22,24]:
entities are mapped into coordinates of a multidimensional space, in which the
closer two entities are, the more related they are. Several kernels exist for com-
puting such embeddings, e.g., [3,23,25]. While the cosine similarity itself has a
clear semantics (R1) and is not costly to compute (R2), the machine learning-
based construction of the entity embeddings cannot guarantee that cosine similar
entities are indeed somehow related through some path in the KB, hence does
not meet (R3).

Table 1. Entity relatedness measures in the light of well-foundedness requirements:
× indicates the requirement is met, while ∼ indicates it is only partially met.

Measure (R1) (R2) (R3) Measure (R1) (R2) (R3)

Ref [1,18] × × rel
(k)
Excl [15] ∼ ×

WSRM [9] × × cosine [3,25] × ×

Table 1 recaps the above discussion and highlights that none of the entity
relatedness measures used so far in the entity linking literature meets the three
requirements of well-foundedness. Devising a measure that meets them all is a
contribution of this paper, which we present next.

3 The Path-Based Weighted Semantic Relatedness
Measure

Our approach to define a novel entity relatedness measure that meets all the
well-foundedness requirements extends a measure from the literature that only
considers properties (direct relations) between entities, to a measure that consid-
ers paths between entities. In the sequel, we chose to rely on WSRM to capitalize
(i) on properties (R1) and (R2) that WSRM verifies and (ii) on its state-of-
the-art performance for collective entity linking, in particular w.r.t. Ref [9].

A straightforward extension of WSRM to take into account paths between
entities would consist in counting the paths between the entities ei, ej and ei, e

′,
instead of the properties r and r′ respectively in Eq. 1. However, the resulting
measure would loose (R2) as it would require to compute all the paths between
the entities in the KB. To circumvent this issue and retain (R2), one may be
tempted to only count paths up to some typically small length, as it is well-
known (e.g., [15]) that the longer a path between two entities, the weaker the
semantics of the relation it encodes. Still, in this case, though clear, the semantics
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of the resulting measure is poor as it does not account for the strength of the
paths between entities.

Instead, in addition to bounding the length of the paths we consider, we
do aggregate the WSRM values of the successive entity pairs found along a
path between two entities, so that the resulting value reflects how related these
entities are through this particular path. Further, since many paths (with same
or different lengths) may relate two entities, we also aggregate the individual
relatedness values of these paths into a final entity relatedness score. Hereafter,
the aggregation operator for the WSRM values found along a path is denoted ⊗,
while the one for path scores is denoted ⊕. Tough typical candidate operators
for ⊗ and ⊕ are either min and max, or product and sum, we chose fuzzy logic
operators (discussed shortly) modeling the counterparts of the Boolean logical
AND and OR operators in the [0, 1] interval (recall that WSRM values are also
within this interval). We now discuss three strategies to combine path relatedness
values, yielding a family of entity relatedness measures.

The first strategy consists in aggregating all paths of length m separately, and
aims at showing the contribution of paths with different lengths when considered
separately. Formally, we define the weighted semantic relatedness measure for
path of length m between entities ei and ej as

ASRMPa
m(ei, ej) = ⊕p∈ei�ej ,|p|=m ⊗|p|

k=1 WSRM(pk, pk+1), (5)

where ei � ej denotes the set of paths between ei and ej , here limited to paths
of length m, and pk is the kth entity along path p (hence p1 = ei and p|p|+1 = ej).
The inner ⊗ operator aggregates the WSRM scores along the edges of a given
path; the outer ⊕ operator aggregates scores obtained for different paths of
length m between the two entities. The cost of the different aggregations is low,
so ASRMPa

m(ei, ej) meets both (R2) and (R3). It however only roughly meets
(R1), because the semantics is deteriorated by combining separately the paths
of different lengths at a subsequent stage, e.g., in the entity linking process.

A second strategy consists in aggregating all paths of length less or equal m,
as opposed to limiting ourselves to paths of a given length, extending Eq. 5 as

ASRMPb
m(ei, ej) = ⊕p∈ei�ej ,|p|≤m ⊗|p|

k=1 WSRM(pk, pk+1). (6)

This measure provides a first approach to combining paths of different lengths,
however assuming equal weight for all of them. This assumption seems unrealis-
tic: intuitively, direct relations are expected to account for strong relations, while
indirect ones are weaker, where the longer the path, the weaker the relation. We
thus introduce a weight depending on the path length according to

ASRMPc
m(ei, ej) =

m∑
l=1

∑
p∈ei�ej ,|p|=l

wl ⊗|p|
k=1 WSRM(pk, pk+1), (7)

where wl is a length-dependent weight roughly corresponding to the percentage
of useful paths of length l and optimized by grid search. Thus, ASRMPb

m(ei, ej)
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meets the three requirements while ASRMPc
m(ei, ej) does not meet (R1),

because the semantics is once again deteriorated by the introduced weight.
Finally, all measures are made symmetrical according to

ψx
m(ei, ej) =

1
2

(ASRMPx
m(ei, ej) + ASRMPx

m(ej , ei)) x ∈ {a, b, c}. (8)

The rationale for symmetrization is that in an RDF KB, if a triple (ei, r, ej)
exists, the symmetric triple (ej , r

−, ei) may not exist at the same time, e.g., for
r, r− the symmetric properties ‘hasWritten’, ‘writtenBy’ respectively. This
depends on the modeling choices adopted for the KB at design time.

Aggregating Scores with Fuzzy Logic. The score aggregators used in the
definition of ASRMPx

m are crucial: they have to be chosen so as to preserve the
semantics of the relations between entities without introducing noise, i.e., seman-
tic drift. The longer a path between two entities, the smaller should be the relat-
edness value because the link between the entities may become meaningless.
Typically, a product of WSRM values along a path will quickly decrease, result-
ing into useless scores; the average score can be noisy. For two given entities
with a direct link and indirect links, the average can also result in scores for
paths of length m > 1 larger than the score for the direct link, which we assume
to be semantically incorrect. Hence we advocate for fuzzy logic operators which
provide a wide range of aggregators, such as the equivalent of the AND/OR
logic operators for real values in the [0, 1] interval. The semantics of the fuzzy
operators is also important because it allows to explain the linking decisions and
ensures (R1).

Fuzzy logic, especially triangular norm fuzzy logic (t-norm) which guarantees
triangular inequality in probabilistic spaces, generalizes intersection in a lattice
and conjunction in logic, offering many aggregation operators to define conjunc-
tion for values within [0, 1]. Each t-norm operator is associated with an s-norm
(t-conorm) with respect to De Morgan’s law: S(x, y) = 1 − T (1 − x, 1 − y). The
t-norm is the standard semantics for conjunction in fuzzy logic and thus the
couple t-norm/s-norm acts as AND/OR operators on real values in [0, 1]. Thus
using fuzzy logic to define our relatedness measure allows to ensure its transitiv-
ity by definition and avoids the introduction of arbitrary weighting parameters
like in rel

(k)
Excl.

As WSRM(e, e′) ∈ [0, 1], any t-norm/s-norm couple can be used to aggregate
values along one path of length m and across all paths between two entities.
We experimented with several couples of fuzzy operators: beside the classical
min/max, we also consider the family of Hamacher t-norms (Hamacher product)
defined for λ ≥ 0 as

TH,λ(x, y) =
xy

λ + (1 − λ)(x + y − xy)
, (9)

the family of Yager t-norms defined for λ > 0 as

TY,λ(x, y) = max
{

0
1 − λ

√
(1 − x)λ + (1 − y)λ

(10)
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and the Einstein sum

TE(x, y) =
xy

1 + (1 − x)(1 − y)
. (11)

The two families of t-norm used here are not exhaustive but generalize many
t-norms: one can easily see that TH,2(x, y) = TE(x, y); TH,1(x, y) is known as the
product t-norm; TY,1(x, y) is the �Lukasiewicz t-norm. We studied a large body
of those operators and chose the one maximizing the accuracy of the collective
linking system described hereunder.

4 Linking with Entity Relatedness Measure

We study the interest of the entity relatedness measure in the context of entity
linking. In a general collective entity linking pipeline, semantic relatedness mea-
sures between entities are used at the end of the process to globally select the
best candidate entity for each mention. They are typically used within a clas-
sifier along with features describing the mapping between the mention and the
entity, to predict whether an entity is a good match (1) for a mention or not (0).
The classifier operates independently on each mention-entity pair, and allows
an ensemble of local classifications based on the relatedness of the entity to
candidate entities of other mentions.

We briefly review the entity linking pipeline that we adopted. As in many
previous pieces of work, e.g., [5,9,11,22,24], we do not consider the initial named
entity recognition step, assuming perfect entity mention detection. The next step
is the candidate entity generation stage, which consists in determining for each
mention a reduced set of plausible entities that the mention could refer to. The
final stage is the candidate selection stage, a.k.a. disambiguation, in which the
best candidate is selected for each mention taking into account possible relations
to candidates from other mentions.

In the remainder of this section, a document D is represented by its set of
entity mentions, D = (m1, . . . ,mn). For each mention mi, C(mi) = (ei1, . . . , eik)
denotes the set of its candidate entities.

4.1 Knowledge Base

In this paper, we focus on two RDF KBs, namely Yago2 and BaseKB3, but
however make use of Wikipedia for candidate generation for practical reasons,
since the names of Wikipedia pages are meaningful unique identifiers unlike
entities’ labels in KB. BaseKB, derived from Freebase, contains over one billion
facts (i.e., triples) about more than 40 millions subjects. Yago, derived from
Wikipedia, WordNet and GeoNames, currently has knowledge of more than 10

2 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/yago.

3 http://basekb.com/.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://basekb.com/
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million subjects and contains more than 120 million facts. Within those two KBs,
interrelationships between entities bear precise semantics as specified by their
schema. Contrary to Yago, BaseKB is saturated, i.e., all facts are made explicit
with property instances thus circumventing the need for reasoning mechanisms.
As, for practical reasons, we take advantage of Wikipedia in the candidate gen-
eration step, a mapping between Wikipedia and Yago or BaseKB entities is
maintained. We also limit ourselves to entities appearing both in Wikipedia and
in the RDF KB, resulting in approximately 2.5M entities in BaseKB and 3M
entities in Yago.

Note that while BaseKB and Yago are used in this paper, there are no con-
ceptual limitations to those KBs, ASRMPm being able to account for any RDF
KB schema.

4.2 Candidate Entity Generation

The generation of the candidate entities eij for each mention mi in a docu-
ment relies on Cross-Wiki, a dictionary computed from a Google crawl of the
web that stores the frequency with which a mention links to a particular entity
within Wikipedia. We used the same Cross-Wiki dictionary as in [12]. Each entry
of the dictionary corresponds to a possible entity mention and provides a list of
Wikipedia entities to which the mention points to, along with popularity scores.
This list is directly used for candidate generation whenever a mention appears
in the dictionary. The dictionary entries are normalized by removing all punctu-
ation marks and converting to lower case. For mentions absent from Cross-Wiki,
a query on Wikipedia was performed using the text of the mention, and the
resulting Wikipedia pages were collected as the candidate entities.

4.3 Supervised Entity Selection

To select the best candidate entity eiĵ for each entity mention mi in a document
in a collective manner, we adopted a supervised approach similar to [9,22,27],
where a classifier is trained to predict whether a mention and a candidate entity
are related (1) or not (0). We used a binary logistic regression, denoted logreg(),
applied independently on each mention-candidate entity pair, selecting for a
mention mi the candidate entity with the highest response from the classifier,
i.e., ĵ = arg maxj logreg(mi, eij). We also experimented with different classifiers–
see Sect. 5.3 for details–and the choice of a binary logistic regression is motivated
by its simplicity and the fact that it turned out the best classification strategy.
In our collective setting, the classifier relies on features describing the similarity
between the mention and the entity on the one hand, and, on the other hand,
the relatedness of the candidate entity under consideration with the candidate
entities from other mentions in the document. The latter accounts for the context
and ensures the collective aspect of the linking.

For the similarity between the mention and the candidate entity, we consid-
ered two features namely the cosine similarity between the vectors representa-
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tions of the mention and of the entity name within Wikipedia, as obtained with
word2vec [21], and the Wikipedia popularity as provided by Cross-Wiki.

For the relatedness of the candidate entity eij with candidate entities from
other mentions, i.e., ekl with k 	= i, we relied on an aggregation of the scores
φ(eij , ekl) over the set of candidate entities ∪k �=iC(mk), where φ() is an entity
relatedness measure (e.g., rel

(k)
Excl, WSRM, ASRMP), thus providing a global

measure of how eij relates to other entity propositions in D. This aggregation is
different from the one used to design our relatedness measure. We used sum and
maximum aggregation, which has proven efficient in previous work. Formally,
considering an entity relatedness φ(), we define the sum aggregator as

S(eij ;D) =
n∑

k=1,k �=i

∑
e∈C(mk)

φ(eij , e), (12)

and the maximum aggregators as

Mk(eij ;D) =
n

max @k
k=1,k �=i

max
e∈C(mk)

φ(eij , e) (13)

where max @k is an operator returning the kth highest value. Note that the
two aggregators are complementary: the sum provides a global averaged view
while the max values emphasize good matches. We observed that retaining the
sum, max@1, max@2 and max@3 aggregators as global features for the logistic
regression worked best for the relatedness measure ψa

1 (). We therefore retained
the same strategy for ψa

2 (), and ψa
3 () resulting in a total of 12 global features—

namely Sm, M
(1)
m , M

(2)
m and M

(3)
m for m = 1, 2, 3—to represent the relatedness

of a candidate entity with other possible entities in D. Experiments with ψx
m()

with x ∈ {b, c}, i.e., where different path lengths are already aggregated within
ASRMPx

m, involve only 4 global features, i.e., sum, max@1, max@2 and max@3.
Thus ASRMPa

m leverages 12 global features while ASRMPb
m and ASRMPc

m only
use 4.

5 Experiments

In the remainder of the paper, we report on a set of experiments conducted to
assess the benefit of our entity relatedness measure in a collective entity linking
task. We are using different entity relatedness measures, within the same col-
lective entity linking pipeline as described per Sect. 4. Experiments are mostly
carried out on the TAC-KBP Entity Discovery and Linking (EDL) 2016–2017
datasets, two newswire and forum-discussion sets of documents originally col-
lected for the TAC Knowledge Base Population Entity Discovery and Linking
2016 and 2017 international evaluation campaigns [16], which constitute the ref-
erence for the task of entity linking. Results are reported in terms of F1-score,
where precision P = |G∩S|

|S| and recall R = |G∩S|
|G| are calculated between the link-

ing in the gold-standard (G) and the linking given by a system (S). The 2016
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version was used to learn the classifiers while the 2017 one served as test set.
As the collective entity linking system is trained while only changing the entity
relatedness measure, the linking accuracy can be used to evaluate the quality of
the entity relatedness measure.

After providing implementation details in Sect. 5.1, selecting the best fuzzy
aggregator in Sect. 5.2 and the best classification strategy in Sect. 5.3, we com-
pare in Sect. 5.4 the various flavors of ASRMPm seeking for the best one. The
latter is compared to the entity relatedness measures used for entity linking in
the literature in Sect. 5.5. Finally, we compare in Sect. 5.6 our collective entity
linking system to a series of competing systems.

5.1 Implementation Details

Computing all the paths of length m between every pair of entities in the KB can
be computationally expensive. For instance, in BaseKB, and after data cleans-
ing, there are approximately 13M paths of length one and 46B paths of length
two. We designed an efficient way of doing so, taking advantage of a relational
database management system—which offers today much more tuning opportuni-
ties than RDF data management systems, e.g., various indices, clustered tables,
etc.—to store edges and their semantic relatedness weights.

In PostgreSQL 11.24, a table edges(e1, e2, v) is used to store the pairs of
entities (e1, e2) directly connected through some property in the KB, along with
the corresponding WSRM value v. This table is dictionary-encoded (entity names
are replaced by integers) to save space and speed up value comparisons, indexed
by (e1, e2) and (e2, e1) values to offer many options to the PostgreSQL optimizer.
Limiting ourselves to path lengths m ≤ 4, the four tables path1(e1, e2, v1),
path2(e1, e2, v1, v2), path3(e1, e2, v1, v2, v3) and path4(e1, e2, v1, v2, v3, v4) are
efficiently created from the edge table using SQL queries, to represent paths
of length 1, 2, 3 and 4 respectively. The entities e1 and e2 are restricted to
the candidate entities for the entity mentions found in the TAC-KBP2016-2017
datasets: entities along the paths may however not be candidate entities. The
values vi are the WSRM values along the path.

In BaseKB, we obtained 53K one-, 11M two- and 2B three-edges paths, from
which we computed the various ASRMPm, relatedness values. We were not able
to compute paths of length four, as the number of paths exploded. The same
process was applied to Yago and we obtained 28K one-, 845K two-, 25M three-
and 679M four-edges paths. Paths of length four could be computed due to the
cleanliness and the higher structure of Yago.

5.2 Comparing Fuzzy Logic Aggregators

One crucial issue for paths of length m > 1 lies in the aggregation of the semantic
relatedness measure of each edge along the path and of the relatedness measure
over multiple paths between two entities. ASRMPm reflects entity relatedness

4 https://www.postgresql.org.

https://www.postgresql.org
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in the KB at hand: obviously, an aggregation of its values should reflect similar
properties. Moreover, and in order to avoid a semantic drift, the resulting value
of the aggregation for one path of length m must be smaller than that of a path
of length m − 1 since the latter bears stronger semantics. Finally, because there
can be many paths between two entities, one needs also to aggregate the values
of the different paths connecting two given entities.

Experimental results (not reported here for lack of space) show that TH,0(x, y)
is the best aggregator with the collective linking setting in this paper. We how-
ever experimentally observed only minor differences between the Hammacher
and Yager t-norms and various values of λ. In the remainder, TH,0(x, y) with its
associated s-norm is used for the aggregation of paths of length m ∈ {2, 3, 4}
between two entities.

5.3 Comparing Classifiers

We compared several classifiers within our collective entity linking system.
In addition to popular classification techniques such as k-nearest neighbours
(KNN), decision trees (DT), logistic regression (REG) or support vector
machines (SVM), we also experimented with gradient boosting (GB). The lat-
ter was used in previous work on entity relatedness for entity linking [27,28].
Results reported in Table 2 for ASRMPa

m, m ∈ {1, 2, 3, 4}, on the TAC-KBP
dataset using either BaseKB or (saturated) Yago as KB, clearly show that the
logistic regression classification strategy turns out to be the best option overall,
in particular when considering paths of length 2 or more.

Table 2. F1-scores for various classifiers within the entity linking system for TAC-KBP.

Approach BaseKB Yago Yago + Saturation

KNN DT GB SVM REG KNN DT GB SVM REG KNN DT GB SVM REG

ASRMP1 49.58 47.71 79.59 79.19 80.03 49.64 47.51 79.67 79.75 79.88 50.46 47.58 80.05 79.60 79.94

ASRMPa
2 50.00 47.10 79.75 79.82 80.79 49.13 47.02 80.93 79.52 80.71 49.46 46.99 79.09 80.15 80.78

ASRMPa
3 50.02 47.24 80.20 80.12 80.60 49.48 46.79 80.36 79.66 80.40 50.33 46.74 79.42 79.62 80.67

ASRMPa
4 – – – – – 50.20 46.78 78.56 80.40 80.98 49.43 46.79 80.51 80.78 81.34

5.4 Comparing Aggregation Strategies

We also compared the aggregation strategies described in Sect. 3, reporting
in Fig. 1 the F1-score as a function of m for the various strategies: distinct
ASRMPa

m measures for each value of m (including length four for Yago) aggre-
gated by the classifier; aggregation with fuzzy logic as defined by ASRMPb

m;
explicit weighting as in ASRMPc

m optimized by grid search. In most cases, bet-
ter performance is achieved for m = 2, diminishing for m > 2, which con-
firms that paths longer than 2 mostly bring noise because of a semantic drift.
This is particularly visible in Fig. 1b. Classifier-based fusion, Fig. 1a, however
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(a) classifier-based fusion (b) fuzzy logic fusion (c) explicit weights

Fig. 1. Linking F1-score for various aggregation strategies. (Color figure online)

seems to keep increasing for m = 3 on BaseKB, but the gain is only minimal
between m = 2 and m = 3 and is counterbalanced by the computational cost
(see Sect. 5.5), specially for BaseKB. Interestingly, for explicit weighting, the
weights wl can be seen as the strength of the paths with length l. We found that
the optimal values of wl decrease when l increases, i.e., w2 = 1, w3 = 0.1 and
w4 = 0.1 for Yago. These different aggregation studies show that fuzzy aggrega-
tor (Fig. 1b) and explicit weights (Fig. 1c) are more robust for combining paths
of different lengths, while the classifier-based fusion (Fig. 1a) is more accurate
though it introduces noise for paths of length > 2. For example, in both Fig. 1b
and c paths of length four are always adding noise, when considered with Yago
and Yago saturated. With respect to the entity linking task, ASRMPa

m with
classifier-based fusion appears the best strategy. In all generality and contrary
to ASRMPb

m, this strategy only loosely verifies (R1) as classifier-based fusion
can be difficult to interpret. In this regard, logistic regression nevertheless offers
interesting properties, with coefficients and intercepts that can be interpreted to
some extent.

5.5 Comparisons of Entity Relatedness Measures

We now concentrate on the study of (the different components of) ASRMPa
m,

m > 1, with classifier-based fusion, and how it compares with other relatedness
measures, namely WSRM [9], cosine similarity [3,25] and Ref [1,18]. All measures
are used within the same collective entity linking system as input features to
the classifier, thus providing fair comparison of the entity relatedness measures.
Results are gathered in Table 3 for BaseKB, Yago and Yago saturated, reporting
linking accuracy (F1-score). The different measures compared are:

– Local performs linking using only the two local features depicting the ade-
quacy of the mention and the entity—see Sect. 4.3—thus not considering
entity relatedness

– Cosine similarity(kernel), the kernel being either rdf2vec [25] or TransE [3],
measures entity relatedness as the cosine similarity between the entities
embedded in a high-dimension space with the given kernel

– Ref [1,18] considers the Ref entity relatedness measure as defined in Eq. 1
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Table 3. Linking F1-score on the TAC-KBP2017 dataset. Popularity and cosine simi-
larity are the local mention-entity scores; the sum (Sm) and max (M

(k)
m ) global features

are defined in Eqs. 12 and 13 resp.

Features BaseKB Yago Yago + Saturation

local (no collective) 78.72 78.72 78.72

local+cosine similarity(rdf2vec) 78.58 78.58 78.58

local+cosine similarity(TransE) 79.39 79.39 79.39

local+Ref 79.70 79.81 79.82

local+rel
(5)
Excl 80.54 80.49 79.27

ASRMP1 = local + S1 + M
(k)
1 80.03 79.88 79.94

ASRMP1 + S2 80.02 80.02 80.12

ASRMP1 + M
(k)
2 80.68 80.69 80.78

ASRMPa
2 = ASRMP1 + S2 + M

(k)
2 80.79 80.71 80.78

ASRMPa
2 + S3 80.92 80.77 80.77

ASRMPa
2 + M

(k)
3 80.55 80.35 80.76

ASRMPa
3 = ASRMPa

2 + S3 + M
(k)
3 80.60 80.40 80.67

local + S2 + M
(k)
2 80.16 80.60 80.52

local + S3 + M
(k)
3 80.42 79.46 79.27

– Rel
(5)
Excl [15] uses entity relatedness as defined in Eq. 4 with k = 5

– WSRM [9], which is equivalent to ASRMP1, where only direct paths are used
to measure entity relatedness

– ASRMPa
m which embed basic reasoning mechanisms accounting for paths of

length m > 1.

Adding paths of length 2 allows a slight increase of the linking accuracy, where
the best score for ASRMPa

2 is obtained using both S2 and M
(k)
2 for k = 1, 2, 3

(row ASRMPa
2). Looking separately at the benefit of the aggregators S2 and M

(k)
2

across couples of candidate entities, we see that considering only the maximum
increases the accuracy of the ASRMP1 system but, as it reflects the predominant
topic, mentions that are far from that general topic can be incorrectly linked.
Meanwhile, using S2 can be slightly worse than ASRMP1 only (e.g., on BaseKB,
not on Yago) because this aggregator reflects choosing the mean topic which can
be very vague. Combining both seems to be a compromise between the two
extreme cases. On the other hand, ASRMPa

2 is better than both WSRM [9]
and Rel

(5)
Excl [15] showing the interest of using a well founded entity relatedness

measure along with property paths.
Paths of length 3 can further be successfully combined with the features used

for ASRMPa
2 when S3 is considered; while using M

(k)
3 , either alone or with S3,

seems to introduce noise in the linking decision. This counter-intuitive result
can be explained by the fact that introducing path of length three adds limited
relevant semantics into the relatedness measure. As an outcome, considering
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Table 4. Time in (min.) for different entity relatedness measures.

TransE rel
(5)
Excl Ref ASRMP1 = WSRM ASRMPa

2 ASRMPa
3

BaseKB 15.29 1680 13.33 13.85 20,94 418,85

Yago 0.84 507 0.58 0.59 6.75 9.17

Yago + Saturation 0.79 403 0.57 0.69 6.14 8.60

the predominant entities only (max aggregators) tends to take strong linking
decision and can be more drastic than adding vague links, mostly for entities
that were not linked with the aggregation of ASRMP1 and ASRMPa

2 .
From the complexity point of view, relatedness measures are computed offline

for a static KB (a given version of Yago or BaseKB). Meanwhile ASRMPx
m can

easily be computed for lower values of m making it tractable and more suitable
for dynamic scenario where entities are added to or removed from the KB, unlike
relkExcl where top-k path has to be computed, or cosine similarity where the
kernel embedding has to be retrained. Table 4 shows the computation time for
the different entity relatedness measures, including the offline part. For small
values of m, which are required in practice, Ref, ASRMPa

m, and TransE have
low computation cost, while relkExcl has high computation cost due to the need
to compute top-k best paths. Thus we can conclude that ASRMPa

m meets (R2),
and more generally that ASRMPx

m with x ∈ {a, b, c} meets (R2). They indeed
have similar computation times: most of the time is spent in computing paths
of length up to m, while aggregating path scores is very fast.

We also studied the impact of the saturation of the KB using Yago. As shown
in Table 3 (columns 3 and 4) and in Fig. 1 (red and yellow bars), the gain is very
limited in the case of TAC-KBP2017 dataset. In practice, this result saves the
explicit computation of the implicit triples in the RDF KB.

5.6 Comparison of Entity Linking Systems

We finally compared the collective entity linking system based on ASRMPa
m

with prominent state-of-the-art methods over standard benchmarks: NCEL [5],
AIDA [13], PHoH [11] and CEL-WSRM [9]. All follow the classical three stage
architecture for collective entity linking. CEL-WSRM [9] is based on the WSRM
entity relatedness measure (Eq. 1), equivalent to ASRMP1. Results of the entity
linking process, evaluated in terms of micro-averaged F1 classification scores,
are reported in Table 5. These results were obtained with the Yago KB that
allows considering paths of length up to 4. Similar results are obtained when
the Yago KB is saturated. On all four datasets, the proposed method CEL-
ASRMPa

m, m ∈ {2, 3, 4}, does outperform the NCEL, AIDA and PBoH collective
linking approaches by a large margin. The proposed method is better than CEL-
WSRM on the four datasets, with small improvement on the RSS-500 dataset.
Moreover, we observe the same conclusion as before: paths of length two improve
the accuracy of the linking, while longer paths may add noise.
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Table 5. Micro-averaged F1 score for different collective entity linking systems on four
standard datasets.

Approach AIDA-A AIDA-B Reuters128 RSS-500

NCEL [5] 79.0 80.0 – –

AIDA [13] 74.3 76.5 56.6 65.5

PBoH [11] 79.4 80.0 68.3 55.3

CEL-ASRMP1 =CEL-WSRM 90.6 87.7 76.6 76.4

CEL-ASRMPa
2 93.8 91.0 77.5 76.6

CEL-ASRMPa
3 93.4 90.6 78.5 76.6

CEL-ASRMPa
4 93.1 90.3 76.6 74.6

6 Conclusions

In summary, we extended previous measures of entity relatedness within a knowl-
edge base to account for indirect relations between entities through the consider-
ation of property paths. The measure that we proposed is the first to satisfy the
three good properties that such measures should have: clear semantics, reason-
able computational cost and transitivity. We experimentally showed its benefit
in a collective entity linking task, where paths of length 2 and 3 bring improve-
ment over the state of the art in collective entity linking, using either only direct
connections between entities [9] or previous work on path-based relatedness mea-
sures [15]. In theory, the scalability of ASRMPm varies in inverse proportion with
the length of the paths. We however proved it to be still tractable for reasonable
sized datasets with paths of length up to 3, which is sufficient in practice as
longer paths add noise.

This contribution opens up new horizons towards fully exploiting the seman-
tics of RDF knowledge bases for entity linking, when only relatedness mea-
sures are used. Taking a historical perspective, this task was first conventionally
addressed leveraging entity relatedness measures based on Wikipedia hyperlinks
counts between two pages and on the presence of one relation between two enti-
ties in the KB. WSRM (=ASRMP1) made use of KB semantics by weighting the
relatedness between entities exploiting the basic properties within the KB. The
ASRMPm extension proposed here further introduces (basic) reasoning mecha-
nisms that exploit the graph-structure of the KB alongside robust aggregators
for paths of arbitrary length. In this work, all paths were considered regardless of
their precise semantics. In specific application contexts, this could be improved
by selecting paths between two entities that are semantically meaningful in this
context, e.g., using ontological knowledge and reasoning.
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Abstract. Knowledge Graphs (KG) are becoming essential to organize,
represent and store the world’s knowledge, but they still rely heavily on
humanly-curated structured data. Information Extraction (IE) tasks, like
disambiguating entities and relations from unstructured text, are key to
automate KG population. However, Natural Language Processing (NLP)
methods alone can not guarantee the validity of the facts extracted and
may introduce erroneous information into the KG. This work presents
an end-to-end system that combines Semantic Knowledge and Validation
techniques with NLP methods, to provide KG population of novel facts
from clustered news events. The contributions of this paper are two-fold:
First, we present a novel method for including entity-type knowledge
into a Relation Extraction model, improving F1-Score over the baseline
with TACRED and TypeRE datasets. Second, we increase the precision
by adding data validation on top of the Relation Extraction method.
These two contributions are combined in an industrial pipeline for auto-
matic KG population over aggregated news, demonstrating increased
data validity when performing online learning from unstructured web
data. Finally, the TypeRE and AggregatedNewsRE datasets build to
benchmark these results are also published to foster future research in
this field.

Keywords: Knowledge Graph · Relation extraction · Data validation

1 Introduction

Knowledge Graphs (KG) play a crucial role for developing many intelligent
industrial applications, like search, question answering or recommendation sys-
tems. However, most of KG are incomplete and need continuous enrichment
and data curation in order to keep up-to-date with world’s dynamics. Automat-
ically detecting, structuring and augmenting a KG with new facts from text
is therefore essential for constructing and maintaining KGs. This is the task of
Knowledge Graph Population, which usually encompasses two main Information
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Fig. 1. Example of graph constructed from sentences from aggregated news articles.

Extraction (IE) sub-tasks: (1) Named Entity Recognition and Disambiguation
(NERD) [16,29], consisting on identifying entities from a KG in unstructured
texts; and (2) Relation Extraction [13,39], which seeks to extract semantic rela-
tions between the detected entities in the text. Over the last years, the Nat-
ural Language Processing (NLP) community has accomplished great advances
regarding these IE tasks [3,28]. However, the information extracted by these sys-
tems is imperfect, and may compromise KGs data veracity and integrity when
performing a population task. On the other hand, the Semantic Web commu-
nity has provided semantic technologies to express how the world is structured.
For example, ontology languages like OWL1 represent complex knowledge and
relations between things, and constraint mechanisms like SHACL2 specify rules
and can detect data constraints violations. When building ontology-driven IE
systems, these semantic techniques can be applied to asses data veracity and
detect false positives before adding erroneous information into the KG.

In this work, we explore opportunities in the intersection between NLP and
Semantic technologies, and demonstrate how combining both modalities can pro-
vide improved data quality. Semantic technologies are applied both at subsystem
level (by introducing entity-type knowledge in a relation extraction model), as
well as at system level (by adding data validation techniques to an end-to-end
KG population system from clustered news events).

We propose a novel KG population approach, which learns over aggregated
news articles to keep up to date an industrial KG based on mass media. Aggre-
gated news are clusters of news articles describing the same story. While web-
based news aggregators such as Google News or Yahoo! News present these events
with headlines and short descriptions, we aim towards presenting this informa-
tion as relational facts that can facilitate relational queries. As shown in Fig. 1,

1 https://www.w3.org/TR/owl-ref/.
2 https://www.w3.org/TR/shacl/.

https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/shacl/
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the system ingests unstructured text from these news stories as input and pro-
duces an RDF3 graph as output. We propose learning from aggregated news as
a more reliable way to learn from unstructured web data than from free crawled
data. This approach also achieves triple redundancy, which is later exploited by
the validation techniques.

The contributions of this work can be summarized as: a) A method to intro-
duce entity-type knowledge into a deep relation extraction model, which shows
strong performance on TACRED [1,40] benchmark and on TypeRE4, a new rela-
tion extraction dataset presented in this work. b) The addition of a validation
module into an automatic KG population system, which exploits the context and
redundancy from aggregated news. We show how this validation highly increases
overall data quality on the new AggregatedNewsRE5 dataset presented.

The paper is organized as follows. Section 2 presents related work. In Sect. 3,
we provide an overview of the aforementioned automatic KG population system.
Section 4 describes the approaches taken to add entity-types knowledge on the
relation extraction model. In Sect. 5 we explain the validation techniques added
to the system in order to provide increased accuracy in automatic KG population
from aggregated news. Experimental evaluation and datasets made public are
described in Sect. 6. Finally, Sect. 7 includes conclusions and future work.

2 Related Work

In this work, we present an end-to-end system which automatically populates
a KG using unstructured text from aggregated news. To implement this sys-
tem, we study how to exploit semantic knowledge to improve data quality, in
conjunction with a relation extraction model. Following our contributions, in
this section we will overview literature on automatic KG population (Sect. 2.1),
relation extraction (Sect. 2.2), and data validation (Sect. 2.3).

2.1 Automatic KG Population

Information Extraction (IE) fills the gap between machine understandable lan-
guages (e.g. RDF, OWL), used by Semantic Web technologies, and natural lan-
guage (NL), used by humans [27]. Literature differentiates between two main IE
approaches: (1) Open IE, when extraction is not constrained to any ontology, e.g.
Reverb [7], OLLIE [28] or PRISMATIC [8]; and (2) Closed IE, when extraction
is constrained to a fixed ontology or schema, e.g. NELL [22] or Knowledge Vault
[6]. Our system is similar to methods from the second group, which extract
facts in the form of disambiguated triples. However, all mentioned methods
learn from web crawling, while our system performs population from aggregated
news. Similar approaches are taken by event-encoding systems, like ICEWS6

3 https://www.w3.org/RDF/.
4 https://figshare.com/articles/dataset/TypeRE Dataset/12850154.
5 https://figshare.com/articles/dataset/AggregatedNewsRE Dataset/12850682.
6 https://www.icews.com/.

https://www.w3.org/RDF/
https://figshare.com/articles/dataset/TypeRE_Dataset/12850154
https://figshare.com/articles/dataset/AggregatedNewsRE_Dataset/12850682
https://www.icews.com/
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and GDELT7. These systems extract international political incidents from news
media and update their knowledge graphs online, making them applicable to
real-time conflict analysis. Other news-based systems are: RDFLiveNews [12],
which extracts triples from unstructured news streams and maps the relations
found to DBPedia properties; and VLX-Stories [10], which, like our system,
performs automatic population from aggregated news, but focus on detecting
emerging entities, instead of new triples.

2.2 Relation Extraction

One of the main tasks when populating a KG is relation extraction, which con-
sists on extracting semantic relationships from text. Closed IE approaches treat
this task as a classification problem: given a pair of entities co-occurring in a
text segment, we want to classify its relation into one of the predefined relation
types. Recent improvements in pre-trained language models (LM), like BERT
[5], have established a new trend when solving this task. R-BERT [36] presents
an architecture that uses markers to indicate entity spans in the input and
incorporates a neural architecture on top of BERT to add information from the
target entities. A similar input configuration is presented in Soares et al. [30], by
using Entity Markers. Moreover, they test different output configurations and
obtain state-of-the-art results when training with Matching the Blanks (MTB)
method. Inspired by these previous works, SpanBERT [17] has been proposed as
an extension of BERT that uses a pre-training configuration which masks spans
instead of tokens. Other works like ERNIE [41], KG-BERT [37] or KnowBert [24]
propose enhanced language representations by incorporating external knowledge
from KGs.

2.3 RDF Validation

When constructing a KG, its data is only valuable if it is accurate and with-
out contradictions. Requirements for evaluating data quality may differ across
communities, fields, and applications, but nearly all systems require some form
of data validation. Following this approach, different works analyzed the conse-
quences of errors in KGs and established recommendations [15,32]. The detec-
tion of inconsistencies and errors in public KGs has also become the subject
of various studies during the past years. Many works analyzed errors in public
semantic resources like DBPedia and Wikidata, and proposed automatic meth-
ods to detect them [31,33]. There are different RDF validation languages to
define these constraints, but shape approaches like ShEx [11], SHACL [18] and
ReSh [26] are the ones receiving the greatest community support and advanced
features [32]. In particular, SHACL (Shapes Constraint Language), has become
the latest standard and the W3C recommended system for validation of RDF
graphs. Following these recommendations and to maintain a high level of data
integrity in our KG, in this work we will describe the integration of a SHACL
validation module into our KG population system.
7 https://www.gdeltproject.org/.

https://www.gdeltproject.org/
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Fig. 2. KG Population framework. The system ingests unstructured text from aggre-
gated news and extracts an RDF graph of valid triples. It is composed by three mod-
ules: Named Entity Recognition and Disambiguation (NERD), Relation Extraction
(RE) and a Triple Validator.

3 System Overview

This section describes the proposed end-to-end KG population framework, dis-
played in Fig. 2. The system transforms unstructured text from aggregated news
articles to a structured knowledge representation. The architecture is composed
by a KG and three main processing components: 1) Named Entity Recognition
and Disambiguation (NERD), 2) Relation Extraction (RE), and 3) Validator.

The input of the system are aggregated news. In this work, we understand as
aggregated news a set of clustered articles that discuss the same event or story.
These clusters are created by VLX-Stories [10] news aggregator. This external
system provides unified text consisting on the aggregated articles.

The KG integrated into the current population system is the Vilynx’s8

Knowledge Graph. (VLX-KG) [9,10]. This KG contains encyclopedic knowledge,
as it is constructed by merging different public knowledge resources: Freebase [2],
Wikidata [35] and Wikipedia9. Its schema is inspired by Wikidata, and consists
on 160 entity-types with 21 root-types, and 126 different relations. It also pro-
vides multilingual alias for over 3M entities, and 9M relations between entities.
In the presented system, VLX-KG is used to disambiguate entities in the NERD
module, define the possible relations to extract in the relation extractor and the
SHACL constrains used in the validator.

The NERD module splits the input text, coming from the news aggre-
gator, in sentences and detects KG entities appearing in these sentences.
The output of this module are sentences with annotated entities. In this
work we are using Vilynx’s NERD, which combines Spacy’s10 library and
models for Name Entity Recognition (NER) and Part of Speech Tagging
(POST), with an Entity Disambiguation algorithm based ino our previous work,
ViTS citech11fernandez2017vits. However, any NERD system could be adapted
for this task.

8 https://www.vilynx.com/.
9 https://www.wikipedia.org/.

10 https://spacy.io/.

https://www.vilynx.com/
https://www.wikipedia.org/
https://spacy.io/
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The sentences with annotated entities are processed in the relation extrac-
tion module. First, sentences with at least two entities are selected to produce
candidate facts, which consist of tokenized sentences with annotated pairs of
entities. For each pair of entities two candidate facts are constructed in order
to consider both relational directions. Then, a deep relation extraction model
processes the candidate facts and extracts the expressed relation or the absence
of relation. Technical solutions proposed for this model are further discussed
in Sect. 4. The extracted relations are expressed as RDF triples of the form
〈subject, predicate, object〉, and interconnected into an RDF graph.

Finally, the extracted RDF graph is validated with our SHACL constraints,
in the Validator module. During validation, we enhance results thanks to the
redundancy and contextual information from aggregated news. In Sect. 5 we
give a detailed description of the constraints applied and the validation process.
The output of this module and the whole pipeline is an RDF graph of valid
triples.

4 Relation Extraction

Relation extraction is the task of predicting the relations or properties expressed
between two entities, directly from the text. Semantics define different types
of entities and how these may relate to each other. Previous works [4,25] have
already shown that entity-type information is useful for constraining the possible
categories of a relation. For instance, family-related relations like Parents or
Siblings can only occur between entities of type Person, while Residence relation
must occur between entities of type Person and a Location. Recent advances in
NLP have shown strong improvements on relation extraction when using deep
models, specially deep transformers [34]. In this section, we explore different
input configurations for adding entity-type information when predicting relations
with BERT [5], a pre-trained deep transformer model which is currently giving
state-of-the-art results when adapted for relation extraction. The remainder of
the section starts by defining the relation extraction task (Sect. 4.1). Later we
introduce Type Markers (Sect. 4.2), our novel proposal to encode the root type
of the entities. We finish the section by presenting the different input model
configurations proposed to add Type Markers (Sect. 4.3).

4.1 Task Definition

In the relation extraction task we want to learn mappings from candidate facts
to relation types r ∈ R, where R is a fixed dictionary of relation types. We add
the no-relation category, to denote lack of relation between the entities in the
candidate fact. In our particular implementation, a candidate fact (x, e1, e2) is
composed by a set of tokens x = [x0...xn] from a sentence s, with a pair of
entity mentions located at e1 = (i, j) and e2 = (k, l), being pairs of integers
such that 0 < i ≤ j, j < n, k ≤ l and l < n. Start and end markers, x0 = [CLS]
and xn = [SEP ] respectively, are added to indicate the beginning and end of



Enhancing Online Knowledge Graph Population 189

Fig. 3. Entity Markers [30] Fig. 4. Type Markers only

Fig. 5. Entity and Type Markers

the sentence tokens. Our goal is, thus, to learn a function r = f(x, e1, e2) that
maps the candidate fact to the relation type expressed in x between the entities
marked by e1 and e2.

4.2 Introducing Type Markers

In this work, we present the novel concept of Type Markers, to add entity-type
background knowledge into the relation extraction model. This markers are spe-
cial tokens representing the root type of an entity, e.g. [PERSON], [LOCA-
TION], [ORGANIZATION], [WORK], etc. These new tokens are added into
BERT embeddings, and its representation will be learned when fine-tuning our
model. For each entity in a candidate fact, its type can be extracted from the
KG. However, as KG are often incomplete, type information may be missing for
some entities. In this case, the entity-type extracted by a Named Entity Recog-
nition (NER) [20,23] system can be used. In the next section we propose two
methods to include this tokens into the model input.

4.3 Models

This subsection presents different input configurations for the relation extraction
model. Following the work from Soares et al. [30], we will take BERT [5] pre-
trained model and adapt it to solve our relation extraction task. On top of
BERT we add a Softmax classifier, which will predict the relation type (r). As
baseline for comparison we use Soares et al. [30] configuration of BERT with
Entity Markers. We will start by briefly overviewing their method, and continue
with our two configurations proposed to add Type Markers.
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Entity Markers (Baseline): As stated in Sect. 4.1, candidate facts (x, e1, e2)
contain a sequence of tokens from a sentence x and the entities span e1 and e2.
Entity Markers are used to identify this entity span in the sentence. They are
four special tokens [E1start], [E1end], [E2start] and [E2end] that are placed at
the beginning and end of each of the entities, i.e.:

x̂ = [x0 . . . [E1start]xi . . . xj [E1end] . . . [E2start]xk . . . xl[E2end] . . . xn]

this token sequence (x̂) is fed into BERT instead of x. Figure 3 displays the
described input configuration.

Type Markers Only: A first solution to introduce Type Markers into the
system is replacing the whole entity mention with the Type Marker. In this
new configuration, there is no need to indicate the entity span. However, we
still need to indicate which entity is performing as subject or object, because
relations are directed. Thus, an Entity Marker for each entity is still needed:
[E1], [E2]. Figure 4 displays the model configuration, we use [Typeem ] to refer
to each entity Type Marker. The modified x which will be fed into BERT looks
like:

x̂ = [x0 . . . [E1][Typee1 ] . . . [E2][Typee2 ] . . . xn]

Entity and Type Markers: Finally we propose a combination of both previ-
ous models. It consists on adding Type Marker tokens without removing entity
mentions nor any Entity Marker. The resulting input x̂, displayed in Fig. 5, is:

x̂ = [x0 . . . [E1start][Typee1 ]xi . . . xj [E1end] . . . [E2start][Typee2 ]xk . . . xl[E2end] . . . xn]

This model keeps the whole contextual information from the entity mentions,
while adding the semantic types of the entities.

5 Triple Validation Within Aggregated News

When building KGs from unstructured or semi-structured data, information
extracted is specially vulnerable to quality issues [19]. To enhance extracted
triples quality, we propose KG population on aggregated news over free crawled
data, and a validation method that exploits this information. On one hand, the
fact that articles come from verified sources and have been clustered on news
story events, increases the trustfulness of the text and ensures that the con-
tent from which we learn is relevant. On the other hand, the aggregated articles
talk about the same agents and events, adding redundancy and context to the
predictions. In the example from Fig. 1, we can see how many of the sentences
in the input text are expressing the same relations, e.g. sentences “Microsoft
announced that its co-founder, Bill Gates..”, “Microsoft’s billionaire co-founder,
Bill Gates...”, and “Microsoft co-founder Bill Gates said...” can all be synthe-
sized with the triple 〈Microsoft, FoundedBy, Bill Gates〉. The validation system
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takes advantage of this redundancy, as well as other extracted triples, to detect
contradicting information while verifying against our ontology and the KG.

In this section we overview the SHACL constraints applied in our system
(Sect. 5.1) and describe the validation module methodology (Sect. 5.2) to exploit
aggregated news context and redundancy.

5.1 Constraints Overview

We divided the validation rules applied in two main groups: type constraints,
where validation is based on rules from the pre-defined ontology concerning the
entity-types a relation can connect; and data constraints, where validation relies
on data from other triples in the KG.

Type Constraints: When defining an ontology, domain and ranges are asso-
ciated to the different kinds of relations. These properties describe if a relation
can link a subject to an object, based on its associated type classes. The domain
defines the types of entities which can have certain property, while the range
defines the entity types which can work as an object. Domain and range prop-
erties also apply to types sub-classes defined in the ontology hierarchy. As an
example, if the relation “FoundedBy” is applied from a root domain “Organiza-
tion” to a root range “Person”, this means entities with types or sub-types of
this domain and range can be linked by this property. However, if we restrict
the relation “MemberOfSportsTeam” to the domain “sportsPerson” and range
“sportOrganization”, only the entities with these sub-types will be linked by this
relation. For all relations in our ontology we defined their respective domains and
ranges, which will be used for validation.

Notice that when applying this rule we will discard false positives, but if
we are missing entity-types relations in the KG, we will also discard some true
positives. For example, we may know some entity is type “Person”, but if we do
not have the association of this entity with the sub-type “Politician”, we will
discard triples of this entity involving the relation “MemberOfPoliticalPary” or
“HeadOfGovernment”. While this will cause a decrease in recall, it is also an
indicator of missing entity-type relations that should be populated. Nevertheless,
this problem is currently not analyzed, and in this work these triples will be
discarded.

Data Constraints: We define two kinds of data constraints: cardinality and
disjoint. Cardinality constrains refer to the number of times a property can
be assigned to an entity of a given domain. For example, an entity of type
“Person” can have at most one “BirthDate”. This constraint can also be applied
considering time range statements, to guarantee e.g. that a country does not have
two presidents at the same time. Disjoint rules guarantee that entities have to
be disassociated for a set of properties. For example, if two entities are known to
be related as Siblings, they can not be associated as Parent or Child. We apply
this kind of restriction to relations concerning the Person domain in connection
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to family relation properties like Parent, Child, Sibling and Partner. Moreover,
we consider inverse predicates when applying these constraints.

5.2 RDF Graph Validation Methodology

In this sub-section we are describing the validation preformed to an RDF graph
extracted from an aggregated news content. We will start describing the nomen-
clature used, and continue with the algorithm.

An RDF graph G is constructed by a finite set of triples t = [t0, ..., tn], where
0 ≤ n. Triples are of the form (s, p, o), where s is the subject, p the predicate
and o the object. s and o are the nodes elements in the graph G, and p the edge.
Particularly, given a set of RDF triples tAN , extracted from an aggregated news
(AN) content, and composing an RDF graph GAN , our triple validator follows
the next methodology:

Algorithm 1. Triple validation algorithm
1: Repeated triples in GAN are merged in a graph of unique triples ĜAN , where

ĜAN ≤ GAN .
2: The occurrence count for each unique triple is stored in a counter c = [ct̂0 , ..., ct̂m ],

where ct̂j is an integer ≥ 1 with the number of occurrences of a unique triple t̂j .

3: A second graph (GKG) is constructed with all KG triples from entities appearing
in the same aggregated news content.

4: ĜAN is extended with GKG, being G = ĜAN ∩ GKG.
5: SHACL constraints are applied to G.
6: The SHACL validator outputs a set of a valid triple tv, invalid triples by type

tit and a list of alternative sets of incompatible triples by data constraints Td =
[td1 , ..., tdk ] where each set tdl is composed by a valid triple tvd followed by the
triple that would be incompatible with the previous one tid.

7: if triples are invalidated by type constraints (tit) then
8: Discard triple
9: end if

10: for each set of incompatible triples by data constraints (tdl) do
11: if triple tvdl ∈ GKG then
12: Correct Set. The invalid triple (tidl) in the set is discarded.
13: else
14: if ct̂vdl

> ct̂idl
+ α, (being α ∈ R and α ≥ 0), then

15: Correct Set. Discard invalid triple tidl .
16: else
17: Incorrect Set. Discard all triples in tdl
18: end if
19: end if
20: end for
21: Final output consists in an RDF graph of valid and unique triples extracted from

the aggregated news content, ĜANv
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6 Experiments

The presented contributions for relation extraction and validation have been
tested in an experimental set up. In this section we provide description and
analytical results on these experiments. First, we compare the different con-
figurations proposed for the relation extraction module (Sect. 6.1). Second, we
evaluate the validation step, and how working with aggregated news helps this
validation (Sect. 6.2). Finally, we present representative metrics from the auto-
matic KG population system (Sect. 6.3).

6.1 Relation Extraction

The different variations of the relation extraction model, presented in Sect. 4
have been compared considering two datasets: the well known TACRED [39]
dataset, and the new TypeRE dataset introduced in this work.

Datasets: TACRED is used with the purpose of comparing our system with
other works. This dataset provides entity spans and relation category annota-
tions for 106k sentences. Moreover, entity-types annotations for the subject and
object entities are included. There are 41 different relation categories, plus the
no-relation label, and 17 entity-types.

In this work we present the TypeRE dataset. This dataset is aligned with our
ontology to be able to integrate the relation extraction model into our KG pop-
ulation system. As manually annotating a whole corpus is an expensive task, we
generated the new dataset by aligning three public relation extraction datasets
with our ontology. The datasets used are: Wiki80 [14], KBP37 [38] and Knowl-
edgeNet11 [21]. The entities from all three datasets were disambiguated to Free-
base [2] identifiers. For Wiki80 and KnowledgeNet datasets, Wikidata identifiers
are already provided, so the linking was solved mapping identifiers. For KBP37
we disambiguated the annotated entities to Freebase ids using Vilynx’s NERD
system [9], as no identifiers are provided. For the three datasets, when an entity
could not be disambiguated or mapped to a Freebase identifier, the whole sen-
tence was discarded. For each entity, its root type is also added into the dataset.
The included types are: “Person”, “Location”, “Organization”, “Work”, “Occu-
pation” and “Sport”. Sentences with entities with not known types were dis-
carded. Regarding relations, we manually aligned relational categories from the
datasets to our ontology relations. In order to make sure external dataset rela-
tions are correctly matched to ours, we validated that all triples in the dataset
had valid root domain and range given the relation, and discarded the sentences
otherwise. Sentences from relations not matching our ontology and from relations
with less than 100 annotated sentences, were discarded.

The dataset metrics are presented in Table 1, in comparison with the origin
datasets. Type-RE is composed by 30.923 sentences expressing 27 different rela-
tions, plus the no-relation label, being a 73.73% of the total data from Wiki80,
11 Only training data annotations are publicly available.
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19.85% from KBP37 and 6.42% from KnowledgeNet. The partition between
train, develop and test sets was made in order to preserve an 80-10-10% split for
each category.

Results: In this section we compare the proposed input configurations to com-
bine Type Markers (TM) and Entity Markers (EM), against the baseline model,
BERTEM[30]. For all variants, we performed fine-tuning from BERTBASE model.
Fine-tuning was configured with the next hyper-parameters: 10 epochs, a learn-
ing rate of 3e-5 with Adam, and a batch size of 64.

Table 1. Relation extraction datasets metrics comparison. For each dataset we display
the total number of sentences (Total), the number of sentences in each partition (Train,
Dev and Test), the number of relational categories, and the number of unique entities
labeled.

Dataset #Total #Train #Dev #Test #Relations #Entities

TypeRE 30.923 24.729 3.095 3.099 27 29.730

KnowledgeNet [21] 13.000 10.895 2.105 - 15 3.912

Wiki80 [14] 56.000 50.400 5.600 - 80 72.954

KBP37 [38] 20.832 15.765 3.364 1.703 37 -

Table 2. Test performance on the TACRED relation extraction benchmark.

Dev Test

P R F1 P R F1

ERNIE [41] - - - 69.9 66.1 67.9

SpanBERT [17] - - - - - 68.1

BERTEM [30] 65.8 68.4 67.1 67.8 65.3 65.5

BERTTM 66.3 71.0 68.6 67.8 69.4 68.5

BERTEM+TM 69.6 69.0 69.3 70.3 67.3 68.8

Table 2 presents the performance on the TACRED dataset. Our configura-
tion combining Entity and Type Markers, BERTEM+TM, exceeds the baseline
(BERTEM) by a 3.3% F1 and BERTTM exceeds it by a 3% F1, on the test set.
The two proposed implementations also obtain better F1 score than ERNIE
[41] and SpanBERT [17], when trained with base model. Some works [17,30]
have reported higher F1 scores with a larger BERTLARGE language model. The
very high computational requirements of this model prevented us from providing
results with them. However, published results [30] on our baseline configuration
(BERTEM) show promising possibilities to beat state-of-the-art when training
our proposed models on BERTLARGE.
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Table 3 shows performance for the three input configurations on the TypeRE
dataset. Our proposed configuration, BERTEM+TM, achieves the best scores of
the three configurations with a 2.2% F1 improvement over the baseline. However,
BERTTM decreases overall performance in comparison to the baseline, while for
the TACRED dataset it performed better. We believe this difference is because
the granularity on the types given in TACRED (17 types) is higher than in
TypeRE (6 types). This increased detail on types taxonomy helps on a better
representation an thus improved classification.

Regarding individual relations evaluation, we observed type information helps
improving detection of relations with less training samples, as it helps general-
ization: e.g. “PER:StateOrProvinceOfDeath” and “ORG:numberOfEmployees”,
some of the relations with less data samples in the TACRED dataset, improve the
F1-score by a 32% and 13% correspondingly when using BERTEM+TM.

Table 3. Test performance on the TypeRE relation extraction benchmark.

Dev Test

P R F1 Acc P R F1 Acc

BERTEM [30] 84.3 86.9 85.6 90.9 87.0 88.3 87.6 92.1

BERTTM 80.4 86.6 83.4 89.1 81.5 88.5 84.8 89.7

BERTEM+TM 88.4 87.0 87.7 93.2 90.2 89.5 89.9 93.7

Table 4. Metrics of the AggregatedNewsRE dataset.

Dataset #Total #Relations #Entities #Aggregated News

AggregatedNewsRE 400 17 91 11

6.2 Triple Validation Within Aggregated News

The effects of each step from the validation algorithm presented in Sect. 5 are
analyzed in this subsection. We want to see the capabilities of this module to
detect erroneous triples and evaluate validation in the aggregated news context.

Datasets: We generated a manually annotated corpus of candidate facts
extracted from aggregated news collected by our system, which we call Aggregat-
edNewsRE. This dataset is used to evaluate the contribution of the presented
validation module and analyze the applied constraints. Sentences from aggre-
gated news were annotated by our NERD module, and candidate facts were
constructed for each sentence where entity pairs were identified. After this pre-
processing, the relations in this candidate facts were manually annotated by
one expert annotator. The resulting dataset contains a total of 11 aggregated
news stories and 400 candidate facts. Diverse topics were selected for these news,
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in order to cover different kinds of relations. The final aggregated news corpus
includes 17 from the 27 relations in the TypeRE dataset. Table 4 shows the
AggregatedNewsRE dataset metrics.

Table 5. Comparison on the validation contribution when using contextual information
of all RDF graph extracted from aggregated news (AN). We compare the output from
the RE model (Base), type constraints (Type), all constraints validated against our
KG (Type+Data), and all constraints validated against the KG and the triples in the
RDF graph extracted from the aggregated news (Type+Data in AN).

P R F1 Acc

Base 54.5 85.5 66.6 62.3

Type 60.0 85.1 70.4 67.6

Type+Data 62.8 85.1 72.3 70.0

Type+Data in AN 70.1 81.7 75.5 75.0

Results: We extract triples for all the candidate facts in the AggregatedNewsRE
dataset, using the previously trained relation extraction model, BERTEM+TM.
On top of these results we perform three different levels of validation, that we
analyzed. Results are presented in Table 5. Notice the performance on the base
result is low in comparison to scores presented in Table 3. This is because the
sentences in the TypeRE dataset, used to train the model, are from Wikipedia
articles, while sentences in AggregatedNewsRE dataset are from news articles,
where language expressions follow a different distribution.

Our experiments compare different levels of validations. First, we apply Type
Constraints, which discarded 35 triples and improved precision by a 5.5%. Sec-
ond, we test the validation of each individual triple using the SHACL constraints.
This applies both Type and Data Constraints, and discards a total of 50 triples,
increasing precision an 8.3%. Finally, we validate the RDF graph extracted for
each group of aggregated news. This last validations uses the redundant infor-
mation from the aggregated news, discarding a total of 95 triples and improving
precision by a 15.6%, with respect to the baseline. For this last experiment, α was
set to 2. As can be seen, the main effect of validation is an increase in precision,
thanks to the detection of false positives. As expected, recall is lowered down
by the Type Constraint due to incomplete entity-type information. When the
validation process uses all aggregated news RDF graph, some true positives are
discarded due to contradictions between extracted triples. Nevertheless, notice
that only a 3.8% of recall is lost, while accuracy increases 12.7%.

6.3 Automatic KG Population System Analytics

Finally, we study the quantity and quality of the generated triples on the online
KG population system under study. We analyze triples extracted from 171 aggre-
gated news, collected during a period of time of 24h. From these news stories 706
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triples have been obtained, setting an average of 4.12 triples/content. However,
if we aggregate repeated triples extracted from the same content, we have a total
of 447 triples. These values show high redundancy on these data.

The final population system not only validates triples with SHACL con-
straints, but also filters out triples with a prediction confidence lower than
α=0.85. This threshold has been chosen to prioritize precision over recall in
order to boost data quality. From the 447 triples extracted, 29.98% are valid,
while 70.02% are invalid. Among the invalid triples, 56.23% were discarded by
the confidence threshold, 35.46% because of type constraints, and 3.68% for data
constraints. From the remaining 134 valid triples: 72.5% are new. We manually
evaluated these new triples and stated that an 88.6% of them are correct.

7 Conclusions

This paper studies opportunities for enhancing the quality of an automatic KG
population system by combining IE techniques with Semantics. We present a
novel framework, which automatically extracts novel facts from aggregated news
articles. This system is composed by a NERL module, followed by a relation
extractor and a SHACL validator. The contributions presented in this paper are
focused on the relation extraction and validation parts.

The relation extractor model proposed improves performance with respect to
the baseline, by adding entity-types knowledge. To introduce types information,
we have presented Type Markers and proposed two novel input configurations
to add these markers when fine-tuning BERT. The proposed models have been
tested with the widely known relation extraction benchmark, TACRED, and the
new TypeRE dataset, presented and released in this work. For both datasets,
our models outperform the baseline and show strong performance in comparison
to other state-of-the-art models.

On top of the relation extraction we have built a SHACL validator module
that ensures coherence and data integrity to the output RDF graph. This module
enforces restrictions on relations to maintain a high level of overall data quality.
The novelty in this module resides in exploiting context and redundancy from
the whole RDF graph extracted from aggregated news. Finally, we provided
metrics on the system performance and shown how this validation is capable to
discard almost all erroneous triples.

As future work, we plan to study novel relation extraction architectures which
integrate KG information into the language model representation, inspired by
[24]. Other future works include extending the KG population framework by
adding a co-reference resolution module and analyzing triples invalidated by
type to infer missing entity-types automatically.

Acknowledgements. This work was partially supported by the Government of Cat-
alonia under the industrial doctorate 2017 DI 011.
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References

1. TACRED corpus ldc2018t24. Web download file. Linguistic Data Consortium,
Philadelphia (2002). Accessed 20 May 2020

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250 (2008)

3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: Twenty-Fourth
AAAI Conference on Artificial Intelligence (2010)

4. Chan, Y.S., Roth, D.: Exploiting background knowledge for relation extraction. In:
Proceedings of the 23rd International Conference on Computational Linguistics,
pp. 152–160. Association for Computational Linguistics (2010)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

6. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 601–610 (2014)

7. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 1535–1545. Association for Computational Linguistics
(2011)

8. Fan, J., Ferrucci, D., Gondek, D., Kalyanpur, A.: Prismatic: inducing knowledge
from a large scale lexicalized relation resource. In: Proceedings of the NAACL HLT
2010 First International Workshop on Formalisms and Methodology for Learning
by Reading, pp. 122–127. Association for Computational Linguistics (2010)

9. Fernández, D., et al.: ViTS: video tagging system from massive web multimedia
collections. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops, pp. 337–346 (2017)
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Abstract. We propose techniques that support the efficient computa-
tion of multidimensional similarity joins in an RDF/SPARQL setting,
where similarity in an RDF graph is measured with respect to a set of
attributes selected in the SPARQL query. While similarity joins have
been studied in other contexts, RDF graphs present unique challenges.
We discuss how a similarity join operator can be included in the SPARQL
language, and investigate ways in which it can be implemented and opti-
mised. We devise experiments to compare three similarity join algorithms
over two datasets. Our results reveal that our techniques outperform
DBSimJoin: a PostgreSQL extension that supports similarity joins.

Keywords: Similarity joins · SPARQL

1 Introduction

RDF datasets are often made accessible on the Web through a SPARQL endpoint
where users typically write queries requesting exact matches on the content. For
instance, in Wikidata [27], a SPARQL query may request the names of Nobel
laureates that have fought in a war. However, there are times when users need
answers to a similarity query, such as requesting the Latin American country
with the most similar population and GDP to a European country. The potential
applications for efficient similarity queries in SPARQL are numerous, includ-
ing: entity comparison and linking [23,24], multimedia retrieval [9,15], similarity
graph management [7,10], pattern recognition [4], query relaxation [12], as well
as domain-specific use-cases, such as protein similarity queries [2].

An important feature for similarity queries are similarity joins X ��s Y ,
which obtain all pairs (x, y) from the (natural) join X �� Y such that x ∈ X,
y ∈ Y , and additionally, x is similar to y according to similarity criteria s.
Similarities are often measured in terms of distance functions between pairs of
objects in a d-dimensional vector space, with two objects being more similar the
closer they are in that space. A distance function δ : R

d × R
d → R is called

a metric when it is non-negative, reflexive, symmetric and satisfies the triangle
inequality. There are two main types of similarity criteria s considered in practice:
a) in a range-based similarity join, s specifies a range r such that the distance
between output pairs must be below r; and b), in a k-nearest neighbours (k-nn)
c© Springer Nature Switzerland AG 2020
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similarity join, s specifies an integer k such that the pair (x, y) will be output if
and only if there are fewer than k other elements in Y with lower distance to x.

Similarity joins for some metrics (e.g., Manhattan distance) can be expressed
in SPARQL using built-in numeric operators, order-by, limit, etc. Other metrics
can at best be approximated; for example, SPARQL offers no direct way to
compute a square root for Euclidean distance. Even when similarity joins can be
expressed, a SPARQL engine will typically evaluate these queries by computing
distances for all pairs and then filtering by the specific criteria. Conversely, a
variety of algorithms and indexes have been proposed to evaluate similarity
joins in a more efficient manner than processing all pairs, where the available
optimisations depend on the precise definition of s. Compiling similarity joins
expressed in vanilla SPARQL into optimised physical operators would require
showing equivalence of the SPARQL expression to the similarity join supported
by the physical operator, which is not even clear to be decidable. Thus, dedicated
query operators for similarity joins address both usability and efficiency.

Though similarity joins have been well-studied, a key challenge arising in
the RDF/SPARQL setting is that of dimensionality, where we allow the user
to select any number of dimensions from the data, including dynamic dimen-
sions computed from the data (through functions, aggregations, etc.). Being
dimension-agnostic introduces various complications; for example, indexing on
all combinations of d dimensions would naively result in O(2d) different indexes,
and would not support dynamic dimensions. Such challenges distinguish the
problem of supporting similarity queries in SPARQL from typical usage in multi-
media databases (based on fixed descriptors), and also from works on supporting
domain-specific distances in query languages, such as geographic distances [1,29].

In this paper, we propose to extend SPARQL with multidimensional simi-
larity joins in metric spaces, and investigate optimised techniques for evaluating
such queries over RDF graphs. Most works thus far on extending SPARQL with
similarity features have either focused on (1) unidimensional similarity measures
that consider similarity with respect to one attribute at a time [14,26], or (2)
domain-specific fixed-dimensional similarity measures, such as geographic dis-
tance [1,29]. Other approaches rather pre-compute and index similarity scores
as part of the RDF graphs [7,12,20] or support metric distances measures exter-
nal to a query engine [19,24]. To the best of our knowledge, our proposal is the
first to consider multidimensional similarity queries in the context of SPARQL,
where the closest proposal to ours is DBSimJoin [25]: a PostgreSQL extension,
which – though it lacks features we argue to be important for the RDF/SPARQL
setting (namely k-nn semantics) – we will consider as a baseline for experiments.

Section 2 discusses literature regarding efficient similarity join evaluation,
and proposals to include such joins in database systems. In Sect. 3 we propose
the syntax and semantics of a SPARQL extension that supports similarity joins.
Section 4 presents our implementation, shows use-case queries and discusses
possible optimisations. In Sect. 5 we perform experiments over two real datasets;
we compare different evaluation algorithms, further adopting DBSimJoin as a
baseline system. We conclude and outline future directions in Sect. 6.
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2 Related Work

In this section we first describe works addressing the efficient evaluation of sim-
ilarity joins. Thereafter, we discuss works on similarity queries and distance
computation in SPARQL and other query languages for database systems.

Similarity Joins: The brute force method for computing a similarity join between
X and Y is to use a nested loop, which computes for each x ∈ X the distance to
each y ∈ Y , outputting the pair if it satisfies the similarity condition, thus per-
forming |X| · |Y | distance computations. For range or nearest-neighbour queries
over metric distances, there are then three main strategies to improve upon the
brute force method: indexing, space partitioning, and/or approximation.

A common way to optimise similarity joins is to index the data using tree
structures that divide the space in different ways (offline), then pruning distant
pairs of objects from comparison (online). Among such approaches, we highlight
vantage-point Trees (vp-Trees) [28], which make recursive ball cuts of space cen-
tred on selected points, attempting to evenly distribute objects inside and out-
side the ball. vp-Trees have an average-case search time of O(nα) on n objects,
where 0 ≤ α ≤ 1 depends on the distance distribution and dimensionality of the
space, among other factors [17], thus having an upper bound of O(n2α) for a
similarity join. Other tree indexes, such as the D-Index [6] and the List of Twin
Clusters [21], propose to use clustering techniques over the data.

Other space partitioning algorithms are not used for indexing but rather
for evaluating similarity joins online. The Quickjoin (QJ) algorithm [13] was
designed to improve upon grid-based partition algorithms [3,5]; it divides the
space into ball cuts using random data objects as pivots, splitting the data
into the vectors inside and outside the ball, proceeding recursively until the
groups are small enough to perform a nested loop. It keeps window partitions
in the boundaries of the ball in case there are pairs needed for the result with
vectors assigned to different partitions. QJ requires O(n(1 + w)�log n�) distance
computations, where w is the average fraction of elements within the window
partitions. QJ was intended for range-based similarity joins and extending QJ
to compute a k-nn similarity join appears far from trivial, since its simulation
with a range-based join would force most of the data to fall within the window
partitions, thus meaning that QJ will reach its quadratic worst case.

Another alternative is to apply approximations to evaluate similarity joins,
trading the precision of results for more efficient computation. FLANN [16] is a
library that provides several approximate k-nn algorithms based on randomised
k-d-forests, k-means trees, locality-sensitive hashing, etc.; it automatically selects
the best algorithm to index and query the data, based, for example, on a target
precision, which can be traded-off to improve execution time.

Similarity in Databases: Though similarity joins do not form part of standard
query languages, such as SQL or SPARQL, a number of systems have integrated
variations of such joins within databases. In the context of SQL, DBSimJoin [25]



204 S. Ferrada et al.

implements a range-based similarity join operator for PostgreSQL. This imple-
mentation claims to handle any metric space, thus supporting various metric
distances; it is based on the aforementioned index-free QJ algorithm.

A number of works have proposed online computation of similarity joins in
the context of domain-specific measures. Zhai et al. [29] use OWL to describe
the spatial information of a map of a Chinese city, enabling geospatial SPARQL
queries that include the computation of distances between places. The Parlia-
ment SPARQL engine [1] implements an OGC standard called GeoSPARQL,
which aside from various geometric operators, also includes geospatial distance.
Works on link discovery may also consider specific forms of similarity mea-
sures [24], often string similarity measures over labels and descriptions [26].

Other approaches pre-materialise distance values that can then be incorpo-
rated into (standard) SPARQL queries. IMGpedia [7] pre-computes a k-nn self
similarity join offline over images and stores the results as part of the graph. Sim-
ilarity measures have also been investigated for the purposes of SPARQL query
relaxation, whereby, in cases where a precise query returns no or few results,
relaxation finds queries returning similar results [12,20].

Galvin et al. [8] propose a multiway similarity join operator for RDF; how-
ever, the notion of similarity considered is based on semantic similarity that tries
to match different terms referring to the same real-world entity. Closer to our
work lies iSPARQL [14], which extends SPARQL with IMPRECISE clauses that
can include similarity joins on individual attributes. A variety of distance mea-
sures are proposed for individual dimensions/attributes, along with aggregators
for combining dimensions. However, in terms of evaluation, distances are com-
puted in an attribute-at-a-time manner and input into an aggregator. For the
multidimensional setting, a (brute-force) nested loop needs to be performed; the
authors leave optimisations in the multidimensional setting for future work [14].

Novelty: To the best of our knowledge, the two proposals most closely related
to our work are DBSimJoin [25] and iSPARQL [14]. Unlike DBSimJoin, our
goal is to introduce similarity joins to the RDF/SPARQL setting. Unlike both
systems, we support k-nn semantics for similarity join evaluation, thus obviating
the need for users to explicitly specify range values, which can be unintuitive
within abstract metric spaces. We further outperform both systems (including
under range semantics) by incorporating more efficient similarity join algorithms
than the nested-loop joins of iSPARQL [14] and the Quickjoin of DBSimJoin [25].
Without the proposed extension, queries attempting to generate some kind of
similarity search in SPARQL would be a) too verbose and b) too costly, since
there is no clear strategy to avoid nested-loop executions.

3 Syntax and Semantics

In this section, we define the desiderata, concrete syntax and semantics for our
proposed extension of SPARQL for supporting similarity joins.
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3.1 Desiderata

We consider the following list of desiderata for the similarity join operator:

– Closure: Similarity joins should be freely combinable with other SPARQL
query operators in the same manner as other forms of joins.

– Extensibility : There is no one-size-fits-all similarity metric [14]; hence the
operator should allow for custom metrics to be defined.

– Robustness: The similarity join should make as few assumptions as possible
about the input data in terms of comparability, completeness, etc.

– Usability : The feature should be easy for SPARQL users to adopt.

With respect to closure, we define a similarity join analogously to other
forms of joins that combine graph patterns in the WHERE clause of a SPARQL
query; furthermore, we allow the computed distance measure to be bound to a
variable, facilitating its use beyond the similarity join. With respect to extensi-
bility, rather than assume one metric, we make the type of distance metric used
explicit in the semantics and syntax, allowing other types of distance metric to
be used in future. Regarding robustness, we follow the precedent of SPARQL’s
error-handling when dealing with incompatible types or unbound values. Finally,
regarding usability, we support syntactic features for both range-based semantics
and k-nn semantics, noting that specifying particular distances for ranges can
be unintuitive in abstract, high-dimensional metric spaces.

3.2 Syntax

In defining the syntax for similarity joins, we generally follow the convention
of SPARQL for other binary operators present in the standard that allow for
combining the solutions of two SPARQL graph patterns [11], such as OPTIONAL
and MINUS. Besides stating the two graph patterns that form the operands of
the similarity join, it is necessary to further define at least the following: the
attributes from each graph pattern with respect to which the distance is com-
puted, the distance function to be used, a variable to bind the distance value to,
and a similarity parameter (search radius or number of nearest neighbours).

We propose the following extension to the SPARQL 1.1 EBNF Gram-
mar [11], adding one new production rule (for SimilarityGraphPattern)
and extending one existing production rule (GraphPatternNotTriples). All
other non-terminals are interpreted per the standard EBNF Grammar [11].

SimilarityGraphPattern ::= 'SIMILARITY JOIN ON (' Var+ ')('Var+')'
( 'TOP' INTEGER | 'WITHIN' DECIMAL ) 'DISTANCE' iri 'AS' Var
GroupGraphPattern

GraphPatternNotTriples ::= GroupOrUnionGraphPattern | ... | SimilarityGraphPattern

The keyword ON is used to define the variables in both graph patterns upon
which the distance is computed; the keywords TOP and WITHIN denote a k-nn
query and an r-range query respectively; the keyword DISTANCE specifies the IRI
of the distance function to be used for the evaluation of the join, whose result
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will be bound to the variable indicated with AS, which is expected to be fresh,
i.e., to not appear elsewhere in the SimilarityGraphPattern (similar to BIND).
The syntax may be extended in future to provide further customisation, such as
supporting different normalisation functions, or to define default parameters.

Depending on the metric, we could, in principle, express such queries as
vanilla SPARQL 1.1 queries, taking advantage of features such as variable bind-
ing, numeric expressions, sub-selects, etc. However, there are two key advantages
of the dedicated syntax: (1) similarity join queries in vanilla syntax are complex
to express, particularly in the case of k-nn queries or metrics without the corre-
sponding numeric operators in SPARQL; (2) optimising queries written in the
vanilla syntax (beyond nested-loop performance) would be practically infeasible,
requiring an engine that can prove equivalence between the distance metrics and
semantics for which similarity join algorithms are optimised and the plethora of
ways in which they can be expressed in vanilla syntax. We rather propose to
make similarity joins for multidimensional distances a first class feature, with
dedicated syntax and physical operators offering sub-quadratic performance.

3.3 Semantics

Pérez et al. [22] define the semantics of SPARQL operators in terms of their
evaluation over an RDF graph, which results in a set of solution mappings. We
follow their formulation and define the semantics of a similarity join in terms of
its evaluation. Letting V, I, L and B denote the set of all variables, IRIs, literals
and blank nodes, respectively, then a solution mapping is a partial mapping
μ : V → I ∪ L ∪ B defined for a set of variables called its domain, denoted
dom(μ). We say that two mappings μ1, μ2 are compatible, denoted μ1 ∼ μ2, if
and only if for all v ∈ dom(μ1) ∩ dom(μ2) it holds that μ1(v) = μ2(v). Now we
can define the following core operators on sets of mappings:

X �� Y := {μ1 ∪ μ2 | μ1 ∈ X ∧ μ2 ∈ Y ∧ μ1 ∼ μ2}
X ∪ Y := {μ | μ ∈ X ∨ μ ∈ Y } σf (X) := {μ ∈ X | f(μ) = true}
X \ Y := {μ ∈ X | �μ′ ∈ Y : μ ∼ μ′} X �� Y := (X �� Y ) ∪ (X \ Y )

where f denotes a filter condition that returns true, false or error for a mapping.
The similarity join expression parsed from the aforementioned syntax is

defined as s := (V, δ, v, φ), where V ⊆ V × V contains pairs of variables to
be compared; δ is a distance metric that accepts a set of pairs of RDF terms and
returns a value in [0,∞) or an error (interpreted as ∞) for incomparable inputs;
v ∈ V is a fresh variable to which distances will be bound; and φ ∈ {rgr, nnk} is
a filter expression based on range or k-nn. Given two solution mappings μ1 ∼ μ2,
we denote by [[V]]μ1

μ2
the set of pairs {((μ1 ∪ μ2)(x), (μ1 ∪ μ2)(y)) | (x, y) ∈ V}

(note: [[V]]μ1
μ2

= [[V]]μ2
μ1

). We say that [μ1, . . . , μn] ∈ X1 �� . . . �� Xn if and
only if μ1 ∈ X1, . . . , μn ∈ Xn, and μi ∼ μj (for 1 ≤ i ≤ n, 1 ≤ j ≤ n).
We can also interpret μ = [μ1, . . . , μn] as the mapping

⋃n
i=1 μi. We denote by

X∼μ := {μ′ ∈ X | μ ∼ μ′} the solution mappings of X compatible with μ. We
define udom(X) =

⋃
μ∈X dom(μ) and idom(X) =

⋂
μ∈X dom(μ). Finally we use

v/d to denote a mapping μ such that dom(μ) = {v} and μ(v) = d.
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Definition 1. Given two sets of solution mappings X and Y , we define the
evaluation of range and k-nn similarity joins, respectively, as:

X �� Y
(V,δ,v,rgr)

:= {[μ1, μ2, μv] ∈ X �� Y �� {v/δ([[V]]μ1
μ2

)} | μv(v) ≤ r}

X �� Y
(V,δ,v,nnk)

:= {[μ1, μ2, μv] ∈ X �� Y �� {v/δ([[V]]μ1
μ2

)} | μv(v) ≤ κδ,k
μ1,Y }

when v �∈ udom(X) ∪ udom(Y ) or error otherwise, where:

κδ,k
μ1,Y := min

{
δ([[V]]μ1

μ2
)

∣
∣ μ2 ∈ Y∼μ1 ∧ |{μ′

2 ∈ Y∼μ1 | δ([[V]]μ1
μ′
2
) < δ([[V]]μ1

μ2
)}| < k

}
.

We return an error when v �∈ udom(X) ∪ udom(Y ) to emulate a similar
behaviour to BIND in SPARQL. Per the definition of κδ,k

μ1,Y , more than k results
can be returned for μ1 in the case of ties, which keeps the semantics deterministic.

We define bag semantics for similarity joins in the natural way, where the
multiplicity of μ ∈ X ��s Y is defined to be the product of the multiplicities of
the solutions μ1 ∈ X and μ2 ∈ Y that produce it.

3.4 Algebraic Properties

We now state some algebraic properties of the similarity join operators. We use
��r, ��n, ��s∈ {��r, ��n} to denote range, k-nn and similarity joins, respectively.

Proposition 1. ��r is commutative and distributive over ∪.
Proof. Assume r = (V, δ, v, rgr). For any pair of sets of mappings X and Y :

X ��r Y := {[μ1, μ2, μv] ∈ X �� Y �� {[v/δ([[V]]μ1
μ2

)]} | μv(v) ≤ r}
≡ {[μ2, μ1, μv] ∈ Y �� X �� {[v/δ([[V]]μ2

μ1
)]} | μv(v) ≤ r} ≡ Y ��r X

Which proves the commutativity. For left-distributivity over ∪:

X ��r (Y ∪ Z) := {[μ1, μ2, μv] ∈ X �� (Y ∪ Z) �� {v/δ([[V]]μ1
μ2

)} | μ(v) ≤ r}
≡ {[μ1, μ2, μv] ∈ X �� Y �� {v/δ([[V]]μ1

μ2
)} | μ(v) ≤ r}∪

{[μ1, μ2, μv] ∈ X �� Z �� {v/δ([[V]]μ1
μ2

)} | μ(v) ≤ r}
≡ (X ��r Y ) ∪ (X ��r Z)

Commutativity and left-distributivity over ∪ imply distributivity over ∪. ��
Proposition 2. ��n is not commutative nor distributive over ∪.
Proof. As counterexamples for commutativity and distributivity, note that there
exist sets of mappings X, Y , Z with |X| = n, |Y | = |Z| = 2n, n ≥ k such that:

– Commutativity: |X ��n Y | = nk and |Y ��n X| = 2nk.
– Distributivity: |X ��n (Y ∪ Z)| = nk and |(X ��n Y ) ∪ (X ��n Z)| = 2nk. ��
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Proposition 3. ��n is right-distributive over ∪.
Proof. Assume n = (V, δ, v, nnk). We see that:

(X ∪ Y ) ��n Z := {[μ1, μ2, μv] ∈ (X ∪ Y ) �� Z �� {v/δ([[V]]μ1
μ2

)} | μv(v) ≤ κδ,k
μ1,Z}

≡ {[μ1, μ2, μv] ∈ X �� Z �� {v/δ([[V]]μ1
μ2

)} | μv(v) ≤ κδ,k
μ1,Z}∪

{[μ1, μ2, μv] ∈ Y �� Z �� {v/δ([[V]]μ1
μ2

)} | μv(v) ≤ κδ,k
μ1,Z}

≡ (X ��n Z) ∪ (Y ��n Z) ��
Proposition 4. (X ��s Y ) ��s′ Z �≡ X ��s (Y ��s′ Z) holds.

Proof. As a counter example, consider that s and s′ bind distance variables v
and v′ respectively such that v′ ∈ udom(X), v′ /∈ udom(Y ) ∪ udom(Z) and
v /∈ udom(X) ∪ udom(Y ) ∪ udom(Z). Now (X ��s Y ) ��s′ Z returns an error as
the left operand of ��s′ assigns v but X ��s (Y ��s′ Z) will not. ��

Finally, we discuss how the defined operators relate to other key SPARQL
operators. The condition in claim 3 is analogous to well-designed queries [22].

Proposition 5. Let s = (V, δ, v, φ). If each mapping in X �� Y binds all vari-
ables in V and v �∈ udom(X) ∪ udom(Y ) ∪ udom(Z), then the following hold:

1. (X ��s Y ) �� Z ≡ (X �� Z) ��s Y
2. (X ��s Y ) \ Z ≡ (X \ Z) ��s Y if udom(Z) ∩ (udom(Y ) − idom(X)) = ∅
3. (X ��s Y ) �� Z ≡ (X �� Z) ��s Y if udom(Z) ∩ (udom(Y ) − idom(X)) = ∅
4. σf (X ��s Y ) ≡ σf (X) ��s Y if f is scoped to idom(X).

Proof. We prove each claim in the following:

1. The third step here is possible as φ does not rely on Z (per the assumptions).

(X ��s Y ) �� Z := {[μ1, μ2, μv] ∈ X �� Y �� {v/δ([[V]]μ1
μ2

)} | φ(μv)} �� Z

≡ {[μ1, μ
′
1, μ2, μv] ∈ X �� Z �� Y �� {v/δ([[V]]μ1

μ2
)} | φ(μv)}

≡ {[μ1, μ2, μv] ∈ (X �� Z) �� Y �� {v/δ([[V]]μ1
μ2

)} | φ(μv)}
≡ (X �� Z) ��s Y

2. For a mapping μ = [μ1, μ2] such that udom(Z) ∩ (dom(μ2) − dom(μ1)) = ∅,
there does not exist μ′ ∈ Z such that μ ∼ μ′ if and only if there does not
exist μ′ ∈ Z such that μ1 ∼ μ′. Taking μ1 ∈ X and μ2 = [μ′

2, μ
′′
2 ] ∈ Y ��

{v/δ([[V]]μ1
μ2

) from X ��s Y , the result then holds per the given assumptions.
3. The second step here uses the previous two results. The third step uses the

right-distributivity of ��r and ��n over ∪ proven in previous propositions.

(X ��s Y ) �� Z := ((X ��s Y ) �� Z) ∪ ((X ��s Y ) \ Z)
≡ ((X �� Z) ��s Y ) ∪ ((X \ Z) ��s Y )
≡ ((X �� Z) ∪ (X \ Z)) ��s Y ≡ (X �� Z) ��s Y

4. For a mapping μ = [μ1, μ2] and filter f scoped to dom(μ1), f(μ) is true if and
only if f(μ1) is true. Taking μ1 ∈ X and μ2 = [μ′

2, μ
′′
2 ] ∈ Y �� {v/δ([[V]]μ1

μ2
)}

from X ��s Y , the result then holds per the given assumptions. ��
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SELECT ?c1 ?c2 ?d WHERE {
{ ?c1 wdt:P31 wd:Q6256 ; # Countries

wdt:P2250 ?lifex1 ; wdt:P2131 ?ngdp1 ; # Life expectancy, Nominal GDP
wdt:P4010 ?gdp1 ; wdt:P2219 ?growth1 ; # GDP, GDP growth rate
wdt:P1081 ?hdi1 ; wdt:P361 wd:Q12585 } # HDI, Latin America

SIMILARITY JOIN
ON (?lifex1 ?ngdp1 ?gdp1 ?growth1 ?hdi1)

(?lifex2 ?ngdp2 ?gdp2 ?growth2 ?hdi2)
TOP 1 DISTANCE sim:manhattan AS ?d # 1-nn using Manhattan

{ ?c2 wdt:P31 wd:Q6256 ; # Countries
wdt:P2250 ?lifex2 ; wdt:P2131 ?ngdp2 ; # Life expectancy, Nominal GDP
wdt:P4010 ?gdp2 ; wdt:P2219 ?growth2 ; # GDP, GDP growth rate
wdt:P1081 ?hdi2 ; wdt:P30 wd:Q46 }} # HDI, Europe

?c1 ?c2 ?d

wd:Q419 [Peru] wd:Q218 [Romania] 0.129
wd:Q298 [Chile] wd:Q45 [Portugal] 0.134
wd:Q96 [Mexico] wd:Q43 [Turkey] 0.195

Fig. 1. Query for European countries most similar to Latin American countries in
terms of a variety of economic indicators, with sample results

4 Use-Cases, Implementation and Optimisation

Having defined the syntax and semantics of the similarity join operator, we now
illustrate how the operator can be used, implemented and optimised.

4.1 Use-Case Queries

To illustrate the use of similarity joins in SPARQL, we will now present three
use-case queries, demonstrating different capabilities of the proposal. All three
queries are based on real-world data from Wikidata [27] and IMGpedia [7].

Similar Countries: In Fig. 1 we present a similarity query for Wikidata [27]
that, for each Latin American country, will return the European country with the
most similar welfare indicators to it, considering life expectancy, Gross Domestic
Product (GDP), nominal GDP, GDP growth rate and Human Development
Index (HDI).1 The query performs a 1-nn similarity join between both sets of
countries based on the Manhattan distance over the given dimensions. The figure
also presents three sample pairs of results generated by the query (though not
returned by the query, we add English labels for illustration purposes).

Similar Elections: In Fig. 2, we present a more complex similarity query over
Wikidata to find the four most similar elections to the 2017 German Federal
Election in terms of the number of candidates, parties and ideologies involved.
The query involves the use of aggregates and paths in the operand graph patterns
of the similarity join. The figure also presents the results of the query.
1 We use prefixes as defined in http://prefix.cc.

http://prefix.cc
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SELECT ?e2 ?c1 ?c2 ?p1 ?p2 ?d
WHERE {

{ SELECT (wd:Q15062956 AS ?e1)
(COUNT(DISTINCT ?candidate) AS ?c1)
(COUNT(DISTINCT ?party) AS ?p1)
(COUNT(DISTINCT ?ideology) AS ?i1) WHERE {

wd:Q15062956 wdt:P726 ?candidate . # candidates
?candidate wdt:P102 ?party . ?party wdt:P1387 ?ideology.}}# parties, ideologies

SIMILARITY JOIN ON (?c1 ?p1 ?i1) (?c2 ?p2 ?i2)
TOP 4 DISTANCE sim:manhattan AS ?d # 4-nn using Manhattan

{ SELECT ?e2
(COUNT(DISTINCT ?candidate) AS ?c2)
(COUNT(DISTINCT ?party) AS ?p2)
(COUNT(DISTINCT ?ideology) AS ?i2) WHERE {

?e2 wdt:P31/wdt:P279* wd:Q40231 ; wdt:P726 ?candidate . # elections, candidates
?candidate wdt:P102 ?party . ?party wdt:P1387 ?ideology . # parties and ideologies

} GROUP BY ?e2 }}

d?2p?1p?2c?1c?2e?

wd:Q15062956 [2017 German Federal Election] 10 10 8 8 0.000
wd:Q1348890 [2000 Russian Presidential Election] 10 10 8 7 0.220
wd:Q1505420 [2004 Russian Presidential Election] 10 6 8 8 0.240
wd:Q19818995 [2017 Saarland State Election] 10 7 8 7 0.293

Fig. 2. Query for elections similar to the 2017 German Federal Election in terms of
number of candidates, parties and ideologies participating, with results

Similar Images: Figure 3 presents a similarity query over IMGpedia [7]: a multi-
media Linked Dataset. The query retrieves images of the Capitol Building in the
US, and computes a 3-nn similarity join for images of cathedrals based on a pre-
computed Histogram of Oriented Gradients (HOG) descriptor, which extracts
the distribution of edge directions of an image. The figure further includes a
sample of results for two images of the Capitol Building, showing for each, the
three most similar images of cathedrals that are found based on edge directions.

4.2 Implementation

The implementation of the system extends ARQ – the SPARQL engine of Apache
Jena2 – which indexes an RDF dataset and receives as input a (similarity) query
in the syntax discussed in Section 3.2. The steps of the evaluation of an extended
SPARQL query follow a standard flow, namely Parsing, Algebra Optimi-
sation, Algebra Execution, and Result Iteration. The Parsing stage
receives the query string defined by a user, and outputs the algebraic representa-
tion of the similarity query. Parsing is implemented by extending Jena’s Parser
through JavaCC3, wherein the new keywords and syntax rules are defined. The
Algebra Optimisation can then apply rewriting rules (discussed presently)
over the query, further turning logical operators (e.g., knnsimjoin) into physi-
cal operators (e.g., nestedloop). Next, Algebra Execution begins to evaluate
2 http://jena.apache.org.
3 https://javacc.github.io/javacc/.

http://jena.apache.org
https://javacc.github.io/javacc/
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the physical operators, with low-level triple/quad patterns and path expression
operators feeding higher-level operators. Finally, Result Iteration streams
the final results from the evaluation of the top-level physical operator. All phys-
ical similarity-join operators follow the same lazy evaluation strategy used for
the existing join operators in Jena.

SELECT ?img1 ?img2 WHERE {
{ ?img1 imo:associatedWith wd:Q54109 . # Capitol Building

?vector1 a imo:HOG ; imo:describes ?img1 ; imo:value ?hog1 .} # HOG descriptor
SIMILARITY JOIN ON (?hog1) (?hog2) TOP 3 DISTANCE sim:manhattan AS ?d # 3nn w/ Manhattan
{ ?cathedral wdt:P31 wd:Q2977 . # Cathedrals

?img2 imo:associatedWith ?cathedral .
?vector2 a imo:HOG ; imo:describes ?img2 ; imo:value ?hog2 .}} # HOG descriptor

2gmi?1gmi? (grouped)

Fig. 3. Query for the three images of cathedrals most similar to each image of the US
Capitol Building in terms of the HOG visual descriptor

4.3 Similarity Join Optimisation and Query Planning

The Parsing phase will output either a knnsimjoin or rangesimjoin logical opera-
tor for the similarity join. The Algebra Optimisation phase must then select
an algorithm with which to instantiate these operators. As previously discussed,
for a similarity join X ��s Y , the naive strategy of computing a nested-loop join
will require |X| · |Y | distance computations. The algorithms we include with our
implementation of similarity joins are: nested loops, vp-Trees4 and QJ for range
queries; and nested loops, vp-Trees and FLANN5 for k-nn.

Nested loops constitute a baseline for evaluating similarity joins without opti-
misation, as would be applied for similarity queries written in vanilla SPARQL
syntax or in iSPARQL [14]. On the other hand, QJ is used in DBSimJoin [25],

4 We use the library provided by Chambers at https://github.com/jchambers/jvptree.
5 We use the Java implementation provided by Stavrev at https://gitlab.com/jadro-

ai-public/flann-java-port.git.

https://github.com/jchambers/jvptree
https://gitlab.com/jadro-ai-public/flann-java-port.git
https://gitlab.com/jadro-ai-public/flann-java-port.git
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and thus we also include it as a baseline measure, although it does not support
k-nn, which we previously argued to be an important feature in this setting.

In initial experiments we noted that the results of similarity queries as defined
herein sometimes gave unintuitive results when the magnitude of values in one
dimension was naturally much greater or much smaller than that of other dimen-
sions. Taking the query of Fig. 1, for example, while the values for GDP tends to
be in the order of billions or trillions, the values for HDI fall in [0, 1]; as defined,
the HDI dimension would have a negligible effect on the results of the similarity
join. To address this, we apply pre-normalisation of each dimension such that
the values fall in the range [0, 1].

Aside from adopting efficient similarity join algorithms, we can further opti-
mise evaluation by applying query planning techniques over the query as a whole:
given an input similarity query, we can try to find an equivalent, more efficient
plan through query rewriting rules. While Jena implements techniques for opti-
mising query plans in non-similarity graph patterns, we further explored both
rewriting rules and caching techniques to try to further optimise the overall
query plan. However, the techniques we have implemented had negligible or
negative effect on runtimes, yielding a negative result, because of which further
optimisations in this direction are left as future work.

Regarding rewriting rules, in fact there is little opportunity for such rules to
optimise queries with similarity joins for two main reasons. One reason is that
since similarity joins are a relatively expensive operation, optimally the results
returned from the sub-operands should be as small as possible at the moment of
evaluation; this often negates the benefit of delaying operations until after the
similarity join. Another reason is that for k-nn similarity joins, the operation is
not commutative, nor associative (see Sect. 3.3) preventing join reordering. The
most promising rewritings from a performance perspective relate to properties
2 and 4 of Proposition 5, as they reduce the size of the similarity join by first
applying the negation or filter, respectively, on the left operand; however, we did
not encounter such cases (we further believe that queries are more likely to be
written by users in the more optimal form).

Since the operands of similarity joins often have significant overlap in terms of
triple patterns, an avenue for optimisation is evaluating this overlap once, reusing
the results across both sub-operands. As an example, for the query in Fig. 1,
both operands have the same graph pattern except the last triple pattern, which
distinguishes European and Latin American countries. We implemented such a
technique, which we expected would reduce the runtime by avoiding redundant
computation. However, experiments contradicted this expectation, where sim-
ilar or slightly worse performance was found, for the following reasons. First,
the overlap may be less selective than the non-overlapping patterns, making it
disadvantageous to evaluate first; conversely, if we conservatively identify the
maximal overlap maintaining the original selectivity-based ordering, the overlap
will often be negligible. Second, even in favourable examples where a significant
and selective overlap was present, no effect was seen due to lower-level caching.
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5 Evaluation

We now present our evaluation, comparing the performance of different physical
operators for similarity joins in the context of increasingly complex SPARQL
queries, as well as a comparison with the baseline system DBSimJoin. We con-
duct experiments with respect to two benchmarks: the first is a benchmark
we propose for Wikidata, while the second is an existing benchmark used by
DBSimJoin based on colour information. All experiments were run on a Windows
10 machine with a 4-core Intel i7-7700 processor @2.80 GHz and 16 GB RAM.
We provide code, queries, etc., online: https://github.com/scferrada/jenasj.

5.1 Wikidata: k-nn Self-similarity Queries

In order to compare the relative performance of the three similarity join algo-
rithms implemented: nested loop, vp-Trees and FLANN, we present performance
results for a set of self-similarity join queries extracted from Wikidata6. To arrive
at these queries, we begin with some data exploration. Specifically, from the
dump, we compute the ordinal/numeric characteristic sets [18] by: (1) filtering
triples with properties that do not take numeric datatype values, or that take
non-ordinal numeric datatype values (e.g., Universal Identifiers); (2) extracting
the characteristic sets of the graph [18] along with their cardinalities, where,
specifically, for each subject in the resulting graph, we extract the set of prop-
erties for which it is defined, and for each such set, we compute for how many
subjects it is defined. Finally, we generate k-nn self-similarity join queries from
1,000 ordinal/numeric characteristic sets containing more than 3 properties that
were defined for more than 500 subjects. The values of k used are 1, 4, 8. The
joins were executed several times per algorithm to make a better estimation of
the execution time, since vp-Trees and FLANN present randomised stages; we
then report average runtimes over the runs.

Figure 4 presents the average execution time for differing numbers of entities,
defined to be the cardinality of the solutions |X| input to the self-similarity
join X ��n X ′, where X ′ rewrites the variables of X in a one-to-one manner.
Highlighting that the y-axis is presented in log scale, we initially remark that
the value of k appears to have an effect on the execution time roughly comparable
with the associated increase in results that can be expected. We can see a general
trend that as the number of entities in the input initially increases, so too do
the execution times. Comparing the algorithms, we see significant differences in
performance depending on the similarity join algorithm, where (as expected) the
nested loop strategy performs poorly. On the other hand, vp-Trees and FLANN
are competitive with each other, showing similar performance; both see less sharp
increases in time as the number of input entities increases. More specifically,
FLANN is faster in 54.7% of the queries; however, we remark that, unlike vp-
Trees, FLANN computes an approximation of the real result where, in these
experiments, it gave 98% precision overall.

6 We use a truthy dump available in February, 2020.

https://github.com/scferrada/jenasj
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In terms of absolute times, we find that both FLANN and vp-Trees can
compute self-similarity joins X ��n X ′ where |X| < 20000 and 1 ≤ k ≤ 8 in
less than one second (nested loops can take minutes on such queries), and can
compute most of the queries analysed (|X| < 120000) within 10 s for k = 1, 40 s
for k = 4, and 100 s for k = 8.

Fig. 4. Average execution time by number of input solutions (entities) for k = 1, 4, 8

5.2 Corel Colour Moments: Range Similarity Queries

We compare our system with the closest found in literature, DBSimJoin [25],
a PostgreSQL extension that supports range-based similarity joins in metric
spaces implementing the QJ algorithm. As DBSimJoin only supports range
queries, we compare it with the vp-Tree implementation in Jena (Jena-vp).
The DBSimJoin system was originally tested with synthetic datasets and with
the Corel Colour Moments (CCM) dataset, which consists of 68,040 records
of images, each described with 9 dimensions representing the mean, standard
deviation and skewness for the colours of pixels in the image. For CCM, the
DBSimJoin paper only reports the effect of the number of QJ pivots on the exe-
cution time when r = 1% of the maximum possible distance in the space [25].
We compare the DBSimJoin implementation with our system for more general
performance metrics, using CCM. We converted the CCM dataset to an RDF
graph using a direct mapping.

To find suitable distances for the query, we compute a 1-nn self-similarity join
on the data, where we take the maximum of minimum distances in the result:
5.9; this distance ensures that each object is paired with at least another object
in a range-based query. We compare the runtime of both systems with increasing
values of r, using r = 5.9 as an upper bound.

Table 1 presents the results: the execution time of DBSimJoin grows rapidly
with r because of the quick growth of the size of the window partitions in the
QJ algorithm. DBSimJoin crashes with r ≥ 0.4 so we include results between
0.3 and 0.4 to illustrate the growth in runtime. The runtime of Jena-vp increases
slowly with r, where more tree branches need to be visited as the result-set size
increases up to almost 4 · 108. Our implementation does not crash with massive
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results because it fetches the bindings lazily: it obtains all pairs within distance
r for a single object and returns them one by one, only computing the next
batch when it runs out of pairs; on the other hand, QJ starts piling up window
partitions that replicate the data at a high rate, thus causing it to crash.

Considering range-based similarity joins, these results indicate that our sys-
tem outperforms DBSimJoin in terms of efficiency (our system is faster) and
scalability (our system can handle larger amounts of results).

Table 1. Execution times in seconds for range similarity joins over the CCM Dataset.

Distance # of Results DBSimJoin (s) Jena-vp (s)

0.01 68,462 47.22 6.92
0.1 68,498 84.00 7.45
0.3 72,920 775.96 9.63
0.39 92,444 1,341.86 11.17
0.4 121,826 – 11.30
1.0 4,233,806 – 35.01
5.9 395,543,225 – 1,867.86

6 Conclusions

Motivated by the fact that users of knowledge graphs such as Wikidata are
sometimes interested in finding similar results rather than crisp results, we have
proposed and evaluated an extension of the SPARQL query language with mul-
tidimensional similarity joins. Applying similarity joins in the RDF/SPARQL
setting implies unique challenges in terms of requiring dimension-agnostic meth-
ods (including dimensions that can be computed by the query), as well as data-
related issues such as varying magnitudes amongst attributes. We thus present a
novel syntax and semantics for multidimensional similarity joins in SPARQL, an
implementation based on Apache Jena, a selection of optimised physical opera-
tors for such joins, along with use-case queries to illustrate the extension.

We evaluate three different strategies for implementing nearest neighbour
joins: a brute-force method (nested loops), an online index-based approach (vp-
Trees), and an approximation-based approach (FLANN). Of these, nested loops
and vp-Trees can also be applied for range queries. Our experiments show that
of these alternatives, vp-Trees emerge as a clear winner, being an exact algo-
rithm that supports both k-nn and range similarity joins, as well as mostly
outperforming the other algorithms tested. Our implementation with vp-Trees
(and FLANN) outperforms the brute-force nested loop approach – which is how
multidimensional distances expressed in vanilla SPARQL queries or queries in
iSPARQL are evaluated by default – by orders of magnitude. Compared with the
only other system we are aware of that implements multidimensional similarity
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joins as part of a database query language – DBSimJoin – our approach can
handle k-nn queries, as well as much larger distances and result sizes.

Based on our results, we believe that similarity joins are an interesting direc-
tion to explore for SPARQL, where they could be used in applications such as
entity matching, link prediction, recommendations, multimedia retrieval, query
relaxation, etc.; they would also provide novel query functionality for users of
SPARQL endpoints, allowing them to find entities in a knowledge graph that
are similar within a metric space defined in the query by the user themselves.
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Abstract. Clustering entities over knowledge graphs (KGs) is an asset
for explorative search and knowledge discovery. KG embeddings have
been intensively investigated, mostly for KG completion, and have poten-
tial also for entity clustering. However, embeddings are latent and do not
convey user-interpretable labels for clusters. This work presents ExCut,
a novel approach that combines KG embeddings with rule mining meth-
ods, to compute informative clusters of entities along with comprehen-
sible explanations. The explanations are in the form of concise combi-
nations of entity relations. ExCut jointly enhances the quality of entity
clusters and their explanations, in an iterative manner that interleaves
the learning of embeddings and rules. Experiments on real-world KGs
demonstrate the effectiveness of ExCut for discovering high-quality clus-
ters and their explanations.

1 Introduction

Motivation. Knowledge graphs (KGs) are collections of triples of the form
〈subject predicate object〉 used for important tasks such as entity search, question
answering and text analytics, by providing rich repositories of typed entities
and associated properties. For example, Tedros Adhanom is known as a health
expert, director of the World Health Organization (WHO), alumni of the University
of London, and many more.

KGs can support analysts in exploring sets of interrelated entities and discov-
ering interesting structures. This can be facilitated by entity clustering, using
unsupervised methods for grouping entities into informative subsets. Consider,
for example, an analyst or journalist who works on a large corpus of topically
relevant documents, say on the Coronavirus crisis. Assume that key entities in
this collection have been spotted and linked to the KG already. Then the KG
can guide the user in understanding what kinds of entities are most relevant.
With thousands of input entities, from health experts, geo-locations, political
decision-makers all the way to diseases, drugs, and vaccinations, the user is
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likely overwhelmed and would appreciate a group-wise organization. This task
of computing entity clusters [4,6,16] is the problem we address.

Merely clustering the entity set is insufficient, though. The user also needs to
understand the nature of each cluster. In other words, clusters must be explain-
able, in the form of user-comprehensible labels. As entities have types in the
KG, an obvious solution is to label each cluster with its prevalent entity type.
However, some KGs have only coarse-grained types and labels like “people”
or “diseases” cannot distinguish health experts from politicians or virus diseases
from bacterial infections. Switching to fine-grained types, such as Wikipedia cat-
egories, on the other hand, causes the opposite problem: each entity is associated
with tens or hundreds of types, and it is unclear which of these would be a good
cluster label. The same holds for an approach where common SPO properties
(e.g., educatedIn UK) are considered as labels. Moreover, once we switch from a
single KG to a set of linked open data (LOD) sources as a joint entity repository,
the situation becomes even more difficult.
Problem Statement. Given a large set of entities, each with a substantial set of
KG properties in the form of categorical values or relations to other entities, our
problem is to jointly tackle: (i) Clustering: group the entities into k clusters of
semantically similar entities; (ii) Explanation: generate a user-comprehensible
concise labels for the clusters, based on the entity relations to other entities.
State-of-the-Art and Its Limitations. The problem of clustering relational
data is traditionally known as conceptual clustering (see, e.g., [25] for overview).
Recently, it has been adapted to KGs in the Semantic Web community [6,16].
Existing approaches aim at clustering graph-structured data itself by, e.g., intro-
ducing novel notions of distance and similarity directly on the KG [4,5]. Due to
the complexity of the data, finding such universally good similarity notions is
challenging [5].

Moreover, existing relational learning approaches are not sufficiently scalable
to handle large KGs with millions of facts, e.g., YAGO [26] and Wikidata [30].
Clustering entities represented in latent space, e.g., [12,31], helps to overcome
this challenge, yet, the resulting clusters are lacking explanations, clustering
process is prone to the embedding quality, and hyperparameters are hard to
tune [5]. Explaining clusters over KGs, such as [27,28] focus on the discovery
of explanations for given perfect clusters. However, obtaining such high-quality
clusters in practice is not straightforward.
Approach. To address the above shortcomings, we present ExCut, a new
method for computing explainable clusters of large sets of entities. The method
uses KG embedding as a signal for finding plausible entity clusters, and com-
bines it with logical rule mining, over the available set of properties, to
learn interpretable labels. The labels take the form of concise conjunctions
of relations that characterize the majority of entities in a cluster. For exam-
ple, for the above Coronavirus scenario, we aim at mining such labels as
worksFor(X ,Y ) ∧ type(Y , health org) ∧ hasDegreeIn(X , life sciences) for a
cluster of health experts, type(X, disease) ∧ causedBy(X,Y ) ∧ type(Y, virus)
for a cluster of virus diseases, and more. A key point in our approach is that
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these labels can in turn inform the entity embeddings, as they add salient infor-
mation. Therefore, we interleave and iterate the computation of embeddings and
rule mining adapting the embeddings using as feedback the information inferred
by the learned rules.
Contributions. Our main contributions can be summarized as follows:

– We introduce ExCut, a novel approach for computing explainable clusters,
which combines embedding-based clustering with symbolic rule learning to
produce human-understandable explanations for the resulting clusters. These
explanations can also serve as new types for entities.

– We propose several strategies to iteratively fine-tune the embedding model
to maximize the explainability and accuracy of the discovered clusters based
on the feedback from the learned explanations.

– We evaluate ExCut on real-world KGs. In many cases, it out-performs state-
of-the-art methods w.r.t. both clustering and explanations quality.

We made the implementation of ExCut and the experimental resources publicly
available at https://github.com/mhmgad/ExCut.

2 Preliminaries

Knowledge Graphs. KGs represent interlinked collections of factual infor-
mation, encoded as a set of 〈subject predicate object〉 triples, e.g.,
〈tedros adhanom directorOf WHO〉. For simplicity, we write triples as in predicate
logics format, e.g., directorOf (tedros adhanom, WHO). A signature of a KG G is
ΣG = 〈P,E〉, where P is a set of binary predicates and E is a set of entities,
i.e., constants, in G.
KG Embeddings. KG embeddings aim at representing all entities and relations
in a continuous vector space, usually as vectors or matrices called embeddings.
Embeddings can be used to estimate the likelihood of a triple to be true via a
scoring function: f : E×P×E → R. Concrete scoring functions are defined based
on various vector space assumptions: (i) The translation-based assumption, e.g.,
TransE [1] embeds entities and relations as vectors and assumes vs + vr ≈ vo

for true triples, where vs,vr,vo are vector embeddings for subject s, relation r
and object o, resp. (ii) The linear map assumption, e.g., ComplEx [29] embeds
entities as vectors and relations as matrices. It assumes that for true triples, the
linear mapping Mr of the subject embedding vs is close to the object embedding
vo : vsMr ≈ vo. The likelihood that these assumptions of the embedding
methods hold should be higher for triples in the KG than for those outside.
The learning process is done through minimizing the error induced from the
assumptions given by their respective loss functions.
Rules. Let X be a set of variables. A rule r is an expression of the form
head ← body , where head , or head(r), is an atom over P ∪ E ∪ X and body,
or body(r), is a conjunction of positive atoms over P ∪ E ∪ X. In this work,
we are concerned with Horn rules, a subset of first-order logic rules with only

https://github.com/mhmgad/ExCut
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Fig. 1. An example KG with potential COVID-19 cases split into two entity clusters (in
green and red). Black edges are relevant for the potential explanations of these clusters.

positive atoms, in which every head variable appears at least once in the body
atoms.

Example 1. An example of a rule over the KG in Fig. 1 is r :
has(X ,covid19) ←worksWith(X,Y),has(Y,covid19) stating that coworkers of
individuals with covid19 infection, potentially, also have covid19.

Execution of rules over KGs is defined in the standard way. More precisely,
let G be a KG, r a rule over ΣG , and a an atom, we write r |=G a if there is a
variable assignment that maps all atoms of body(r) into G and head(r) to the
atom a. Rule-based inference is the process of applying a given rule r on G, which
results in the extension Gr of G defined as: Gr = G ∪ {a | r |=G a}.

Example 2. Application of the rule r from Example 1 on the KG G from Fig. 1
results in r |=G has(e2, covid19) and r |=G has(e3, covid19). Hence, Gr = G ∪
{has(e2, covid19), has(e3, covid19)}.

3 Model for Computing Explainable Clusters

Given a KG, a subset of its entities and an integer k, our goal is to find a “good”
split of entities into k clusters and compute explanations for the constructed
groups that would serve as informative cluster labels. E.g., consider the KG in
Fig. 1, the set of target entities {e1, . . . , e6} and the integer k = 2. One of the
possible solutions is to put e1−3 into the first cluster C1 and the other three
entities into the second one C2. Explanations for this split would be that C1

includes those who got infected via interacting with their coworkers, while the
others were infected after visiting a risk area. Obviously, in general there are
many other splits and identifying the criteria for the best ones is challenging.

Formally, we define the problem of computing explainable entity clusters as
follows:

Definition 1 (Computing Explainable Entity Clusters Problem).
Given: (i) a knowledge graph G over ΣG = 〈P,E〉; (ii) a set T ⊆ E of target



222 M. H. Gad-Elrab et al.

entities; (iii) a number of desired clusters k > 1; (iv) an explanation language
L; and (v) an explanation evaluation function d : 2L × 2T × G → [0..1]
Find: a split C = {C1, . . . Ck} of entities in T into k clusters and a set of
explanations R = {r1, . . . , rk} for them, where ri ∈ L, s.t. d(R, C,G) is maximal.

3.1 Explanation Language

Explanations (i.e., informative labels) for clusters can be characterized as con-
junctions of common entity properties in a given cluster; for that Horn rules are
sufficient. Thus, our explanation language relies on (cluster) explanation rules
defined as follows:

Definition 2 (Cluster Explanation Rules). Let G be a KG with the signa-
ture ΣG = 〈P,E〉, let C ⊆ E be a subset of entities in G, i.e., a cluster, and X
a set of variables. A (cluster) explanation rule r for C over G is of the form

r : belongsTo(X, eC) ← p1(X1), . . . , pm(Xm ), (1)

where eC �∈ E is a fresh unique entity representing the cluster C, belongsTo �∈ P
is a fresh predicate, and body(r) is a finite set of atoms over P and X ∪ E.

Example 3. A possible explanation rule for C1 = {e1, e2, e3} in G from Fig. 1 is

r : belongsTo(X, eC1) ← worksWith(X ,Y ), has(Y ,covid19)

which describes C1 as a set of people working with infected colleagues.

Out of all possible cluster explanation rules we naturally prefer succinct
ones. Therefore, we put further restrictions on the explanation language L by
limiting the number of rule body atoms (an adjustable parameter in our method).

3.2 Evaluation Function

The function d from Definition 1 compares solutions to the problem of explain-
able entity clustering w.r.t. their quality, and ideally d should satisfy the follow-
ing two criteria: (i) Coverage: Given two explanation rules for a cluster, the one
covering more entities should be preferred and (ii) Exclusiveness: Explanation
rules for different clusters should be (approximately) mutually exclusive.

The coverage measure from data mining is a natural choice for satisfying (i).

Definition 3 (Explanation Rule Coverage). Let G be a KG, C a cluster
of entities, and r a cluster explanation rule. The coverage of r on C w.r.t. G is

cover(r ,C ,G) =
|{c ∈ C|r |=G belongsTo(c, eC)}|

|C| (2)

Example 4. Consider clusters C1 = {e1, e2, e3}, C2 = {e4, e5, e6} shown in
Fig. 1. The set of potential cluster explanation rules along with their coverage
scores for C1 and C2 respectively, is given as follows:
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r1 : belongsTo(X, eCi) ← type(X, covid19 case) 1 1
r2 : belongsTo(X , eCi ) ← gender(X, male) 0.67 0.33
r3 : belongsTo(X, eCi) ← worksWith(X,Y ), has(Y, covid19) 0.67 0
r4 : belongsTo(X, eCi) ← visited(X ,Y ), listedAs(Y , risk area) 0 1

While addressing (i), the coverage measure does not account for the criteria
(ii). Indeed, high coverage of a rule for a given cluster does not imply a low
value of this measure for other clusters. For instance, in Example 4 r1 is too
general, as it perfectly covers entities from both clusters. This motivates us to
favour (approximately) mutually exclusive explanation rules, i.e., explanation
rules with high coverage for a given cluster but low coverage for others (similar
to [13]). To capture this intuition, we define the exclusive explanation coverage
of a rule for a cluster given other clusters as follows.

Definition 4 (Exclusive Explanation Rule Coverage). Let G be a KG, let
C be a set of all clusters of interest, C ∈ C a cluster, and r an explanation rule.
The exclusive explanation rule coverage of r for C w.r.t. C and G is defined as

exc(r ,C ,C,G)=

⎧
⎪⎨

⎪⎩

0, if min
C′∈C\C

{cover(r ,C ,G)−cover(r ,C ′,G)}≤0

cover(r, C,G)−
∑

C′∈C\C

cover(r,C′,G)

|C\C| , otherwise.

(3)

Example 5. Consider C = {C1, C2},R = {r1, r2, r3, r4} from Example 4 and
the KG G from Fig. 1. We have exc(r1, C1, C,G) = exc(r1, C2, C,G) = 0,
which disqualifies r1 as an explanation for either of the clusters. For r2,
we have exc(r2, C1, C,G) = 0.34 making it less suitable for the cluster C1

than r3 with exc(r3, C1, C,G) = 0.67. Finally, r4 perfectly explains C2, since
exc(r4, C2, C,G) = 1.

Similarly, we can measure the quality of a collection of clusters with their
explanations by averaging their per-cluster exclusive explanation rule coverage.

Definition 5 (Quality of Explainable Clusters). Let G be a KG, C =
{C1, . . . , Ck} a set of entity clusters, and R = {r1, . . . , rk} a set of cluster expla-
nation rules, where each ri is an explanation for Ci, 1 ≤ i ≤ k. The explainable
clustering quality q of R for C w.r.t. G is defined as follows:

q(R, C,G) =
1

|C|
|C|∑

i=1

exc(ri, Ci, C,G) (4)

Realizing the function d in Definition 1 by the above measure allows us to con-
veniently compare the solutions of the explainable clusters discovery problem.

Example 6. Consider G from Fig. 1, the set of target entities T = {e1, . . . , e6},
k = 2, language L of cluster explanation rules with at most 2 body atoms, and
the evaluation function d given as q from Definition 5. The best solution to the
respective problem of computing explainable entity clusters is C = {C1, C2}, R =
{r3, r4}, where C1, C2, r3, r4 are from Example 4. We have that q(R, C,G)=0.83.
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Fig. 2. ExCut pipeline overview.

4 Method

We now present our method ExCut, which iteratively utilizes KG Embedding-
based Clustering and Rule Learning to compute explainable clusters. More specif-
ically, as shown in Fig. 2, ExCut starts with (1) Embedding Learning for a given
KG. Then, it performs (2) Clustering of the entities in the target set over the
learned embeddings. Afterwards, (3) Rule Learning is utilized to induce explana-
tion rules for the constructed clusters, which are ranked based on the exclusive
coverage measure. Using the learned explanation rules, we perform (4) Rule-based
Inference to deduce new entity-cluster assignment triples reflecting the learned
structural similarities among the target entities. Then, ExCut uses the rules and
the inferred assignment triples in constructing feedback to guide the clustering
in the subsequent iterations. We achieve that by fine-tuning the embeddings of
the target entities in Step (5) Embedding Adaptation.

In what follows we present the detailed description of ExCut’s components.

4.1 Embedding Learning and Clustering

Embedding Learning. ExCut starts with learning vector representations of
entities and relations. We adopt KG embeddings in this first step, as they are
well-known for their ability to capture semantic similarities among entities, and
thus could be suited for defining a robust similarity function for clustering rela-
tional data [5]. Embeddings are also effective for dealing with data incomplete-
ness, e.g., predicting the potentially missing fact worksWith(e1 , e7 ) in Fig. 1.
Moreover, embeddings facilitate the inclusion of unstructured external sources
during training, e.g., textual entity descriptions [33].

Conceptually, any embedding method can be used in our approach. We
experimented with TransE [1] and ComplEx [29] as prominent representatives
of translation-based and linear map embeddings. To account for the context
surrounding the target entities, we train embeddings using the whole KG.
Clustering. The Clustering step takes as input the trained embedding vectors
of the target entities and the number k of clusters to be constructed. We perform
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Fig. 3. KG fragments.

clustering relying on the embeddings as features to compute pairwise distances
among the target entities using standard distance functions, e.g., cosine distance.
Various classical clustering approaches or more complex embedding-driven clus-
tering techniques [31] could be exploited here too. In this paper, we rely on the
traditional Kmeans method [17] as a proof of concept.

For KGs with types, the majority of embedding models [1,29] would map
entities of a certain type to similar vectors [31]. For example, e1 and e2 in Fig. 3A
are likely to be close to each other in the embedding space, and thus have a high
chance of being clustered together. An ideal embedding model for explainable
clustering should follow the same intuition even if types in the KG are missing.
In other words, it should be capable of assigning similar vectors to entities that
belong to structurally similar subgraphs of certain pre-specified complexity. For
instance, in Fig. 3B, both e1 and e2 belong to subgraphs reflecting that these
entities are married to politicians with some covid19 symptom, and hence should
be mapped to similar vectors.

Despite certain attempts to consider specific graph patterns (e.g., [15]), to
the best of our knowledge none of the existing embedding models is general
enough to capture patterns of arbitrary complexity. We propose to tackle this
limitation (see Sect. 4.3) by passing to the embedding model feedback created
using cluster explanation rules learned in the Step 3 of ExCut.

4.2 Explanation Mining

KG-Based Explanations. KG embeddings and the respective clusters con-
structed in Steps 1 and 2 of our method are not interpretable. However, since
KG embeddings are expected to preserve semantic similarities among entities,
the clusters in the embedding space should intuitively have some meaning. Moti-
vated by this, in ExCut, we aim at decoding these similarities by learning rules
over the KG extended by the facts that reflect the cluster assignments computed
in the Clustering step.

Rule Learning Procedure. After augmenting G with belongsTo(e, eCi ) facts
for all entities e clustered in Ci, we learn Horn rules of the form (1) from Defini-
tion 2. There are powerful rule-learning tools such as AMIE+ [8], AnyBurl [18],
RLvLR [20,21] and RuDiK [22]. Nevertheless, we decided to develop our own
rule learner so that we could have full control over our specific scoring functions
and their integration into the learner’s search strategy. Following [8], we model
rules as sequences of atoms, where the first atom is the head of the rule (i.e.,
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belongsTo(X , eCi ) with Ci being the cluster to be explained), and other atoms
form the rule’s body.

For each cluster Ci, we maintain an independent queue of intermediate rules,
initialized with a single rule atom belongsTo(X , eCi ), and then exploit an iterative
breadth-first search strategy. At every iteration, we expand the existing rules in
the queue using the following refinement operators: (i) add a positive dangling
atom: add a binary positive atom with one fresh variable and another variable
appearing in the rule, i.e., shared variable , e.g., adding worksAt(X ,Y ), where Y
is a fresh variable not appearing in the current rule; (ii) add a positive instantiated
atom: add a positive atom with one argument being a constant and the other
one a shared variable , e.g., adding locatedIn(X , usa), where usa is a constant,
and X appears elsewhere in the rule constructed so far.

These operators produce a set of new rule candidates, which are then filtered
relying on the given explanation language L. Suitable rules with a minimum
coverage of 0.5, i.e., rules covering the majority of the respective cluster, are
added to the output set. We refine the rules until the maximum length specified
in the language bias is reached. Finally, we rank the constructed rules based on
the exclusive explanation coverage (Definition 4), and select the top m rules for
each cluster.

Example 7. Assume that for G in Fig. 1, and T = {e1, . . . , e6}, the embedding-
based clustering resulted in the following clusters C1 = {e1, e2, e4} and C2 =
{e5, e6, e3}, where e4 and e3 are incorrectly placed in wrong clusters. The top
cluster explanation rules for C2 ranked based on exc measure from Definition 4
are:
r1 : belongsTo(X , eC2 ) ← visited(X ,Y ) 0.67
r2 : belongsTo(X , eC2 ) ← gender(X , male) 0.33
r3 : belongsTo(X , eC2 ) ← visited(X ,Y ), listedAs(Y , risk area). 0.33

Inferring Entity-Clusters Assignments. In the Rule-based Inference (Step
4 in Fig. 2), we apply the top-m rules obtained in the Rule Learning step on the
KG to predict the assignments between the target entities and the discovered
clusters over belongsTo relation using standard deductive reasoning techniques.
The computed assignment triples are ranked and filtered based on the exc score
of the respective rules that inferred them.

Example 8. Application of the rules from Example 7 on G
w.r.t. the target entities e1−6 results in the cluster assignment triples:
{belongsTo(e3 , eC2 ), belongsTo(e4 , eC2 ), belongsTo(e2, eC2)}. Note that based on
r1, e4 is assigned to C2 instead of C1.
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Fig. 4. Inferred clusters assignment triples modeling options.

4.3 Embedding Adaptation

Learned explanation rules capture explicit structural similarities among the
target entities. We propose to utilize them to create feedback to guide the
embedding-based clustering towards better explainable clusters. This feedback is
passed to the embedding model in the form of additional training triples reflect-
ing the assignments inferred by the learned rules. Our intuition is that such
added triples should potentially help other similarities of analogous nature to be
discovered by the embeddings, compensating for the embedding-based clustering
limitation discussed in Sect. 4.1.

Specifically, the embedding adaptation (Step 5 in Fig. 2) is summarized as
follows: (a) From the Rule Learning and Rule-based Inference steps, described
above, we obtain a set of cluster assignment triples of the form belongsTo(e, eC)
together with rules inferring them, where e is an entity in the input KG G and
eC is a new entity uniquely representing the cluster C. (b) We then model the
cluster assignments from (a) and rules that produce them using one of our four
strategies described below and store the results in Ginf . (c) A subset Gcontext of
G consisting of triples that surround the target entities is then constructed. (d)
Finally, we fine-tune the embedding model by training it further on the data
compiled from Ginf and Gcontext .
Modeling Rule-Based Feedback. Determining the adequate structure and
amount of training triples required for fine-tuning the embedding model is chal-
lenging. On the one hand, the training data should be rich enough to reflect
the learned structure, but on the other hand, it should not corrupt the cur-
rent embedding. We now present our proposed four strategies for representing
the inferred cluster-assignments along with the corresponding rules as a set of
triples Ginf suitable for adapting the embedding. The strategies are listed in the
ascending order of their complexity.

– Direct: As a straightforward strategy, we directly use the inferred entity-
cluster assignment triples in Ginf as shown in Fig. 4A, e.g., belongsTo(e1 , eC2 ).

– Same-Cluster-as: In the second strategy, we model the inferred assignments
as edges only. As shown in Fig. 4B, we compile Ginf using triples of sameClsAs
relations between every pair of entities belonging to the same cluster as the
learned rules suggest, e.g., sameClsAs(e1, e2). Modeling the cluster assign-
ments using fresh relations allows us to stress the updates related to the target
entities, as no extra entities are added to the KG in this strategy.
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– Rules as Edges: Third, we propose to model the inferred assignments
together with the rules which led to their prediction. More precisely, for every
rule r which deduced belongsTo(e, eCi ), we introduce a fresh predicate pr and
add a triple pr(e, eCi) to the training set Ginf , as illustrated in Fig. 4C. This
allows us to encode all conflicting entity-cluster assignments (i.e., assign-
ments, in which an entity belongs to two different clusters) and supply the
embedding model with richer evidence about the rules that predicted these
assignments.

– Rules as Entities: Rules used in the deduction process can also be modeled
as entities. In the fourth strategy, we exploit this possibility by introducing
additional predicates infers and appliedTo, and for every rule r a fresh entity
er. Here, each belongsTo(e, eCi ) fact deduced by the rule r is modeled in Ginf

with two triples infers(er, eCi ) and appliedTo(er, e) as shown in Fig. 4D.

Embedding Fine-Tuning. At every iteration i of ExCut, we start with the
embedding vectors obtained in the previous iteration i− 1 and train the embed-
ding further with a set of adaptation triples Gadapt . The set Gadapt is composed
of the union of all Ginf

j for j = 1 . . . i and a set of context triples Gcontext . For
Gcontext , we only consider those directly involving the target entities as a sub-
ject or object. E.g., among the facts in the surrounding context of e1, we have
worksAt(e1 , org1 ) and plays(e1, tennis).

Our empirical studies (see the technical report1) showed that including
assignment triples from previous iterations j < i leads to better results; thus, we
include them in Gadapt , but distinguish entity and relation names from different
iterations. Additionally, considering the context subgraph helps in regulating
the change caused by the cluster assignment triples by preserving some of the
characteristics of the original embeddings.

5 Experiments

We evaluate the effectiveness of ExCut for computing explainable clusters. More
specifically, we report the experimental results covering the following aspects: (i)
the quality of the clusters produced by ExCut compared to existing clustering
approaches; (ii) the quality of the computed cluster explanations; (iii) the useful-
ness and understandability of the explanations for humans based on a user study;
(iv) the benefits of interleaving embedding and rule learning for enhancing the
quality of the clusters and their explanations; and (v) the impact of using dif-
ferent embedding paradigms and our strategies for modeling the feedback from
the rules.

5.1 Experiment Setup

ExCut Configurations. We implemented ExCut in Python and configured
its components as follows: (i) Embedding-based Clustering: We extended the
1 Code, data and the technical report are available at https://github.com/mhmgad/

ExCut.

https://github.com/mhmgad/ExCut
https://github.com/mhmgad/ExCut
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Table 1. Datasets statistics.

UWCSE WebKB Terror. IMDB Mutag. Hepatitis LUBM YAGO

Target Entities 209 106 1293 268 230 500 2850 3900
Target Clusters 2 4 6 2 2 2 2 3
KG Entities 991 5906 1392 578 6196 6511 242558 4295825
Relations 12 7 4 4 14 19 22 38
Facts 2216 72464 17117 1231 30805 77585 2169451 12430700

implementation of TransE and ComplEx provided by Ampligraph [3] to allow
embedding fine-tuning. We set the size of the embeddings to 100, and trained
a base model with the whole KG for 100 epochs, using stochastic gradient
descent with a learning rate of 0.0005. For fine-tuning, we trained the model
for 25 epochs with a learning rate of 0.005. Kmeans is used for clustering. (ii)
Rule Learning: We implemented the algorithm described in Sect. 4.2. For exper-
iments, we fix the language bias of the explanations to paths of length two, e.g.,
belongsTo(x, eCi) ← p(x, y), q(y, z), where z is either a free variable or bind to
a constant. (iii) Modeling Rule-based Feedback: We experiment with the four
strategies from Sect. 4.3: direct (belongToCl), same cluster as edges (sameClAs),
rules as edges (entExplCl), and rules as entities (followExpl).
Datasets. We performed experiments on six datasets (Tab. 1) with a pre-
specified set of target entities, which are widely used for relational clustering [4].
Additionally, we considered the following large-scale KGs: (i) LUBM-Courses: a
subset of entities from LUBM syntactic KG [9] describing the university domain,
where target entities are distributed over graduate and undergraduate courses;
and (ii) YAGO-Artwork KG with a set of target entities randomly selected from
YAGO [26]. The entities are uniformly distributed over three types, book, song,
and movie. To avoid trivial explanations, type triples for target entities were
removed from the KG. Table 1 reports the dataset statistics.
Baselines. We compare ExCut to the following clustering methods: (i)
ReCeNT [4], a state-of-the-art relational clustering approach, that clusters enti-
ties based on a similarity score computed from entity neighborhood trees; (ii)
Deep Embedding Clustering (DEC) [32], an embedding-based clustering method
that performs dimensionality reduction jointly with clustering and (iii) Stan-
dard Kmeans applied directly over embeddings: TransE (Kmeans-T) and Com-
plEx (Kmeans-C). This baseline is equivalent to a single iteration of our sys-
tem ExCut. Extended experiments with clustering algorithms that automatically
detect the number of clusters can be found in the technical report.
Clustering Quality Metrics. We measure the clustering quality w.r.t. the
ground truth with three standard metrics: Accuracy (ACC), Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI) (the higher, the better).
Explanation Quality Metrics. The quality of the generated explanations is
measured using the coverage metrics defined in Sect. 3.2, namely, per cluster cov-
erage (Cov) and exclusive coverage (Exc). In addition, we adapted the “novelty”
metric Weighted Relative Accuracy (WRA) [14], which represents a trade-off
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Table 2. Clustering results of ExCut compared to the baselines.

Methods UWCSE IMDB Hepatitis Mutagenesis WebKB Terrorist
ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI

B
a
se

li
n
es ReCeNT 0.90 0.60 0.54 0.61 0.02 0.01 0.51 -0.01 0.01 0.77 0.30 0.24 0.52 0.00 -0.25 0.37 0.10 0.13

DEC 0.67 0.17 0.12 0.54 0.00 0.01 0.55 0.01 0.01 0.51 0.00 0.00 0.31 0.03 0.05 0.37 0.16 0.26
Kmeans-T 0.91 0.66 0.51 0.58 0.03 0.08 0.51 0.00 0.00 0.52 0.00 0.00 0.33 0.01 0.06 0.53 0.33 0.44
Kmeans-C 0.54 0.00 0.01 0.53 0.00 0.00 0.52 0.00 0.00 0.73 0.21 0.18 0.49 0.21 0.34 0.51 0.23 0.28

E
x
C

u
t-

T belongToCl 0.99 0.96 0.92 1.00 1.00 1.00 0.83 0.43 0.35 0.68 0.12 0.13 0.43 0.13 0.17 0.52 0.27 0.31
sameClAs 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.01 0.01 0.65 0.08 0.08 0.36 0.06 0.08 0.35 0.03 0.06
entExplCl 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.41 0.33 0.64 0.07 0.08 0.43 0.13 0.20 0.45 0.17 0.23
followExpl 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.41 0.33 0.64 0.08 0.08 0.44 0.15 0.22 0.45 0.16 0.22

E
x
cu

t-
C belongToCl 0.96 0.85 0.77 1.00 1.00 1.00 0.63 0.07 0.05 0.73 0.21 0.18 0.51 0.23 0.37 0.54 0.26 0.29

sameClAs 0.98 0.91 0.86 1.00 1.00 1.00 0.58 0.02 0.02 0.73 0.21 0.18 0.38 0.08 0.17 0.34 0.03 0.08
entExplCl 0.97 0.88 0.81 0.65 0.08 0.19 0.69 0.15 0.11 0.73 0.21 0.19 0.52 0.24 0.36 0.53 0.25 0.29
followExpl 0.99 0.97 0.94 1.00 1.00 1.00 0.66 0.10 0.08 0.73 0.20 0.18 0.51 0.22 0.34 0.52 0.24 0.29

between the coverage and the accuracy of the discovered explanations. We com-
pute the average of the respective quality of the top explanations for all clusters.
To assess the quality of the solution to the explainable clustering problem from
Definition 1 found by ExCut, we compare the computed quality value to the
quality of the explanations computed over the ground truth.

All experiments were performed on a Linux machine with 80 cores and 500 GB
RAM. The average results over 5 runs are reported.
User Study. To assess the human-understandability and usefulness of the expla-
nation rules, we analyze whether ExCut explanations are the best fitting labels
for the computed clusters based on the user opinion. The study was conducted
on Amazon MTurk.

More specifically, based on the YAGO KG, we provided the user study par-
ticipants with: (i) Three clusters of entities, each represented with three entities
pseudo-randomly selected from these clusters along with a brief summary for
each entity, and a link to its Wikipedia page; (ii) A set of 10 potential expla-
nations composed of the top explanations generated by ExCut and other expla-
nations with high Cov but low Exc. Explanations were displayed in natural
language for the ease of readability. We asked the participants to match each
explanation to all relevant clusters.

A useful explanation is the one that is exclusively matched to the correct
cluster by the participants. To detect useful explanations, for every explanation-
cluster pair, we compute the ratio of responses where the pair is exclusively
matched. Let match(ri , cm) = 1 if the user matched explanation ri to the
cluster cm (otherwise 0). Then, ri is exclusively matched to cm if additionally,
match(ri , cj ) = 0 for all j �= m.

5.2 Experiment Results

In seven out of eight datasets, our approach outperforms the baselines with
regard to the overall clustering and explanation quality metrics. Additionally,
the quality of the computed explanations increases after few iterations.
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Table 3. Quality of Clusters Explanations by ExCut compared to the baselines.

Methods UWCSE IMDB Hepatitis Mutagenesis WebKB Terrorist
Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA

B
a
se

li
n
es ReCeNT 0.91 0.88 0.14 1.00 0.04 0.01 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.93 0.42 0.06

DEC 0.73 0.31 0.07 1.00 0.03 0.01 1.00 0.01 0.00 1.00 0.00 0.00 1.00 0.06 0.01 0.60 0.13 0.02
Kmeans-T 0.83 0.76 0.16 0.74 0.11 0.01 0.81 0.09 0.02 0.75 0.11 0.03 0.75 0.11 0.03 0.49 0.17 0.02
Kmeans-C 0.59 0.06 0.01 0.73 0.04 0.01 0.61 0.09 0.02 0.87 0.30 0.08 0.98 0.04 0.01 0.64 0.28 0.02

E
x
C

u
t-

T belongToCl 0.89 0.89 0.19 1.00 1.00 0.11 0.76 0.64 0.13 0.94 0.39 0.09 0.98 0.12 0.01 0.68 0.26 0.03
sameClAs 0.90 0.90 0.19 1.00 1.00 0.11 0.94 0.45 0.09 0.96 0.50 0.12 0.99 0.04 0.01 0.87 0.49 0.06
entExplCl 0.90 0.90 0.19 1.00 1.00 0.11 0.75 0.64 0.13 0.99 0.48 0.12 0.99 0.10 0.01 0.94 0.80 0.11
followExpl 0.90 0.90 0.19 1.00 1.00 0.11 0.75 0.63 0.13 0.98 0.46 0.11 0.99 0.09 0.01 0.95 0.79 0.11

E
x
C

u
t-

C belongToCl 0.88 0.86 0.18 1.00 1.00 0.11 0.73 0.50 0.12 0.87 0.31 0.08 0.98 0.08 0.01 0.68 0.32 0.02
sameClAs 0.91 0.89 0.19 1.00 1.00 0.11 0.80 0.45 0.11 0.87 0.30 0.08 0.98 0.10 0.01 0.85 0.61 0.07
entExplCl 0.88 0.88 0.19 0.73 0.18 0.01 0.85 0.73 0.18 0.87 0.31 0.08 0.97 0.08 0.01 0.68 0.33 0.03
followExpl 0.90 0.89 0.19 1.00 1.00 0.11 0.81 0.66 0.12 0.87 0.31 0.08 0.97 0.07 0.01 0.67 0.30 0.03

Ground truth 0.92 0.90 0.19 1.00 1.00 0.11 0.92 0.57 0.14 1.00 0.16 0.04 1.00 0.04 0.01 0.64 0.33 0.03

Clustering Quality. Table 2 presents the quality of the clusters computed by
the baselines, in the first 4 rows, followed by ExCut with the four feedback strate-
gies, where ExCut-T and ExCut-C stand for ExCut with TransE and ComplEx
respectively.

For all datasets except for Mutagensis, ExCut achieved, in general, better
results w.r.t. the ACC value than the state-of-the-art methods. Furthermore,
ExCut-T results in significantly better clusters on all datasets apart from Terror-
ists compared to Kmeans-T, i.e., the direct application of Kmeans on the TransE
embedding model. Since the Terrorists dataset contains several attributed pred-
icates (e.g., facts over numerical values), a different language bias for the expla-
nation rules is required.

Our system managed to fully re-discover the ground truth clusters for the
two datasets: UWCSE and IMDB. The accuracy enhancement by ExCut-T com-
pared to the respective baseline (Kmeans-T) exceeds 30% for IMDB and Hep-
atitis. Other quality measurements indicate similar increments.
Explanation Quality. Table 3 shows the average quality of the top explanations
for the discovered clusters, where the average per cluster coverage (Cov) and
exclusive coverage (Exc) are intrinsic evaluation metrics used as our optimization
functions, while the WRA measure is the extrinsic one.

The last row presents the quality of the learned explanations for the ground
truth clusters; these values are not necessarily 1.0, as perfect explanations under
the specified language bias may not exist. We report them as reference points.

ExCut enhances the average Exc and WRA scores of the clusters’ expla-
nations compared to the ones obtained by the baselines. These two measures
highlight the exclusiveness of the explanations; making them more representa-
tive than Cov. Thus, the decrease in the Cov, as in Terrorist, is acceptable, given
that it is in favor of increasing them.

Similar to the clustering results, for UWCSE and IMDB our method achieved
the explanations quality of the ground truth. For other datasets, our method
obtained higher explanations quality than the respective baselines. This demon-
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Table 4. Quality of the clusters and the explanations found in Large-scale KGs.

Methods
LUBM Courses Yago Artwork

ACC ARI NMI Cov Exc WRA ACC ARI NMI Cov Exc WRA

Baselines
DEC 0.92 0.70 0.66 0.96 0.95 0.19 0.56 0.44 0.57 0.92 0.49 0.11
Kmeans-T 0.50 0.00 0.00 0.46 0.03 0.01 0.52 0.42 0.58 0.92 0.42 0.11

E
x
C

u
t-

T belongToCl 1.00 1.00 1.00 1.00 1.00 0.25 0.82 0.63 0.59 0.85 0.70 0.16
sameClAs 0.88 0.57 0.53 0.91 0.79 0.19 0.97 0.91 0.90 0.95 0.93 0.21
entExplCl 1.00 1.00 1.00 1.00 1.00 0.25 0.97 0.92 0.91 0.95 0.93 0.21
followExpl 1.00 1.00 1.00 1.00 1.00 0.25 0.88 0.73 0.70 0.86 0.78 0.17

Ground truth - - - 1.00 1.00 0.25 - - - 0.95 0.93 0.21

Table 5. Explanations of clusters song, book, and movie from Yago KG. (∀X ∈ Ci)

Kmeans-T ExCut-T

Explanations Cov Exc WRA Explanations Cov Exc WRA

C1

created(Y ,X ), bornIn(Y ,Z ) 0.94 0.55 0.13 created(Y ,X ), type(Y , artist) 0.99 0.96 0.21
created(Y ,X ), type(Y , artist) 0.49 0.45 0.10 created(Y ,X ),won(Y , grammy) 0.57 0.57 0.12
created(Y ,X ), type(Y , writer) 0.52 0.44 0.10 created(Y ,X ), type(Y , person) 0.84 0.48 0.11

C2

directed(Y ,X ) 0.92 0.56 0.11 created(Y ,X ), type(Y , writer) 0.99 0.91 0.19
directed(Y ,X ), gender(Y , male) 0.89 0.54 0.10 created(Y ,X ), diedIn(Y ,Z ) 0.46 0.20 0.04
created(Y ,X ), type(Y , person) 0.71 0.52 0.06 created(Y ,X ) 1.00 0.00 0.05

C3

actedIn(Y ,X ), type(Y , person) 0.58 0.30 0.07 actedIn(Y ,X ) 0.81 0.81 0.19
locatedIn(X ,Y ), hasLang(Y ,Z ) 0.60 0.29 0.07 actedIn(Y ,X ), bornIn(Y ,Z ) 0.79 0.79 0.18
locatedIn(X ,Y ), currency(Y ,Z ) 0.60 0.29 0.07 actedIn(Y ,X ), type(Y , person) 0.78 0.78 0.18

strates the effectiveness of the proposed feedback mechanism in adapting the
embedding model to better capture the graph structures in the input KGs.
Results on Large-Scale KGs. Table 4 presents quality measures for clustering
and explainability of ExCut running with TransE on LUBM and YAGO. ExCut
succeeds to compute the ground truth clusters on LUBM. Despite the noise in
YAGO, it achieves approximately 40% enhancement of the clustering accuracy.
The explanation quality is also improved. ReCent did not scale on LUBM and
YAGO due to memory requirements.
Human-Understanbility. For illustration in Table 5, we present the top-3
explanations for each cluster computed by ExCut along with their quality on
the YAGO KG. In the ground truth, C1, C2, C3 are clusters for entities of the
type Songs, Books, and Movies respectively. One can observe that the explana-
tions generated by ExCut-T are more intuitive and of higher quality than those
obtained using Kmeans-T. The correlation between the explanation relevance
and the used quality metrics can also be observed.

Figure 5 summarizes the results of the 50 responses collected via the user-
study. Each bar shows the ratio of responses exclusively matching explanation
ri to each of the provided clusters. The results show that the majority of the
participants exclusively matched explanations r3 and r10 to movies; r7 and r9
to books; and r6 and r8 to songs. The explanations r3, r6, and r9 have been
learned by ExCut. The high relative exclusive matching ratio to the correspond-
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Fig. 5. Ratio of explanation-to-cluster pairs exclusively matched.

(a) IMDB (b) Hepatitis (c) YAGO Artwork

Fig. 6. ExCut-T clustering and explanations quality over the iterations(x-axis).

ing correct cluster for the ExCut explanations demonstrates their usefulness in
differentiating between the given clusters.
Results Analysis. In Fig. 6, we present a sample for the quality of the clus-
ters and the aggregated quality of their top explanations over 10 iterations of
ExCut-T using the followExpl configuration. In general, clustering and expla-
nations qualities consistently improved over iterations, which demonstrates the
advantage of the introduced embedding fine-tuning procedure. For IMDB, the
qualities drop at the beginning, but increase and reach the highest values at
the third iteration. This highlights the benefit of accumulating the auxiliary
triples for enhancing the feedback signal, thus preventing the embedding tuning
from diverging. The charts also show a correlation between the clustering and
explanation quality, which proves our hypothesis that the introduced exclusive
coverage measure (Exc) is useful for computing good clusters.

With respect to the effects of different embeddings and feedback modeling,
as shown in Tables 2 and 3, we observe that ExCut with TransE is more robust
than with ComplEx regardless of the feedback modeling method. Furthermore,
modeling the feedback using followExpl strategy leads to better results on the
majority of the datasets, especially for large-scale KGs. This reflects the ben-
efit of passing richer feedback to the embedding, as it allows for better entity
positioning in the latent space.
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6 Related Work

Clustering relational data has been actively studied (e.g., [4,6,7,16,25]). The
majority of the existing approaches are based on finding interesting features in
KGs and defining distance measures between their vectors. Our work is con-
ceptually similar, but we let embedding model identify the features implicitly
instead of computing them on the KG directly, which is in spirit of linked data
propositionalization [24].

A framework for explaining given high-quality clusters using linked data
and inductive logic programming has been proposed in [27,28]. While [28] aims
at explaining existing clusters, we focus on performing clustering and explana-
tion learning iteratively to discover high-quality clusters with explanations. The
work [12] targets interpreting embedding models by finding concept spaces in
node embeddings and linking them to a simple external type hierarchy. This is
different from our method of explaining clusters computed over embeddings by
learning rules from a given KG. Similarly, [2] proposes a method for learning
conceptual space representations of known concepts by associating a Gaussian
distribution over a learned vector space with each concept. In [10,23] the authors
introduce methods for answering logical queries over the embedding space. In
contrast, in our work, the concepts are not given but rather need to be discov-
ered.

While the step of explanation learning in our method is an adaptation of [8],
the extension of other exact symbolic rule learning methods [18,22] is likewise
possible. In principle, one can also employ neural-based rule learners for our
needs, such as [20,21,34]; however the integration of our exclusive rule coverage
scoring function into such approaches is challenging, and requires further careful
investigation.

Several methods recently focused on combining [11,35] and comparing [5,19]
rule learning and embedding methods. The authors of [11] propose to rank rules
learned from KGs by relying both on their embedding-based predictive quality
and traditional rule measures, which is conceptually different from our work.
In [35] an iterative method for joint learning of linear-map embeddings and
OWL axioms (without nominals) has been introduced. The triples inferred by
the learned rukes are injected into the KG, before the embedding is re-trained
from scratch in the subsequent iteration. In contrast, the rule-based feedback
generated by ExCut is not limited to only fact predictions, but encodes further
structural similarities across entities. Furthermore, we do not re-train the whole
model from scratch, but rather adapt the embedding of target entities accounting
for the feedback. Finally, unlike [35], the rules that we learn support constants,
which allow to capture a larger variety of explanations.

7 Conclusion

We have proposed ExCut, an approach for explainable KG entity clustering,
which iteratively utilizes embeddings and rule learning methods to compute
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accurate clusters and human-readable explanations for them. Our approach is
flexible, as any embedding model can be used. Experiments show the effective-
ness of ExCut on real-world KGs.

There are several directions for future work. Considering more general rules
(e.g., with negations) in the Rule Learning component of our method or exploit-
ing several embedding models instead of a single one in the Embedding-based
Clustering step should lead to cleaner clusters. Further questions to study include
the analysis of how well our method performs when the number of clusters is
very large, and how the feedback from the rules can be used to determine the
number of clusters automatically.
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Abstract. Client-side SPARQL query processing enables evaluating
queries over RDF datasets published on the Web without producing
high loads on the data providers’ servers. Triple Pattern Fragment (TPF)
servers provide means to publish highly available RDF data on the Web
and clients to evaluate SPARQL queries over them have been proposed.
For clients to devise efficient query plans that minimize both the number
of requests submitted to the server as well as the overall execution time,
it is key to accurately estimate join cardinalities to appropriately place
physical join operators. However, collecting accurate and fine-grained
statistics from remote sources is a challenging task, and clients typically
rely on the metadata provided by the TPF server. Addressing this short-
coming, we propose CROP, a cost- and robust-based query optimizer to
devise efficient plans combining both cost and robustness of query plans.
The idea of robustness is determining the impact of join cardinality esti-
mation errors on the cost of a query plan and to avoid plans where this
impact is very high. In our experimental study, we show that our concept
of robustness complements the cost model and improves the efficiency
of query plans. Additionally, we show that our approach outperforms
existing TPF clients in terms of overall runtime and number of requests.

1 Introduction

Different means to publish RDF and Linked Data on the web have been pro-
posed ranging from data dumps with no support to directly query the data to
SPARQL endpoints which allow for executing complex SPARQL queries over
the data [17]. Motivated by the low availability and high server-side cost of
SPARQL endpoints, Triple Pattern Fragments (TPFs) have been proposed as a
lightweight triple pattern-based query interface [17]. The goal is to increase the
availability of data by reducing server-side costs and shifting the cost for evalu-
ating large queries to the client. Given a triple pattern, the TPF server returns
all matching triples split into pages as well as additional metadata on the esti-
mated number of total matching triples and the page size. Evaluating SPARQL
queries over datasets published via TPF server requires a specific client with
query processing capabilities. A key challenge of such clients is devising efficient
query plans able to minimize both the overall query execution time as well as
the number of requests submitted to the TPF server. Different clients implement
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 238–257, 2020.
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heuristics based on the provided metadata to devise efficient query plans over
TPF servers [1,16,17]. However, a major drawback of the heuristics implemented
by those clients is the fact that they fail to adapt to different classes of queries
which can lead to long runtimes and produce large numbers of requests. This
can be attributed to the following reasons. First, they follow a greedy planning
strategy and do not explore and compare alternative query plans. Second, they
only rely on basic cardinality estimation functions to estimate the cost of query
plans and to place physical join operators. To overcome these limitations, a more
flexible way of query planning in TPF clients can be realized by implementing
both a cost model to estimate the cost of query plans and a query planner that
explores alternative plans.

To this end, we propose a new cost model incorporating both the cost at
the client (execution time) as well as the cost induced at the server (number
of requests) to devise efficient query plans. Our cost model relies on a basic
estimation function to estimate the number of intermediate results and join
cardinalities of sub-queries based on the TPF metadata. Due to the limited
statistics, we additionally propose the concept of robustness for query plans
to avoid query plans which are very susceptive to errors in the estimations.
Therefore, the robustness of a query plan is determined by the ratio of its best-
case cost and its average-case cost. A higher ratio indicates that the best-case cost
deviates less from the average case cost and the plan is considered more robust.
Finally, we present a query plan optimizer that combines both the cost model
and the concept of robustness to select the most appropriate query plan which
ideally minimizes the overall evaluation runtime and the number of requests
submitted to the TPF server. In summary, our contributions are

– a cost model for executing query plans over TPF servers,
– the concept of robustness for SPARQL query plans,
– a query plan optimizer using iterative dynamic programming to explore alter-

native query plans with the goal to obtain both cheap and robust query plans,
and

– an implementation of the approach evaluated in an extensive experimental
study.

The remainder of this paper is structured as follows. First, we present a moti-
vating example in Sect. 2. In Sect. 3, we present our approach and evaluate it
in Sect. 4 by analyzing the results of our experimental study. Next, we discuss
related work in Sect. 5. Finally, we summarize our work in Sect. 6 and point to
future work.

2 Motivating Example

Consider the query from Listing 1.1 to obtain persons with “Stanford University”
as their alma mater, the title of their thesis, and their doctoral advisor using the
TPF for the English version of DBpedia1 with a page size of 100. The estimated
1 http://fragments.dbpedia.org/2014/en.

http://fragments.dbpedia.org/2014/en
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triples per triple pattern provided as metadata from the TPF server are indicated
in Listing 1.1.

Listing 1.1. Query to get persons with “Stanford University” as their alma mater, the
title of their thesis and their doctoral advisor. Prefixes are used as in http://prefix.cc/.

0 SELECT ∗ WHERE {
1 ?u rdfs : label ‘‘ Stanford University ’ ’@en . # Count: 2
2 ?s dbo:almaMater ?u . # Count: 86088
3 ?s dbp: thesisTitle ?t . # Count: 1187
4 ?s dbo:doctoralAdvisor ?d . } # Count: 4885

Fig. 1. Three alternative query plans for the SPARQL query from Listing 1.1. Indicated
on the edges are the number of requests to be performed according to the corresponding
join operators: nested loop join (NLJ) and symmetric hash join (SHJ).

We now want to investigate the query plans produced by the recent TPF
clients Comunica and nLDE. When executing the query using comunica-sparql2,
the client produces 813 requests to obtain the 29 results of the query. The heuris-
tics first sorts the triple patterns according to the number of triples they match.
They are then placed in ascending order in the query plan with Nested Loop
Joins (NLJs) as the physical operators [16]. The corresponding physical plan
is shown in Fig. 1a, where the number of requests is indicated on the edges.
First, 4 requests are performed to obtain the statistics on the triple patterns,
and thereafter, the plan is executed with 809 requests. Executing the query using
nLDE3 results in a total of 75 requests. First, 4 requests are performed to receive
the triple patterns’ statistics. Next, by placing two Symmetric Hash Join (SHJ)
instead of NLJs only, the number of requests for executing the plan is reduced
to a total of 71. In the heuristic of the nLDE query planner, the number of
results produced by a join, i.e., the join cardinality estimations, are computed
as the sum of the incoming cardinalities of the join. Based on these estimations
the planner places either an NLJ or an SHJ [1]. The corresponding query plan
is shown in Fig. 1b. Taking a closer look at the query, we observe that neither

2 https://github.com/comunica/comunica/tree/master/packages/actor-init-sparql.
3 https://github.com/maribelacosta/nlde.

http://prefix.cc/
https://github.com/comunica/comunica/tree/master/packages/actor-init-sparql
https://github.com/maribelacosta/nlde
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comunica-sparql nor nLDE find the query plan which minimizes the number of
requests to be performed. The optimal plan is shown in Fig. 1c and it requires a
total of 69 requests only. This is achieved by placing an NLJ at first and third
join operator, and an SHJ at the second join operator. This example emphasizes
the challenge for heuristics to devise efficient query plans based on only the count
statistic provided by the TPF servers. In this example, the subject-object join of
triple patterns 1 and 2 yields 756 results. This can be difficult to estimate relying
on the TPF metadata alone. On the one hand, an optimistic heuristic assuming
low join cardinalities (for example the minimum) can lead to sub-optimal query
plans as the query plan in Fig. 1a shows. On the other hand this also true for
more conservative cardinality estimation models that assume the higher join car-
dinalities, for example the sum, which may lead to overestimating cardinalities
and too conservative query plans.

The motivating example illustrates the challenge of query planning in the
absence of fine-grained statistics in client-side SPARQL query evaluation over
remote data sources such as TPF servers. In such scenarios, query plans should
ideally consider not only the estimated cost of the query plans but also its
robustness with respect to errors in the join cardinality estimations. Therefore,
we investigate how query planning for TPFs can be improved by considering
not only the cost of a given query plan but also its robustness. Furthermore, we
investigate for which class of queries the concept of robustness is most beneficial
and whether such queries can be identified by our robustness metric.

3 Our Approach

We propose CROP, a Cost- and Robustness-based query plan Optimizer to devise
efficient plans for SPARQL queries over Triple Pattern Fragment (TPF) servers.
The key components of our approach are: (Sect. 3.1) a cost model to estimate
the cost of executing a query plan over a TPF server, (Sect. 3.2) the concept of
plan robustness to assess how robust plans are with respect to join cardinality
estimation errors, and (Sect. 3.3) a query plan optimizer combining both cost
and robustness to obtain efficient query plans.

3.1 Cost Model

We present a cost model for estimating the cost of query plans for conjunctive
SPARQL queries, i.e. Basic Graph Patterns (BGPs). Given a query plan P for
a conjunctive query Q = {tp1, . . . , tpn} with |Q| = n triple patterns, the cost of
P is computed as

Cost(P ) :=

{
0 if P is a leaf tpi

Cost(P1 �� P2) + Cost(P1) + Cost(P2) if P = P1 �� P2.
(1)

where Cost(P1 �� P2) is the cost of joining sub-plans P1 and P2 using the physical
join operator ��. Note that the cost for a leaf is 0 as its cost is accounted for
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as part of the join cost Cost(Pi �� Pj). In our model, the cost of joining two
sub-plans is comprised of two aspects: (i) request cost, the cost for submitting
HTTP requests to the TPF server if necessary; and (ii) processing cost, the cost
for processing the results on the client side. Hence, the cost of joining sub-plans
P1 and P2 using the join operator �� is given by:

Cost(P1 �� P2) := Proc(P1 �� P2) + Req(P1 �� P2) (2)

where Proc are the processing cost and Req the request cost. Note that both
components depend on the physical join operator. First, we distinguish the pro-
cessing cost joining sub-plans P1 and P2 using the physical operator Symmetric
Hash Join (��SHJ) and Nested Loop Join (��NLJ ) as

Proc(P1 �� P2) :=

{
φSHJ · card(P1 �� P2), if ��= ��SHJ

φNLJ · (card(P1 �� P2) + card(P2)), if ��= ��NLJ

(3)

Note the first parameter of the cost model φ ∈ [0,∞) allows for weighting
the local processing cost with respect to the request cost. For instance, φ = 1
indicates that processing a single tuple locally is equally expensive as one HTTP
request. The impact of processing cost and request cost on the query execution
time depends on the scenario in which the TPF server and client are deployed. In
a local scenario, where network latency and the load on the TPF server are low,
the impact of the processing cost on the execution time might be higher than
in a scenario with high network latency, where the time for submitting requests
has a larger share on the execution time. Furthermore, including card(P2) in
the processing cost for the NLJ allows the optimizer to estimate the cost of
alternative plans more accurately. For instance, if we assume the minimum as
the estimation function and do not consider the cardinality of the inner relation,
a plan (A ��NLJ B) could be chosen over (A ��NLJ C) even if B has a higher
cost than C.

The expected number of requests to be performed for joining two sub-plans
depends on the physical operator and the estimated number of results produced
by the sub-plans. Therefore, we introduce the request cost function for two com-
mon physical join operators. In the following, we denote |Pi| as the number of
triples in sub-plan Pi.

Nested Loop Join. The cost of a Nested Loop Join (NLJ) combines the cost
induced by the requests for obtaining the tuples of the outer plan P1 and then
probing the instantiations in the inner plan P2. Therefore, the request costs are
computed as

Req(P1 ��NLJ P2) := �|P1| = 1� ·
⌈

card(P1)
p

⌉

+ d(P1, P2) · max
{

card(P1),
⌈

card(P1 �� P2)
p

⌉}
,

(4)
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4where p is the page size of the TPF server, and d(P1, P2) computes a discounting
factor. In this work, we restrict the inner plan in the NLJs to be triple patterns
only, i.e. |P2| = 1, as it allows for more accurate request cost estimations. The
first summand calculates the number of requests for obtaining solution mappings
for P1. In case P1 is a triple pattern, the number of requests is given the car-
dinality of P1 divided by the page size. The second summand is the estimated
number of requests to be performed on the inner plan multiplied by a discount
factor. The minimum number of requests that need to be performed is given by
the cardinality for P1, i.e. one request per binding. However, in the case the join
produces more results per binding than the page size, such that paginating is
required to obtain all solutions for one binding in the inner relation, we need to
consider this in the maximum as well. The discounting factor is computed using
the parameter δ ∈ [0,∞) and the maximum height of the sub-plans as

d(P1, P2) := (max{1, δ · height(P1), δ · height(P2)})−1.

The rationale for including a discount factor for the requests on the inner plan of
the NLJ is twofold. First, since the join variables are bound by the terms obtained
from the outer plan, the number of variables in the triple pattern is reduced and
as the empirical study by Heling et al. [10] indicates, this also leads to a reduction
in response times of the TPF server. Second, for star-shaped queries, typically
the number of results reduces with an increasing number of join operations and,
therefore, the higher an NLJ is placed in the query plan, the more likely it is
that it needs to perform fewer requests in the inner plan than the estimated
cardinality of the outer relation suggests. The discount factor d(P1, P2) allows
for considering these aspects and its parameter δ ∈ [0,∞) allows for setting
the magnitude of the discount factor. With δ = 0, there is no discount and
with increasing δ, placing NLJs higher in the query plan becomes increasingly
cheaper.

Symmetric Hash Join. The request cost is computed based on the number of
requests that need to be performed if either or both sub-plans are triple patterns.

Req(P1 ��SHJ P2) := �|P1| = 1� ·
⌈

card(P1)
p

⌉
+ �|P2| = 1� ·

⌈
card(P2)

p

⌉
. (5)

Note that the request cost can be computed accurately as it only depends on the
metadata provided by the TPF server, with card(Pi) = count(Pi) if |Pi| = 1.

Cardinality Estimation. The previous formulas for computing the cost rely
on the expected number of intermediate results produced by the join operators,
which is determined by recursively applying a join cardinality estimation func-
tion. Given two sub-plans P1 and P2, we estimate the cardinality as the minimum
of the sub-plans’ cardinalities:

card(P1 �� P2) := min(card(P1), card(P2)), (6)
4 �·� denote Iverson brackets that evaluate to 1 if its logical proposition is true and to

0 otherwise.
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where the cardinality for a single triple pattern is obtain from the metadata
provided by the TPF server card(Pi) = count(Pi),∀ |Pi| = 1. In our cost model,
we choose the minimum as the cardinality estimation function since it showed
good results in our preliminary analysis. Next, we will show how the concept
of robustness helps to avoid choosing the cheapest plan merely based on these
optimistic cardinality estimations.

3.2 Robust Query Plans

Accurate join cardinality estimations aid to find a suitable join order and to
properly place physical operators in the query plan to minimize the number of
requests. However, estimating the cardinalities is challenging, especially when
only basic statistics about the data are available. To address this challenge,
we propose the concept of robustness for SPARQL query plans to determine
how strongly the cost of a plan is impacted when using alternative cardinality
estimations. The core idea is comparing the best-case cost of a query plan to
the average-case cost. To obtain the average-case cost, the cost of the query
plan is computed using different cardinality estimation functions for joining sub-
plans. The results are several cost values for the query plan under different
circumstances which can be aggregated to an averaged cost value. Consequently,
a robust query plan is a query plan in which the best-case cost only slightly
differs from the average-case cost.

Example 1. Let us revisit the query from the motivating example. For the sake
of simplicity, we only consider the sub-plan P = ((tp1 �� tp2) �� tp3) and request
cost with δ = 0. Let us consider the alternative query plans P1 = ((tp1 ��NLJ

tp2) ��NLJ tp3) and P2 = ((tp1 ��NLJ tp2) ��SHJ tp3). For comparing the
robustness of P1 and P2, we not only use the cardinality estimation of the cost
model (the minimum, cf. Eq. 6) but compute the cost using different cardinality
estimation functions, for example using the maximum and mean as alternatives.
The resulting cost values allow for deriving the average-case cost and thus the
robustness of P1 and P2. Depending on the cardinality estimation function, we
obtain the following cost for the query plans P1 and P2:

Cardinality Estimation Function
minimum mean maximum

Cost(P1) 5 43,477.45 86,950.88
Cost(P2) 15 444.45 874.88

Query plan P1 yield the lowest best-case cost. However, we observe that the cost
for query plan P2 is not as strongly impacted by different estimation functions.
Hence, its average-case cost does not deviate as strongly from its best-case cost
in comparison to P1. As a result, query plan P2 is considered a more robust
query plan.

Definition 1 (Query Plan Robustness). Let P be a physical query plan for
query Q, Cost∗(P ) the best-case and Cost(P ) the average-case cost for P . The
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query plan robustness for P is defined as

Robustness(P ) :=
Cost∗(P )
Cost(P )

.

Namely, the robustness of a plan is the ratio between the cost in the best-case
Cost∗ and the cost in the average-case Cost. A higher ratio indicates a more
robust query plan since its expected average-case cost are not as strongly affected
by changes in the cardinality estimations with respect to its best-case cost. Next,
we extend the definition of our Cost function to formalize the average-case cost
of a query plan. Let O = {o1, . . . , on−1} be the set of binary join operators for
plan P (|P | = n) for a conjunctive query Q, and E = [e1, . . . , en−1] a vector
of estimation functions with ei the cardinality estimation function applied at
join operator oi. A cardinality estimation function ei : N

2
0 → N0 maps the

cardinalities of a join operators’ sub-plans a = card(P1) and b = card(P2) to
an estimated join cardinality value. We then denote the cost for a query plan P
computed using the cardinality estimation function given by E as CostE(P ).

Definition 2 (Best-case Cost). The best-case cost for a query plan P is
defined as

Cost∗(P ) := CostE(P ),with ei = f, ∀ei ∈ E , and f : (a, b) �→ min{a, b}.

In other words, at every join operator in the query plan, we use the minimum
cardinality of the sub-plans to estimate the join cardinality. This is identical to
the estimations used in our cost model. The computation of the average-case
cost requires applying different combinations of such estimation functions at the
join operators.

Definition 3 (Average-case Cost) Let F = {f1, . . . , fm} be a set of m esti-
mation functions with f : N2

0 → N0, ∀f ∈ F . The average-case cost for a query
plan P is defined as the median of its cost when applying all potential combina-
tions of estimation functions E ∈ Fn−1 for the operators of the query plan:

Cost(P ) := median{CostE(P ) | ∀E ∈ Fn−1}.

We empirically tested different sets of estimation functions in F and found
that the following produce suitable results for the average-case cost: F =
{f1, f2, f3, f4} with

f1 : (a, b) �→ min{a, b}, f2 : (a, b) �→ max{a, b},
f3 : (a, b) �→ a + b, f4 : (a, b) �→ max{a/b, b/a}.

Furthermore, we observed that for subject-object (s-o) and object-object (o-o)
joins the cardinalities were more frequently misestimated in the original cost
model, while for all other types of joins, such as star-shaped groups, it provided
adequate estimations. Therefore, we only consider alternative cardinality esti-
mation function ei for a join operator oi, if the join performed at oi is either of
type s-o or o-o.
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3.3 Query Plan Optimizer

The idea of robust query plans yields two major questions: (i) when should a
more robust plan be chosen over the cheapest plan, and (ii) which alternative
plan should be chosen instead? To this end, we propose a query plan optimizer
combining cost and robustness to devise efficient query plans. Its parameters
define when a robust plan is chosen and which alternative plan is chosen instead.
The main steps of the query plan optimizer are:

1. Obtain a selection of query plans based on Iterative Dynamic Programming
(IDP).

2. Assess the robustness of the cheapest plan.
3. If the cheapest plan is not robust enough, find an alternative more robust

query plan.

The process is detailed in Algorithm 1. The inputs are a SPARQL Query Q,
block size k ∈ [2,∞), the number of top t ∈ N cheapest plans, the robustness
threshold ρ ∈ [0, 1] and the cost threshold γ ∈ [0, 1]. The first step is to obtain a
selection of alternative query plans using IDP. We adapted the original “IDP1−
standard− bestP lan” algorithm presented by Kossmann and Stocker [11] in the
following way. Identical to the original algorithm, we only consider select-project-
join queries, i.e. BGP queries, and each triple pattern tpi ∈ Q is considered a
relation in the algorithm. Given a subset of triple patterns S ⊂ Q, the original
algorithm considers the single optimal plan for S according to the cost model
in optP lan(S) by applying the pruneP lans function to the potential candidate
plans. However, as we do want to obtain alternative plans, we keep the top t
cheapest plans for S in optP lan(S) for |S| > 2. When joining two triple patterns
(|S| = 2), we always chose the physical join operator with the lowest cost for
the following reasons: We expect accurate cost estimations for joining two triple
patterns as the join estimation error impact is low and it reduces the number of
plans to be evaluated in the IDP.

Example 2. Consider the query for the motivating example and S1 = {tp1, tp2}.
According to the cost model, the cheapest plan is optP lan(S1) = {(tp1 ��NLJ

tp2)}. However, for |S| > 2 we need to place at least two join operators where the
cost of at least one join operator relies on the estimated cardinality of the other.
Therefore, we need to keep alternative plans in case a robust alternative plan
is required. For instance with S2 = {tp1, tp2, tp3}, the optimal plan according
to the cost model is P1 = ((tp1 ��NLJ tp2) ��NLJ tp3), however as it turns
out, the true optimal plan for S is P2 = ((tp1 ��NLJ tp2) ��SHJ tp3). As a
result, the algorithm cannot prune all but one plan such that it can choose an
alternative robust plan if necessary. Combining the latter observations, we can
set optP lan(S2) = {P1, P2}.

Given the set of t candidate query plans P from IDP , the overall cheapest plan
P ∗ is determined (Line 2). If the cheapest plan P ∗ is considered robust enough
according to the robustness threshold ρ, it becomes the final plan and is returned
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Algorithm 1: CROP Query Plan Optimizer
Input: BGP query Q, block size k, top t, robustness threshold ρ, cost threshold

γ
1 P = IDP(Q, k, t)
2 P ∗ = arg minP∈P Cost(P )
3 if Robustness(P ∗) < ρ and |P| > 1 then
4 R = {R | R ∈ P ∧ Robustness(R) ≥ ρ}
5 if R == ∅ then
6 R = P \ {P ∗}
7 R∗ = arg minR∈R Cost(R)

8 if Cost(P∗)
Cost(R∗)

> γ then

9 P ∗ = R∗

10

11 return P ∗

(Line 10). However, if the plan is not robust enough with respect to ρ and there
are alternative plans to chose from (Line 3), the query plan optimizer tries to
obtain a more robust alternative plan. First, the planner selects all plans which
are above the robustness threshold as R. If no such plans exist, it will consider
all alternative plans except the cheapest plan. If the ratio of best-case cost of
the cheapest plan P ∗ to the best-case cost of the alternative plan R∗ is higher
than the cost threshold γ, the alternative plan R∗ is selected as the final plan
P ∗. For instance, for ρ = 0.1 and γ = 0.2, a robust plan is chosen over the
cheapest plan if (i) for the cheapest plan P ∗, Cost(P ∗) is 10 times higher than
Cost∗(P ∗) and (ii) for alternative robust plan R∗, Cost∗(R∗) is no more than 5
times (1/γ) higher than Cost∗(P ∗). Hence, smaller robustness threshold values
lead to selecting alternative plans when the cheapest plan is less robust, and
smaller cost threshold values lead to less restriction on the alternative robust
plan with respect to its cost. The combination of both parameters allows for
exploring alternative robust plans (ρ) but does not require to chose them at
any cost (γ) and therefore limit the performance degradation risk [19]. Next, we
investigate the time complexity of the proposed optimizer.

Theorem 1. With the number top plans t and the set of estimation functions
F constant, the time complexity of the query plan optimizer is in the order of

Case 1: O(2n), for 2 ≤ k < n,
Case 2: O(3n), for k = n.

Proof. The time complexity of the query plan optimizer is given by the IDP
algorithm and computing the average-case cost in the robustness computation.
Kossmann and Stocker [11] provide the proofs for the former. For the latter,
given |F | = m different estimation functions and the top t query plans, the
upper bound for the number of alternative cardinality estimations per query
plan is t · m · 2n−1. As t and m are considered constants, the time complexity of
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the robustness computation is in the order of O(2n). Combining these complexity
results, we have:

Case 1: For k < n, the time complexity of computing the robustness exceeds the
time complexity of IDP, which is O(n2), for k = 2 and O(nk), for 2 < k < n.
As a result, the time complexity is in the order of O(2n).

Case 2: For k = n, the time complexity of IDP exceeds the time complexity of
the robustness computation and therefore, we have that the time complexity
of the query plan optimizer is in the order of O(3n).

4 Experimental Evaluation

We empirically evaluate the query plan optimizer with the proposed cost model
and the concept of robust query plans. First, we study how the parameters of the
cost model and the IDP algorithm impact on the efficiency of the query plans.
Thereafter, we study different robustness and cost thresholds in the query plan
optimizer to find a good combination of both. Finally, we compare our implemen-
tation with the found parameters to state of the art TPF clients: comunica-sparql
(See footnote 2) (referred to as Comunica) and nLDE (See footnote 3).

Datasets and Queries. We use the datasets used in previous evaluations:
DBpedia 2014 (nLDE) and WatDiv [3] (Comunica). For DBpedia, we choose a
total of 35 queries including Q1-Q10 from the nLDE Benchmark 1 and all from
Benchmark 2. For WatDiv, we generated a dataset with scale factor = 100 and
the corresponding default queries with query-count = 5 resulting in a total of 88
distinct queries.5 The resulting 123 queries are used for our experimental study.
In addition, to showcase the benefits of including the robustness in the query
plan optimizer on a variety of datasets, we designed an additional benchmark
with 10 queries for 3 datasets (DBpedia 2014, GeoNames 20126, DBLP 2017
(See footnote 6)) that include either a s-o and or an o-o join and 3–4 triple
patterns.7

Implementation. CROP is implemented based on the nLDE source code (See
footnote 3). We additionally implemented our cost model, robustness computa-
tion and the query plan optimizer.8 No routing adaptivity features, i.e. routing
policies, are used in our implementation. The engine was implemented in Python
2.7.13 and we used the Server.js v2.2.39 to deploy the TPF server with HDT
backend for all datasets. Experiments were executed on a Debian Jessie 64 bit
machine with CPU: 2x Intel(R) Xeon(R) CPU E5-2670 2.60 GHz (16 physical
cores), and 256 GB RAM. The timeout was set to 900 s. After a warm-up run,
the queries were executed three times in all experiments.
5 Complex queries do not contain placeholders, leading to one distinct query in C1,
C2, and C3.

6 http://www.rdfhdt.org/datasets/.
7 https://github.com/Lars-H/crop analysis.
8 https://github.com/Lars-H/crop.
9 https://github.com/LinkedDataFragments/Server.js.

http://www.rdfhdt.org/datasets/
https://github.com/Lars-H/crop_analysis
https://github.com/Lars-H/crop
https://github.com/LinkedDataFragments/Server.js
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Evaluation Metrics. The following metrics are computed: (i) Runtime:
Elapsed time spent by a query engine to complete the evaluation of a query.
For our implementation, we measure both the optimization time to obtain the
query plan and the execution time to execute the plan separately. (ii) Number
of Requests: Total number of requests submitted to the server during the query
execution. (iii) Number of Answers: Total number of answers produced during
query execution. If not stated otherwise, we report mean values for all three
runs. All raw results are provided in the supplemental material.

Fig. 2. Experimental results for the parameters of the cost model and IDP.

4.1 Experimental Results

Cost Model and IDP Parameters. First, we investigate how the parameters
of the cost model impact runtime and the number of requests. In the optimizer,
we disable robust plan selection (ρ = 0.00), set the default block size to k = 3,
and select the top t = 5 plans. We focus on the parameter δ which we set to δ ∈
{0, 1, 2, 3, 4, 5, 6, 7}. We do not investigate different processing cost parameters
and set φNLJ = φSHJ = 0.001, as they are more relevant when considering
different deployment scenarios, where network delays have a stronger impact on
the cost. Figure 2a shows the mean runtime, the mean number of requests per
run, and the Pearson Correlation Coefficient (PCC) between the cost and the
number of requests. The latter provides an indication of how well the estimated
cost of a query plan reflects the actual number of requests to be performed. The
best runtime results are observed for δ = 4, even though the number requests are
about 8% higher than for δ = 1. Furthermore, the highest positive correlation
between the estimated cost and the number of requests of a plan are observed
for δ ∈ {3, 4} with PCC = 0.52. The worst runtime results are observed for
δ = 0, which is equal to no height discount at all. This shows that the parameter
allows for adjusting the cost model such that the estimated cost better reflects
the number of requests resulting in more efficient query plans. Based on the
findings, we set δ = 4 in the following experiments.
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Table 1. Mean runtime (r), mean number of requests (Req.) and the number of robust
plans (|R∗|) selected by the query plan optimizer. Indicate in bold are best overall
runtime and minimum number of requests.

ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25

γ r Req. |R∗| r Req. |R∗| r Req. |R∗| r Req. |R∗| r Req. |R∗|
0.1 556.86 64,167 16 534.16 82,657 17 2048 99,015 28 2094 103,709 31 2784 124,070 38

0.3 552.44 64,157 16 533.7 82,629 17 930 105,337 10 937 105,537 10 940 105,728 11

0.5 957.0 86,640 6 911.71 90,932 6 910 91,175 9 908 91,388 9 911 91,511 9

0.7 950.98 86,634 6 909.64 90,962 6 910 91,161 8 913 91,173 5 909 91,298 5

0.9 947.87 86,627 6 915.23 90,934 6 909 90,937 7 907 90,939 4 910 90,986 2

Next, we focus on the parameter of the IDP algorithm and investigate how the
block size impacts on both the efficiency of the query plans and the optimization
time to obtain these plans. We set t = 5 and keep δ = 4 as suggested by the
previous experiment. We study k ∈ {2, 3, 4, 5, 6}. The median runtimes r̃ for all
queries per k are shown in Fig. 2b. Note that k = min{k, |Q|} and, therefore, we
show the results separately for small queries (|Q| < 6) and larger queries (|Q| ≥
6). Indicated in blue is the proportion of the optimization time. The results
show that for small queries the median runtime, as well as the optimization time
proportion, is similar for all k. However, for larger queries, the median runtimes
increase with k. Interestingly, this increase is due to an increased proportion
of optimization time spent on obtaining ideally better plans. At the same time
the execution time (lower part of the bars) is similar (k = 4) or slightly lower
(k ∈ {5, 6}). The box plots for the number of requests for the query plans per
k are shown in Fig. 2c. The results show that the median number of requests
is minimal for k = 4 and the 25 − 75% quantile is most compact for k = 4 as
well. Moreover, the most extreme outliers are observed with k = 5 and k = 6.
Based on these observations to avoid disproportionate optimization times but
still explore the space of possible plans sufficiently, we set k in a dynamic fashion
with: k = 4 if |Q| < 6 and k = 2 otherwise.

Robustness and Cost Threshold. After determining appropriate parameters
for the cost model and IDP, we investigate the parameters that impact the
decision when an alternative robust plan should be chosen over the cheapest

Fig. 3. Results for the 10 queries of the custom benchmark.
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plan. The robustness threshold ρ determines when an alternative plan should
be considered, while the cost threshold γ limits the alternative plans to those
which are not considered too expensive. We tested all 25 combinations of ρ ∈
{0.05, 0.10, 0.15, 0.20, 0.25} and γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and run all queries for
each combination three times. The averaged results of the total runtimes and
the number of requests per run for all 25 parameter configurations are listed in
Table 1. Also included is the number of queries for which an alternative robust
query plan was selected over the cheapest plan as |R∗|. Lowest runtime and
number of requests are indicated in bold. The parameters configuration ρ = 0.10,
γ = 0.3 yield the best runtime results while the lowest number of requests are
performed with the configuration ρ = 0.05, γ = 0.3. Taking a closer look at
the two configurations, we find that the runtime is only about 3.5% higher for
ρ = 0.05, γ = 0.3, but the number of requests is about 22% lower. Moreover,
when comparing the values for ρ = 0.05 to ρ = 0.10 for all cost threshold values,
we find that the runtimes and the total number of requests for ρ = 0.05 (388,227)
is substantially lower than for ρ = 0.10 (438,116) while the total runtime is just
slightly higher for ρ = 0.05 (3965.16 s) than for ρ = 0.1 (3804.43 s). Following
these findings, we set the cost threshold to γ = 0.3 and the robustness threshold
ρ = 0.05 in the following experiments. The results in Table 1 show that for the
parameter configuration ρ = 0.05, γ = 0.3, for 16 out of 123 queries the robust
alternative query plan R∗ is chosen over the cheapest plan. And 15 out of the
16 queries stem from the WatDiv L2, L5, and S7 queries. To show that other
classes of queries for which the more efficient alternative robust query plan can
be identified using our approach, we investigate the experimental results for our
benchmark with 10 queries over the three datasets DBpedia (DBP), GeoNames
(GN), DBLP (DBLP). We keep the same parameters that we obtained from the
previous experimental evaluation on the other benchmarks. In Fig. 3, the results
of always choosing the cheapest query plans (ρ = 0.00) and the results when
enabling robust query plans to be chosen with ρ = 0.05 and γ = 0.3 are shown.
It can be observed that in 8 queries (DBLP1-3, DBP1-3, GN2-3) robustness allows
for obtaining more efficient query plans. For these queries, the runtime and total
number of requests are lower and at the same time, the robust alternative query
plans produce the same number of answers or even more. Even though the
runtime of the robust query plan for query GN3 reaches the timeout, it produces
more answers with fewer requests during the time. The results show that our
approach devises efficient query plans even for queries where the cost model
produces high cardinality estimation errors. The low robustness of the cheapest
plans drives our optimizer to choose more robust plans which reduce the query
execution times as well as the number of requests.

Comparison to the State of the Art. Given the parameters determined
by the previous experiments, we want to compare the performance of the pro-
posed approach to existing TPF clients, namely nLDE and Comunica. Analo-
gously to the previous experiments, we run the 123 queries from both the nLDE
Benchmark and WatDiv with all three engines. In Fig. 4a the mean runtimes for
all three clients are shown for the WatDiv queries. The results show that our
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Fig. 4. Experimental results: comparison to state-of-the-art clients.

proposed approach has a similar performance to the existing engines nLDE and
Comunica. Only for the complex query C2 our approach yields the highest aver-
age runtime, while for 6 query types (C1, C3, F1, F3, F5, L5) it outperforms the
other engines. The results for all queries are summarized in Fig. 4b. Regarding
the runtime, our approach yields the lowest overall runtime (

∑
r) while Comu-

nica has the second-highest and nLDE the highest overall runtime. Taking a
closer look, we find that nLDE reaches the timeout (900 s) for queries Q5 and
Q8 in the nLDE Benchmark 1, explaining the highest overall runtime. In con-
trast, nLDE has the lowest the median runtime r̃. Our approach produces the
highest number of answers while Comunica only produces a few answers less.
The fewest answers are produced by nLDE, likely due to the queries where the
timeout is reached. Next, we consider the mean ratio of answers and requests
per query (Ans./Req.) as a measure of productivity. It can be observed that our
approach on average produces the most answers per request, followed by nLDE
and then Comunica with the fewest answers per request. Increasing this produc-
tivity can have two key benefits: (i) it reduces query runtimes at the client, and
(ii) reduces the load on the TPF server. Finally, we additionally investigated the
diefficiency [2] to evaluate the continuous efficiency of the clients. The highest
dief@t (where t is set to the maximum execution time across all engines per
query) is observed in 39% of all queries for CROP, 54% of all queries for nLDE
and 7% of all queries for Comunica. The results suggest that even though the
overall runtimes for CROP are the lowest, nLDE is outperforming the approach
with respect to its continuous behavior of producing answers. Additional results
for queries Q11-Q20 of the nLDE Benchmark 1 are provided as part of our sup-
plemental material online (See footnote 7). For those queries, we observe that
all engines time out more often, yet CROP outperforms nLDE and Comunica in
the remaining queries.

Concluding our findings, the results show that the proposed approach is
competitive with existing TPF clients and on average produces more efficient
query plans minimizing both the runtime and the number of requests to be
performed. Nonetheless, it must be pointed out that in contrast to heuristics,
the proposed cost model and query optimizer rely on parameters that need to
be chosen appropriately. On one side, this allows for adapting these parameters
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to the specifics of different types of datasets to be queried. On the other side, it
might require preliminary testing to optimize the parameter settings.

5 Related Work

We start by discussing cost model-based decentralized SPARQL query processing
approaches and approaches for querying different Linked Data Fragments (LDF).
An overview of these approaches with their main features is presented in Table 2.

The first group of approaches [7,8,13–15] consists of engines that evaluate
queries over federations of SPARQL endpoints. These approaches rely on statis-
tics to perform query decomposition, source selection, and estimate the interme-
diate results of sub-queries which is the basis for their cost model. The contents
and granularity of these statistics vary across the approaches. While the specific
computation of cost, supported physical join operators and sub-query cardinality
estimations differ for all these approaches, their commonality is factoring in the
cost of transferring the result tuples. SPLENDID [8], SemaGrow [7] and Odyssey
[13] rely on Dynamic Programming (DP) while DARQ [14] implements Iterative
Dynamic Programming (IDP) and CostFed [15] implements a greedy heuristic
to find an efficient plan. However, all of the aforementioned approaches rely on
dataset statistics for accurate cardinality estimations and they do not consider
the concept of robust query plans with respect to errors in the estimations.

With the advent of Triple Pattern Fragments (TPFs), different approaches
for decentralized SPARQL query processing over this Web interface have been
introduced. The TPF Client proposed by Verborgh et al. [17] evaluates con-
junctive SPARQL queries (BGPs) over TPF server. The TPF Client intertwines
query planning and evaluation based on the metadata provided by the TPF
server to minimize the number of requests: the triple pattern with the smallest
estimated number of matches is evaluated and the resulting solution mappings
are used to instantiate variables in the remaining triple patterns. This procedure
is executed continuously until all triple patterns have been evaluated. Comunica
[16] is a meta query engine supporting SPARQL query evaluation over hetero-
geneous interfaces including TPF servers. The authors propose and evaluate
two heuristic-based configurations of the engine. The sort configuration sorts all
triple patterns according to the metadata and joins them in that order, while the
smallest configuration does not sort the entire BGP, but starts by selecting the
triple pattern with the smallest estimated count on each evaluation call. The net-
work of Linked Data Eddies (nLDE) [1] is a client for adaptive SPARQL query
processing over TPF servers. The query optimizer in nLDE builds star-shaped
groups (SSG) and joins the triple patterns by ascending number of estimated
matches. The optimizer places physical operators to minimize the expected num-
ber of requests that need to be performed. Furthermore, nLDE realizes adap-
tivity by adjusting the routing of result tuples according to changing runtime
conditions and data transfer rates based. Different from the existing clients, our
query plan optimizer relies on a cost model, the concept of robust query plans,
and IDP to generate alternative, potentially efficient plans.



254 L. Heling and M. Acosta

Table 2. Overview and features of decentralized SPARQL query processing approaches
over different Linked Data Fragment (LDF) interfaces.

Query Planner

Approach Federation LDF Cost Robustness Statistics Strategy

DARQ [14] ✓ Sparql ✓ ✗ Service descriptions IDP

SPLENDID [8] ✓ Sparql ✓ ✗ VOID descriptions DP

SemaGrow [7] ✓ Sparql ✓ ✗ TP-based statistics DP

Odyssey [13] ✓ Sparql ✓ ✗ Characteristic sets DP

CostFed [15] ✓ Sparql ✓ ✗ Data summaries Heuristic

TPF Client [17] ✓ Tpf ✗ ✗ TPF metadata Heuristic

nLDE [1] ✗ Tpf ✓ ✗ TPF metadata Heuristic

Comunica [16] ✓ Tpf, Sparql ✗ ✗ TPF metadata Heuristic

brTPF Client [9] ✗ brTpf ✗ ✗ TPF metadata Heuristic

SaGe [12] ✗ SaGe-Server ✗ ✗ – Heuristic

smart-KG [4] ✗ Smart-kg ✗ ✗ TPF metadata Heuristic

CROP ✗ Tpf ✓ ✓ TPF metadata IDP

Other LDF interfaces include brTPF, smart-KG, and SaGe. Hartig et al.
[9] propose bindings-restricted Triple Pattern Fragments (brTPF), an extension
of the TPF interface that allows for evaluating a given triple pattern with a
sequence of bindings to enable bind-join strategies. To this end, the authors
propose a heuristic-based client that builds left-deep query plans which aims to
reduce the number of requests and data transferred. Smart-KG [4] is a hybrid
shipping approach proposed to balance the load between client and server when
evaluating SPARQL queries over remote sources. The smart-KG server extends
the TPF interface by providing access to compressed partitions of the graph.
The smart-KG client determines which subqueries are evaluated locally over the
partitions and which triple pattern requests should be evaluated at the server.
SaGe [12] is a SPARQL query engine that supports Web preemption by com-
bining a preemptable server and a corresponding client. The server supports the
fragment of full SPARQL which can be evaluated in a preemptable fashion. As a
result, the evaluation of BGPs is carried out at the server using a heuristic-based
query planner. Our client focuses on the TPF interface and can be adapted to
support additional LDF interfaces. For instance, by extending the cost model
with bind joins to support brTPF or implementing our concept of robustness as
part of the query planner in the smart-KG client or the SaGe server.

In the realm of relational databases, various approaches addressing uncer-
tainty in statistics and parameters of cost models have been suggested. In their
survey, Yin et al. [19] classify robust query optimization methods with respect to
estimation errors, which can lead to sub-optimal plans as the error propagates
through the plan. One class of strategies they present are Robust Plan Selection
approaches in which not the “optimal” plan but rather a “robust” plan that is
less sensitive to estimation errors are chosen. For instance, robust approaches
may use a probability density function for cardinality estimations instead of
single-point values [5]. Other approaches define cardinality estimation intervals
where the size of the intervals indicate the uncertainty of the optimizer [6]. In
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a recent paper, Wolf et al. [18] propose robustness metrics for query plans and
the core idea is considering the cost for a query plan as a function of the cardi-
nality and selectivity estimations at all edges in the plan. Similar to our work,
the authors propose computing the k-cheapest plans and selecting the estimated
most robust plan. These works rely on fine-grained statistics to assess the selec-
tivity of joins, however, in a decentralized scenario, it is not possible to obtain
such detailed dataset information. Therefore, we propose a robust plan selection
approach and introduce a new concept of robustness for SPARQL query plans
based on the TPF metadata.

6 Conclusion and Future Work

We have proposed CROP, a novel cost model-based robust query plan optimizer
to devise efficient query plans. CROP implements a cost-model and incorporates
the concept of robustness for query plans with respect to cardinality estimations
errors. Our proposed concept of robust query plans is based on comparing the
best-case to the average-case cost of query plans and could be combined with
other existing cost models as well. Combining these concepts, CROP uses iter-
ative dynamic programming (IDP) to determine alternative plans and decides
when a more robust query plan should be chosen over the cheapest query plan.
In our experimental study, we investigated how the parameters of the cost model
and IDP impact the efficiency of the query plans. Thereafter, we studied differ-
ent combinations of the robustness and the cost thresholds in the query plan
optimizer. The parameters allow for finding a good balance between choosing
alternative robust plans over the cheapest plan but not at any cost. Therefore,
our concept of robustness complements the cost model in helping to find better
query plans. Finally, we compared our approach to existing TPF clients. The
results show that our approach is competitive with these clients regarding run-
time performance. Moreover, the query plans of our query plan optimizer require
fewer requests to produce the same number of results and, thus, reduce the load
on the TPF server. Future work can focus on alternative strategies to IDP for
exploring the space of plans more efficiently and extending the optimizer to apply
the concept of robustness in federated querying. Our robust query planning app-
roach may be implemented in Linked Data Fragment clients such as Comunica
or smart-KG and the cost model may be further extended to include bind joins
supported by brTPF. Besides, Linked Data Fragment interfaces, such as SaGe
(HDT) may also benefit from including the notion of query plan robustness.
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Abstract. We introduce an approach to semantically represent and query raster
data in a Semantic Web graph. We extend the GeoSPARQL vocabulary and query
language to support raster data as a new type of geospatial data. We define new
filter functions and illustrate our approach using several use cases on real-world
data sets. Finally, we describe a prototypical implementation and validate the
feasibility of our approach.

Keywords: GeoSPARQL · Raster data · Geospatial semantics

1 Introduction

The Geospatial Semantic Web [9,16] has grown in size and importance in the last
decade. It is estimated that about 80% of all data has a geospatial relation [19]. There-
fore, GeoSPARQL [6] has been developed and became an OGC1 and W3C2 recommen-
dation allowing for the representation and querying of geospatial data in the seman-
tic web. GeoSPARQL and comparable approaches [22,24] only provide support for
geospatial vector data. However, geospatial data may also take the shape of a raster. It
may, e.g., be obtained from aerial imagery or from simulation data to support tasks such
as city planning and risk assessment as shown by the examples depicted in Fig. 1.

Raster data must not be represented as vector geometries, because vector represen-
tations of raster data

1. are inefficient implying overconsumption of data storage. Raster data can be large
and may be compressed efficiently.

2. are ineffective representations as they lack operations needed to query raster data
e.g. raster algebra operations that transform raster data in ways not applicable to
vector data.

1 https://www.opengeospatial.org.
2 https://www.w3.org.

c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 258–275, 2020.
https://doi.org/10.1007/978-3-030-62419-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62419-4_15&domain=pdf
https://www.opengeospatial.org
https://www.w3.org
https://doi.org/10.1007/978-3-030-62419-4_15


GeoSPARQL+: Syntax, Semantics and System 259

3. lack the semantics needed to appropriately represent raster data. Raster data is often
visualized with RGB values, such as varying shades of blue for different flood alti-
tudes. A semantic representation, however, should not represent color shades, but
rather the underlying semantics, which should refer to data from the actual nominal,
ordinal, interval or ratio scales and what they stand for.

We propose GeoSPARQL+, an extension of the GeoSPARQL query language, and the
GeoSPARQL+ ontology in order to integrate geospatial raster data into the Semantic
Web.

Let us consider the analysis of a flood as our running example. Our running example
is depicted in Fig. 1a showing the overlay of two related datasets:

1. Vector data representing the roads of Cologne
2. Raster data representing the altitudes of a simulated flood

A query in one of our real-world use cases asks for all the road sections not covered by
more than 10cm of water. This is only possible if the data model can represent raster
data, vector data, semantics (road, water, depth, 10cm) and allows for joint querying
of these representations. Existing geographical information systems lack the explicit
representation of semantics and require the user to manually adapt his high-level infor-
mation need into a query of the low-level representation. The GeoSPARQL standard
[6] and systems that currently support geographic information in the Semantic Web
[6,10,14,15,22,24,26] do not represent raster data, thus, they do not allow for asking
such questions.

Fig. 1. Visualizations of two sources of risk in Cologne

In the remainder of this paper, we will assume that there are data sources that con-
tain vector data (e.g. roads in Fig. 1) and raster data (e.g. flood altitudes Fig. 1a or fire
hazards Fig. 1b). We describe a GeoSPARQL+ ontology which allows a data engineer
to integrate these data into an RDF graph. A user may issue a semantic query against
the RDF graph using GeoSPARQL+. To allow for these capabilities, this paper makes
the following contributions:
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1. Semantic Representation of Raster Data: A data model that allows for representing
raster data and its semantics (Sect. 4).

2. GeoSPARQL Vocabulary Extension: This vocabulary extension defines how to relate
the raster data to semantic descriptions (Sect. 5.1).

3. GeoSPARQL Query Language Extension: A SPARQL extension which allows the
interoperable use of semantic graph data, semantic vector geometries, and semantic
raster data and uses map algebra [35] to combine and modify rasters (Sects. 5.2 and
5.3).

4. Prototypical Implementation: An open source implementation of the proposed app-
roach for geospatial vector and raster data (Sect. 6).

5. Requirements and Feasibility Check: Deriving requirements of GeoSPARQL+ by
discussing relevant use cases (Sect. 3), assessing their feasibility and conducting a
performance check of the implemented system (Sect. 7).

The tasks of data integration and visualization of query results are beyond the focus of
this paper. More technical details about the supported functions may be found in our
companion technical report [18].

2 Foundations for Extending GeoSPARQL

In this publication we limit ourselves to 2D representations in order to remain concise.
We see no major issue in extending our approach to higher dimensional representations.
We assume that all geographical representations relate to coordinate reference systems
(CRS), as postulated in [9]. For conciseness of illustration we discard these relations
and transformations between CRSs.

2.1 Geometry

We formally define several OGC Simple Feature geometries [17], which we use in the
remainder of this paper.

Definition 1 (Geometry). A geometry g ∈ Geo, with Geo representing the set of all
geometries, is an instantiation of one of the following data structures:

1. A geometry g may be a Point p= (x,y), p ∈ R
2, or

2. A LineString defined as a list of at least two different points denoted as g =
(p0, p1, . . . , pn), pi ∈ R

2, or
3. A Polygon g represented as a LineString with g= (p0, p1, . . . , pn), p0 = pn, pi ∈ R

2

and all other points being unique. We further restrict ourselves to valid Polygons. In
valid Polygons lines do not cross each other. A Polygon includes the encompassed
area.

4. A geometry g may also be a Rectangle, which is a special polygon comprised of four
LineStrings with the angles between connected LineStrings being 90◦. Rect ⊂ Geo
is the set of all rectangles.

5. Finally, a geometry may be a GeometryCollection g, which itself is a finite set of
geometries g= {g1, . . . ,gk},gi ∈ Geo.
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MultiPolygons and MultiLineStrings are examples of GeometryCollections.

We assume that the function geom2pset : Geo → 2R
2

exists which converts a geometry
to a PointSet representation.

2.2 RDF, SPARQL and GeoSPARQL

In order to semantically describe and query raster data we build upon the following
standard definitions of SPARQL 1.1 [12,27]. We provide the first formal definitions of
the operators and filter functions which GeoSPARQL [6] adds to the SPARQL query
language and describe the resulting modified definitions of SPARQL 1.1 in the follow-
ing. In order to keep the definitions concise enough for this paper, we formalize syntax
and semantics with 3 exemplary operators and 2 exemplary filter functions. We pick
GeoSPARQL specific elements such that they are representative for the most common
types of signatures. The differences between SPARQL 1.1 and the GeoSPARQL exten-
sions are marked in blue fonts.

Definition 2 (RDF Triple and RDF Graph). Let I, B and L be disjoint sets of IRIs,
blank nodes and literals, respectively. An element of the set (I ∪B)× I× (I ∪B∪L) is
called a triple t ∈ T with T denoting the set of all triples. G ∈ 2(I∪B)×I×(I∪B∪L) is called
an RDF graph. GL ⊂ L is the set of all geometry literals.

In an RDF triple (s, p,o), s, p and o are called subject, predicate and object, respectively.
Geometry literals (GL) are serialized according to the GeoSPARQL standard either as
Well-Known-Text (WKT) [36] literals or as Geography Markup Language (GML) [29]
literals.

Definition 3 (Triple Pattern). Let V be a set of variables that is disjoint to I, B and L.
An element of (I∪B∪L∪V )× (I∪V )× (I∪B∪L∪V ) is called a triple pattern.

The set of variables occurring in a triple pattern tp is abbreviated as var(tp).

Definition 4 (Expression). An expression is

Expression ::= ?X with ?X ∈V
| c with constant c ∈ L∪ I.
| E1 ∩E2 with E1,E2 being expressions.
| geof : buffer(E1,E2,E3) with E1,E2,E3 being expressions
| geof : distance(E1,E2) with E1,E2 being expressions

Definition 5 (Filter Condition). A filter condition is

FilterCondition ::= ?X = c with ?X ∈V and c ∈ I∪L
| ?X = ?Y with ?X,?Y ∈V
| ¬F with filter condition F
| F1 ∨F2 with filter conditions F1 and F2

| F1 ∧F2 with filter conditions F1 and F2

| E1 = E2 with E1,E2 being expressions
| E1 ∩ E2 with E1,E2 being expressions
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∩, = , ∩ correspond to the GeoSPARQL operators geof : intersection, geof : equals
and geof : intersects respectively [11]. We provide complete list of all GeoSPARQL
functions in our technical report that extends this paper [18].

Definition 6 (Basic Graph Pattern). A basic graph pattern (BGP) is

BGP ::= tp a triple pattern tp
| {B} a block of a basic graph pattern B
| B1.B2 a conjunction of two basic graph patterns B1 and B2

| B FILTER F a filter pattern with BGP B and filter condition F
| B BIND (E AS ?X) a bind with BGP B, expression E and variable ?X.

Definition 7 (Select Query). A select query is defined as SELECTW WHERE B withW ⊆
V and basic graph pattern B.

Definition 8 (Variable Binding). A variable binding is a partial function μ : V �→ I ∪
B∪L. The set of all variable bindings is Φ.

The abbreviated notation μ(tp) means that variables in triple pattern tp are substituted
according to μ .

Definition 9 (Compatible Variable Binding). Two variable bindings μ1 and μ2 are
compatible, denoted by μ1 ∼ μ2, if

∀?X ∈ dom(μ1)∪dom(μ2) : μ1(?X) = μ2(?X)

Thereby dom(μ) refers to the set of variables of variable binding μ .

Definition 10 (Join). The join of two sets of variable bindings Φ1, Φ2 is defined as

Φ1 �� Φ2 = {μ1 ∪ μ2|μ1 ∈ Φ1 ∧ μ2 ∈ Φ2 ∧ μ1 ∼ μ2}
Definition 11 (Expression Evaluation). The evaluation of an expression E over a vari-
able binding μ , denoted by [[E]]μ , is defined recursively as follows:

[[?X]]μ := μ(?X) with ?X ∈V.
[[c]]μ := c with c being a constant, literal or IRI.
[[E1 ∩E2]]μ := [[E1]]μ ∩ [[E2]]μ retrieves a geometry g ∈ Geo that represents

all Points in the intersection of [[E1]]μ , [[E2]]μ ∈ Geo [6]
[[geof : buffer(E1,E2,E3)]]μ := g retrieves a bounding box g ∈ Rect of radius

[[E2]]μ ∈ R around [[E1]]μ ∈ Geo using the unit
given in [[E3]]μ ∈ I [6]

[[geof : distance(E1,E2)]]μ := c returns the minimum distance c ∈ R

between [[E1]]μ ∈ Geo and [[E2]]μ ∈ Geo [6]

Definition 12 (Filter Condition Satisfaction). Whether variable binding μ satisfies a
filter condition F, denoted by μ |= F, is defined recursively as follows:
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μ |= ?X= c holds if ?X ∈ dom(μ) and μ(?X) = c.
μ |= ?X= ?Y holds if ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y).
μ |= ¬F holds if it is not the case that μ |= F.
μ |= F1 ∨F2 holds if μ |= F1 or μ |= F2.
μ |= F1 ∧F2 holds if μ |= F1 and μ |= F2

μ |= E1 = E2 holds if [[E1]]μ ∈ Geo, [[E2]]μ ∈ Geo and
geom2pset([[E1]]μ) = geom2pset([[E2]]μ)

μ |= E1 ∩ E2 holds if [[E1]]μ ∈ Geo, [[E2]]μ ∈ Geo and
geom2pset([[E1]]μ)∩geom2pset([[E2]]μ) �= ∅.

Definition 13 (SPARQL Evaluation). The evaluation of a SPARQL query Q over an
RDF graph G, denoted by [[Q]]G, is defined recursively as follows:

[[tp]]G := {μ |dom(μ) = var(tp)∧ μ(tp) ∈ G} with triple pattern tp.
[[{B}]]G := [[B]]G with basic graph pattern B.
[[B1.B2]]G := [[B1]]G �� [[B2]]G with basic graph patterns B1 and B2.
[[B FILTER F ]]G := {μ |μ ∈ [[B]]G ∧ μ |= F} with basic graph pattern B

and filter condition F.
[[B BIND (E AS ?X)]]G := with basic graph pattern B,

{μ ∪{?X �→ [[E]]μ}|μ ∈ [[B]]G ∧?X /∈ dom(μ)}expression E and variable ?X.
[[SELECTW WHERE B]]G := {μ|W |μ ∈ [[B]]G} with basic graph pattern B and W ⊆V

Thereby μ|W means that the domain of μ is restricted to the variables in W.

3 Use Case Requirements

We now define requirements for use cases we have encountered when collaborating
with companies developing geographical information systems.

U1 Client: Rescue Forces; Use case: Emergency rescue routing
Rescue vehicles and routing algorithms guiding them need to know which roads
are passable in case of flooding.
Example query: “Give me all roads which are not flooded by more than 10 cm”

U2 Client: Insurance; Use case: Risk assessment
Insurances evaluate the hazard risk for str‘eets and buildings in order to calculate
the insurance premium.
Example query: “Assess the combined risk of fire and flood hazards for all build-
ings in the knowledge base”

U3 Client: Disaster Management Agency; Use case: Rescue capacity planning
In case of disasters, the number of people present at a specified time and place
needs to be estimated to prepare hospitals for casualties.
‘ Example query: “Give me the roads which contain elements at risk which are
open to the public at 23rd May 2019 10.20am” Note: An element at risk is a term
in disaster management describing a class of buildings affected by certain disasters
[18].
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U4 Client: City Planning Agency; Use case: Rescue facility location planning
Rescue forces should be stationed in a way that they can react fast to possible haz-
ards and city planners should position rescue stations accordingly.
Example query: “Give me the percentage of served hazardous areas, i.e. areas
within a bounding box of 10km around a to-be-built rescue station at a given geo-
coordinate”

These example queries can currently not be expressed using GeoSPARQL. Abstracting
from the given natural language query examples we have defined a graph data model
for raster data and the syntax and semantics of GeoSPARQL+ that allow us to respond
to these queries.

4 Modeling Raster Data

We have analyzed the requirements for representing raster data using examples like the
ones depicted in Fig. 1 and use cases in Sect. 3. These examples show that we need to
transform the following visual elements into semantic representations:

1. Raster geometry: A raster covers a geometrical area. In this paper, we limit ourselves
to rectangular areas though other geometries might be supported in the future.

2. Atomic values: In visualizations of raster data, atomic values are mapped onto pixel
values. In simple cases this is a one-to-one mapping. Depending on the resolution
of the raster and the rendered picture, it may also be a n:1 or 1:n or even an n:m
mapping.

3. Atomic value geometry: Each atomic value represents the situation in a geometry
area, typically in a rectangular area.

4. Raster legend: A raster legend is a description of the semantic interpretation of the
raster’s atomic values. This description includes a categorical, ordinal, interval or
fractional scale.

We formally define a raster following [20] as:

Definition 14 (Raster). Let R be the set of all rasters and S the set of all scales. A Raster
r ∈ R is a partial function r : R

2 �→ S which maps positions onto a scale S∈ S. We define
a scale as a partially ordered set. In addition, every scale defines a NODATA value, a
unique value which is not to be used elsewhere in the scale definition. The domain of a
raster dom(r) is the closed, rectangular region represented by its raster geometry for
which its atomic values are defined.

dom(r) can be represented by a rectangle defined by its four corners (pl ,pb,pr,pt), where
pi = (xi,yi) and xl ≤ xr,xl ≤ xt ,xl ≤ xb,xr ≥ xt ,xr ≥ xb and yl ≥ yb,yt ≥ yr,yl ≤ yt ,yb ≤
yr.
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Figure 2 shows an example of a raster. In order to execute geometric operations
on raster data and geometries we assume a function raster2geom(r) returning dom(r)
as a geometric object. In order to compare rasters to other rasters we assume an
equality function. rastervaleq(r,r) compares the rasters atomic values and its domains.

Fig. 2. Raster representation: The raster r is rep-
resented using a raster geometry dom(r), a sub-
division in cells and a scale S ∈ S.

Definition 15 (Raster Literal). The set RL ⊂ L with GL∩RL = /0 represents the set of
all raster literals.

We use the CoverageJSON format [8]
to serialize rasters to raster literals, but
many other textual serializations or even
binary serializations are possible. These
representations assume that the raster
geometry is divided uniformly into rect-
angular cell geometries (atomic value
geometries in our previous definition). A
cell c is a pair (g,s)∈ Rect×S. We relate
a cell c to a raster r via a pair of indexes
(i, j). ri, j refers to a specific cell indexed
by (i, j) in a raster r. ri, j(x,y) is unde-
fined for values outside of the cell and
has the identical value for all positions
within the cell. Thus, given x,y such that
ri, j(x,y) is defined, c may be defined as
(raster2geom(ri, j),ri, j(x,y)).

The function cellval : R× R × R → R retrieves the atomic value of a given raster
cell. The function cellval2 : R → {R} retrieves atomic values of all raster cells.
Raster Algebra or map algebra is a set based algebra to manipulate raster data. Fol-
lowing [35] we assume the definition of scale-dependent raster algebras with operations
¬ , ⊕ and <© defined for the following signatures:

(1) ¬ : R → R, (2) ⊕ : R×R → R. (3) <© : R×R → R

The three operations we indicate here, their formal definitions given in [35], are
examples for a broader set of possible raster algebra operations. Most other algebraic
operators exhibit the same signatures as one of these three example operations. Hence,
syntax and semantics of other operators can be integrated into GeoSPARQL+ taking
the integration of example operators as templates.
The ¬ function converts each atomic value different from 0 to 0, all 0 values to 1 and
does not change NODATA values. The ⊕ function creates a new raster with the domain
of the first raster. The resulting raster contains all values of the first raster which have
no correspondence with the atomic values of the second raster (i.e. not map to the same
position). All values with a correspondence are added together or ignored if one of the
input values is the NODATA value of either of the two rasters. This function can be used
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to combine risks of fire and flood hazards given in two different rasters representing the
same area.

The <© function takes one raster and one constant. It returns a new raster with the
domain of the given raster. Atomic values smaller than the given constant are kept,
all other values become the NODATA value. One application of this function is to only
keep the flood altitude values displayed in Fig. 1a which signify an altitude value smaller
than a given constant.

Implementations like PostGIS [31] and JAI [32] provide 26 and 108 raster functions
respectively. Out of those we have implemented 14 in our system which we describe in
[18].

5 GeoSPARQL+

In order to describe raster data semantically,we must define (i) their geometries, (ii)
their atomic values, (iii) the atomic value geometries, and (iv) the semantic meaning of
raster’s atomic values. The latter is specified in this section. When the raster’s contents
have been described, new functions are needed to filter, relate or modify the raster’s
atomic values in order to be useful in the application cases we would like to solve.
Therefore we extend the GeoSPARQL query language to include such functions in
Sects. 5.2 and 5.3

5.1 The GeoSPARQL+ Vocabulary

We define the new GeoSPARQL+ vocabulary (cf. Fig. 3).
A raster is described by its semantic class (geo2:Raster), and a scale which

describes the semantic content of its atomic values. In Fig. 3, we depict the example
of a semantic class ex:FloodArea which is assigned an instance of geo2:Raster with
a CoverageJSON literal (Listing 1.1) including the raster’s type, a CRS, the raster’s
atomic values and their description. In order to re-use the representations of the Cov-
erageJSON format, we model rasters in a concept hierarchy of OGC coverage types.
By the OGC definition, a raster is a special type of coverage which is rectangular, i.e.
a grid, and is georeferenced. This definition is reflected in Fig. 3 in the given concept
hierarchy. The instance of geo:Raster connects to an instance of om:Scale describing
its legend and unit of measurement derived from the units of measurements ontology
(UOM) as well as the scales NODATA value.

1 {"type" : "Coverage","domain" : { "type" : "Domain", "domainType" : "Grid",
"axes": { "x" : { "values": [−10,−5,0] },"y" : { "values": [40,50] }

3 "referencing": [{"coordinates": ["y","x"],"system": {
"type": "GeographicCRS","id": "http://www.opengis.net/def/crs/EPSG/0/4979"}}]},

5 "observedProperty" : {
"ranges" : { "FloodAT" : { "type" : "NdArray", "dataType": "float",

7 "axisNames": ["y","x"], "shape": [2, 2], "values" : [ 0.5, 0.6, 0.4, 0.6 ]}}}

Listing 1.1. Coverage JSON Literal example
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Fig. 3. We use vocabularies of three different ontologies: The GeoSPARQL ontology describes
the concepts geo:SpatialObject and geo:Feature, the OGC coverage hierarchy describes the
abstract concepts of coverages and the unit of measurement vocabulary describes legends of
raster data.

5.2 GeoSPARQL+ Syntax

We added several new operators to the GeoSPARQL+ query language that allow to
filter, modify and combine rasters as well as polygons. Due to space limitations, we
present only one example for each of the three possibilites. A full list of the imple-
mented functions is provided in [18]. geometryIntersection calculates intersections
between arbitrary combinations of Geometries and Rasters, returning a Geometry. To
get a raster as result instead, the rasterIntersection can be used. + and < provide
two examples of raster algebra expressions.
GeoSPARQL+ defines the following new expressions to replace Definition 4:

Definition 16 (GeoSPARQL+ Expression).

Expression ::= ?X with ?X ∈V
| c with constant c ∈ L∪ I.
| geometryIntersection(E1,E2) with E1,E2 being expressions
| rasterIntersection(E1,E2) with E1,E2 being expressions
| E1 + E2 with E1,E2 being expressions
| E1 < E2 with E1,E2 being expressions
| ¬ E with E being an expression
| raster2geom(E) with E being an expression
| rastervaleq(E1,E2) with E1,E2 being expressions
| geom2raster(E1,E2) with E1,E2 being expressions
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GeoSPARQL+ does not introduce new filter conditions in comparison to GeoSPARQL.
However, the semantics of the previously defined filter conditions = and ∩ are
extended to also include raster literals.

5.3 GeoSPARQL+ Semantics

We define the semantics of a GeoSPARQL+ expression in Definition 17. In order to
specify the intersection we map geometries and rasters to the corresponding PointSets.
The result is a Geometry or Raster based on the selection of the user. In the spe-
cial case of the intersection of two geometries, when a raster should be returned,
we require a default value represented by parameter E3 to which the atomic values
of the created raster are mapped. The raster algebra functions geo2 : rasterPlus and
geo2 : rasterSmaller are mapped to their respective raster algebra expression defined
in Sect. 4.

GeoSPARQL+ adds the following evaluations of expressions to Definition 11:

Definition 17 (GeoSPARQL+ Expression Evaluation).

[[geometryIntersection(E1,E2)]]μ := [[E1]]μ ∩ [[E2]]μ
if [[E1]]μ and [[E2]]μ ∈ Geo

[[geometryIntersection(E1,E2)]]μ := [[E1]]μ ∩ raster2geom([[E2]]μ)
if [[E1]]μ ∈ Geo and [[E2]]μ ∈ R

[[geometryIntersection(E1,E2)]]μ := [[geometryIntersection(E2,E1)]]μ
if [[E1]]μ ∈ R and [[E2]]μ ∈ Geo

[[rasterIntersection(E1,E2)]]μ := r ∈ R with ∀i, j : ri, j = r1i, j
if [[E1]]μ = r1, [[E2]]μ = r2 ∈ R
and dom(r1i, j)∩dom(r2i, j) �= /0

[[rasterIntersection(E1,E2)]]μ := r ∈ R with ∀i, j : ri, j = r1i, j
if [[E1]]μ = r1 ∈ R and [[E2]]μ = g ∈ Geo
and dom(r1i, j)∩g �= /0

[[rasterIntersection(E1,E2)]]μ := [[rasterIntersection(E2,E1)]]μ
if [[E1]]μ = r1 ∈ R and [[E2]]μ = g ∈ Geo

[[rastervaleq(E1,E2)]]μ := r ∈ R with ∀i, j : dom(r1i, j)∩dom(r2i, j) �= /0
and cellval(r1i, j) == cellval(r2i, j)
if [[E1]]μ = r1, [[E2]]μ = r2 ∈ R

[[ ¬ E]]μ := r ∈ R with ∀i, j : ri, j = ¬ r1i, j if [[E]]μ = r1 ∈ R
[[E1 + E2]]μ := [[E1]]μ + [[E2]]μ if [[E1]]μ , [[E2]]μ ∈ R
[[E1 < E2]]μ := [[E1]]μ < [[E2]]μ if [[E1]]μ , [[E2]]μ ∈ R
[[geom2raster(E1,E2,E3,E4)]]μ := r ∈ R with

∀(x,y) ∈ geof : buffer([[E1]]μ ,1,uom : meter)
r(x,y) = [[E2]]μ
if [[E1]]μ ∈ Geo, [[E2]]μ , [[E3]]μ , [[E4]]μ ∈ R

with [[E3]]μ · [[E4]]μ indicating the number of cells

We define the semantics of a GeoSPARQL+ filter condition in Definition 18. The
geo2:equals method returns true if two Raster or two Geometries are identical. The
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geo2 : intersects method returns true if the PointSets of two Raster or Geometries over-
lap. GeoSPARQL+ replaces the evaluation of the filter condition from Definition 12 as
follows:

Definition 18 (GeoSPARQL+ Filter Condition Satisfaction).

μ |= E1 = E2 holds if [[E1]]μ , [[E2]]μ ∈ Geo and
geom2pset([[E1]]μ) = geom2pset([[E2]]μ).

μ |= E1 = E2 holds if [[E1]]μ ∈ R and [[E2]]μ ∈ Geo
and geom2pset(raster2geom([[E1]]μ)) = geom2pset([[E2]]μ)

μ |= E1 = E2 holds if [[E1]]μ ∈ Geo and [[E2]]μ ∈ R and μ |= E2 = E1

μ |= E1 = E2 holds if [[E1]]μ , [[E2]]μ ∈ R
and geom2pset(raster2geom([[E1]]μ))
= geom2pset(raster2geom([[E2]]μ))

μ |= E1 ∩ E2 holds if [[E1]]μ ∈ R, [[E2]]μ ∈ R
and geom2pset(raster2geom([[E1]]μ))
∩geom2pset(raster2geom([[E2]]μ)) �= ∅

μ |= E1 ∩ E2 holds if [[E1]]μ ∈ Geo, [[E2]]μ ∈ R
and geom2pset([[E1]]μ)∩geom2pset(raster2geom([[E2]]μ)) �= ∅

μ |= E1 ∩ E2 holds if [[E1]]μ ∈ R, [[E2]]μ ∈ Geo and μ |= E2 ∩ E1

Further Functions. We have provided a couple of example functions and their signa-
tures in order to show the principles of working with raster data. In practice, one needs
a much larger set of functions and signatures. In particular the signatures geo:area:
Geo → R, geo2:max: R → R are used. geo:area is a GeoSPARQL function calcu-
lating the area of a Geometry, geo2:max calculates the maximum atomic value of a
raster. We also use the additional raster algebra functions geo2:isGreater: RxR → R

and geo2:rasterUnion RxR → R. The first one returns a raster which only includes
atomic values greater than a given constant and the second one is the complement of
the geo2:rasterIntersection function.

6 Implementation

The implementation3 is built on Apache Jena [22] and geosparql-jena [3] and extends
the ARQ query processor of Apache Jena with the GeoSPARQL+ functions defined in
Sect. 5. ARQ registers functions in an internal function registry which maps URIs to
function implementations. The implementations were done in Java and used the Java
Topology Suite library to implement vector geometry related functions, Apache SIS4 to
represent rasters in Java and the Java Advanced Imaging Library (JAI) [21] to imple-
ment raster algebra operations. In addition, new literal types needed to be implemented
in ARQ. geosparql-jena already provides support for vector literals (WKT and GML).
To represent rasters we implemented CoverageJSON and Well-Known-Binary (WKB)

3 https://github.com/i3mainz/jena-geo.
4 http://sis.apache.org.

https://github.com/i3mainz/jena-geo
http://sis.apache.org


270 T. Homburg et al.

literals with appropriate parsers for (de)serialization. In addition we implemented fur-
ther functions defined in the SQL/MM standard [34]. These functions help to prepare/-
modify vector geometries before they are compared or combined with rasters. Finally,
we combined our implementation to work with a Apache Jena Fuseki triple store used
for the feasibility study in Sect. 7.

7 Feasibility

We work with the following datasets:

1. A vector dataset (GeoJSON): Road network of Cologne from OpenStreetMap
2. A vector dataset (GeoJSON) of elements at risk extracted from OpenStreetMap
3. Two rasters (flood altitude and fire hazards) of Cologne provided by a company

simulating hazards

The RDF graph contains the classes ex:Road, classes for elements at risk and the classes
ex:FloodRiskArea, ex:FireRiskArea for the rasters described in Sect. 5.

7.1 GeoSPARQL+ Queries

The feasibility check includes the four use cases defined in Sect. 3 and defines two
queries per application case in GeoSPARQL+ and an equivalent query in SQL/MM
[34]. The GeoSPARQL+ query is executed on our prototypical implementation, the
second query is executed on a POSTGIS implementation. For brevity we only illustrate
the GeoSPARQL+ queries in Listings 1.2 to 1.5.

The first query (Listing 1.2) solves usecase U1 and uses the raster algebra function
geo:rasterSmaller ( < ) (line 5) to filter those parts of a flood raster where roads that
are still passable.

1 SELECT ?road WHERE {
?road a ex:Road ; geo:hasGeometry ?roadseg . ?roadseg geo:asWKT ?roadseg_wkt .

3 ?floodarea a ex:FloodRiskArea ; geo2:asCoverage ?floodarea_cov .
?floodarea_cov geo2:asCoverageJSON ?floodarea_covjson .

5 BIND(geo2:rasterSmaller(?floodarea_covjson,10) AS ?relfloodarea)
FILTER(geo2:intersects(?roadseg_wkt,?relfloodarea))}

Listing 1.2. Use Case 1: Flood Altitude

The second query (Listing 1.3) solving use case U2 adds the values of two different
rasters (fire and floodhazard) of the same area together (geo2:rasterPlus ( + ) line 8)
and extracts atomic values of the combined raster to assign a risk value to each given
building. The maximum risk value per building is returned.

1 SELECT ?building (MAX(?riskvalue) AS ?riskmax) WHERE {
?building a ex:Building ; geo:hasGeometry ?building_geom .

3 ?building_geom geo:asWKT ?building_wkt .
?floodarea a ex:FloodRiskArea ; geo2:hasCoverage ?floodcov.

5 ?floodcov geo2:asCoverageJSON ?floodcov_covjson .
?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov.

7 ?firecov geo2:asCoverageJSON ?firecov_covjson .
BIND (geo2:rasterPlus(?firecov_covjson,?floodcov_covjson) AS ?riskarea)

9 BIND (geo2:cellval2(geo2:rasterIntersection(?building_wkt,?riskarea)) AS ?riskvalue)
FILTER(geo2:intersects(?building_wkt,?riskarea))}

Listing 1.3. Use case 2: Risk assessment
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The third query (Listing 1.4) solving use case U3 combines the assessment of prop-
erties of vector geometries (line 10) with assessments gained from rasters (line 7) and
GeoSPARQL functions like geo:buffer and geo:intersects (line 11–12) to evaluate roads
with a higher priority to be evacuated.

1 SELECT ?road WHERE{
?road a ex:Road ; geo:hasGeometry ?roadgeom . ?roadgeom geo:asWKT ?road_wkt .

3 ?ear a ear:ElementAtRisk ; geo:hasGeometry ?eargeom ; ex:openTime ?earopen ; ex:closeTime ?earclose .
?eargeom geo:asWKT ?ear_wkt .

5 ?floodarea a ex:FloodRiskArea ; geo2:hasCoverage ?floodcov. ?floodcov geo2:asCoverageJSON ?floodcov_covjson
.

?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov. ?firecov geo2:asCoverageJSON ?firecov_covjson .
7 BIND (geo2:rasterPlus(?firecov_covjson,?floodcov_covjson) AS ?riskarea)

BIND("2019−05−23T10:20:13+05:30"^^xsd:dateTime AS ?givendate)
9 FILTER(?givendate>?earopen AND ?givendate<?earclose)

FILTER(geo:intersects(geo:buffer(?road_wkt,2,uom:meter),?ear))
11 FILTER(!geo:intersects(?road_wkt,?riskarea))}

Listing 1.4. Use case 3: Rescue Capacity Planning

Roads with a higher priority are near elements at risk for which we provide an
ontology model in the appended technical report. The element at risk definition sim-
plifies this query in comparison to an equivalent POSTGIS query, as the semantics are
already explicitly stated.

Finally, the query for use case U4 (Listing 1.5) combines the GeoSPARQL func-
tions geo:area (line 8) and geo:buffer (line 7) with GeoSPARQL+ functions to intersect
geometries and rasters (line 7–8) and to return a rasters geometry (line 8).

SELECT ?hazardcoveragepercentage WHERE {
2 ?floodarea a ex:FloodRiskArea; geo2:hasCoverage ?floodcov.

?floodcov geo2:asCoverageJSON ?floodcov_covjson .
4 ?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov.

?firecov geo2:asCoverageJSON ?firecov_covjson .
6 BIND(geo2:rasterUnion(?firecov_covjson,?floodcov_covjson) AS ?hazardriskarea)

BIND(geo2:geometryIntersection(?hazardriskarea,geo:buffer(?locationtocheck,10,uom:km)) AS ?intersectarea)
8 BIND(geo:area(?intersectarea)/geo2:raster2geom(?hazardriskarea) AS ?hazardcoveragepercentage)

BIND("POINT(49.2,36.2)"^^geo:wktLiteral AS ?locationtocheck)}

Listing 1.5. Use case 4: City Planning

7.2 Results

We measured the execution times of the introduced GeoSPARQL+ queries in compari-
son to equivalent SQL/MM [36] queries run on a POSTGIS implementation. The results
are shown in Table 1.
Table 1 shows that the execution time of our prototype is significantly longer than that
of the native POSTGIS implementation.

7.3 Discussion

In Sect. 5 have shown that the query solutions for use cases U1-U4 exploit different ele-
ments of GeoSPARQL+. Use case U1 relates a raster to a vector data set, use case U2
showcases the need of raster algebra operators to solve questions of combined risks, use



272 T. Homburg et al.

Table 1. Execution times of the given queries in the GeoSPARQL+ prototype vs. the comparison
implementation in POSTGIS.

Use case GeoSPARQL+ POSTGIS

Use case 1 112,423 ms 86,817 ms

Use case 2 164,865 ms 108,357 ms

Use case 3 134,865 ms 112,817 ms

Use case 4 184,865 ms 140,357 ms

case U3 combines values gained from rasters with attributes gained from vector data at
the same geographic location. Both use case U2 and U3 make use of raster-aware filter
functions. Finally, the query to solve use case U4 utilizes the raster to geometry func-
tion to create intersections between rasters with certain characteristics. We therefore
illustrated the usefulness of GeoSPARQL+. Our prototypical implementation exhibits
a slight performance decay between 23% and 34% for various example queries. We
speculate that this degradation comes from overhead of dealing with semantics, lack
of geospatial indices for rasters and further caches as well as a lack of technical opti-
mizations that POSTGIS as a mature well-used system comes with. Considering that
our implementation merely constitutes a proof of concepts, we consider this a graceful
degradation and an acceptable result. Future work may consider an improvement of its
performance.

8 Related Work

[23] and [28] proposed stSPARQL and SPARQL-ST, which extend SPARQL with spa-
tiotemporal query capabilities for vector data. Spatiotemporal aspects for raster data
and vector data are not considered by our approach but we see no major issues to com-
bine the ideas of stSPARQL with our work. This is relevant as not only rasters with
spatiotemporal aspects exist, but the content of raster data may also change over time.

Some approaches like LinkedGeoData [5] convert SPARQL queries to SQL queries
in order to execute them on a native geospatial-aware SQL database. Similarly, hybrid
systems such as Virtuoso [15] add a semantic layer on top of a relational database such
as POSTGIS [31]. In principle, this would allow for accessing raster data, but has only
been used to store and distribute vector data (cf. [5]). We attribute this to a lack of
semantic description of raster data which we address in this publication. Furthermore,
we provide a solution independent of SQL datatabases and independent of the need for
query conversions from SPARQL to SQL.

Relational spatial databases like POSTGIS [31] or OGC geospatial webservices
[25] along with software suites such as QGIS5 and their accompanying libraries can
handle, import, modify and query raster data, in particular with raster algebra. None of
the aforementioned systems combines the advantages of linked data with the ability to
semantically describe or access raster data information.

5 https://qgis.org/de/site/.

https://qgis.org/de/site/
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In addition to the previously mentioned work, there is a line of work that represents
raster data as linked data ([13,30,33]). These works do not consider how to query raster
data. Hence, they lack the expressiveness required to cover our use cases. Similarly, [7]
wrap raster data from a POSTGIS database and make it available as vector data that can
be queried with GeoSPARQL. Because GeoSPARQL has no means for asking raster-
specific queries (e.g. raster algebra), this work also lacks the expressiveness that our
approach provides.

Another line of work includes representing and querying multi-dimensional arrays,
SciSPARQL [4]. While there is an overlap between managing raster data and arrays,
raster data has geometric aspects that our approach supports (e.g. raster cell geometries,
intersections and conversions between rasters and polygons, semantic descriptions of
scales) that are not available when the underlying data model is restricted to arrays of
real numbers. Hence, [4] can not support our use cases, e.g. lacking intersecting street
data and flooding data as we illustrate in Fig. 1a.

9 Conclusion

We presented GeoSPARQL+ a novel approach that allows for the semantic description
and querying of raster data in the semantic web. We expect these new capabilities to
make publishing geospatial data in the geospatial semantic web more attractive and
consider contributing this work to the currently discussed revision of GeoSPARQL [1,
2]. Future work could explore the semantic description of further OGC coverage types
such as trajectories or even point clouds. Also, non-grid-based raster types should be
investigated, as well as the representation of 3D rasters.

Acknowledgements. Work by Steffen Staab was partially supported by DFG through the project
LA 2672/1, Language-integrated Semantic Querying (LISeQ).
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Abstract. Data has exponentially grown in the last years, and knowl-
edge graphs constitute powerful formalisms to integrate a myriad of
existing data sources. Transformation functions – specified with function-
based mapping languages like FunUL and RML+FnO – can be applied
to overcome interoperability issues across heterogeneous data sources.
However, the absence of engines to efficiently execute these mapping
languages hinders their global adoption. We propose FunMap, an inter-
preter of function-based mapping languages; it relies on a set of loss-
less rewriting rules to push down and materialize the execution of func-
tions in initial steps of knowledge graph creation. Although applicable to
any function-based mapping language that supports joins between map-
ping rules, FunMap feasibility is shown on RML+FnO. FunMap reduces
data redundancy, e.g., duplicates and unused attributes, and converts
RML+FnO mappings into a set of equivalent rules executable on RML-
compliant engines. We evaluate FunMap performance over real-world
testbeds from the biomedical domain. The results indicate that FunMap
reduces the execution time of RML-compliant engines by up to a factor
of 18, furnishing, thus, a scalable solution for knowledge graph creation.
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1 Introduction

Knowledge graphs (KGs) have gained momentum due to the explosion of avail-
able data and the demand for expressive formalisms to integrate factual knowl-
edge spread across various data sources [14]. KG creation requires the description
of schema alignments among data sources and an ontology, as well as the specifi-
cation of methods to curate and transform data collected from the input sources
into a unified format. A rich spectrum of mapping languages has been proposed
to specify schema-ontology alignments across data sources implemented in a
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variety of semi-structured and structured formats; exemplar approaches include
R2RML [6], RML [10], and xR2RML [21]. Furthermore, function-based mapping
languages [7,8,17,26] are equipped with abstractions that enable interoperable
and reusable specifications of data transformations by means of user-defined
functions. Moreover, formalisms like RML+FnO [7] combine the Function ontol-
ogy and RML, enabling declarative specification of the schema-ontology align-
ments and data transformations that define the process of KG creation. Albeit
expressive, existing mapping languages lack efficient interpreters able to scale
up to complex KG creation scenarios. The incoming data avalanche urges KG
creation approaches capable of integrating large and diverse data, and efficiently
transforming this data to comply with application-specific KG formats.

Problem and Objectives: We tackle the problem of scaled-up KG creation
from functional mapping rules and study the impact of functions when applied
to large data sources with a high data duplication rate. A KG creation process is
defined as a data integration system [19]. Mappings among data sources and the
system ontology are expressed using the RDF mapping language (RML) [7] and
the Function Ontology (FnO); they define how the ontology concepts are popu-
lated with data from the sources in the resulting KG. We aim at transforming
complex data integration systems composed of large data sources and mappings
with functions into equivalent ones that generates the same KG but in less time.

Our Proposed Approach: We present FunMap, an interpreter of RML+FnO,
that converts a data integration system defined using RML+FnO into an equiv-
alent one where RML mappings are function-free. FunMap resembles existing
mapping translation proposals (e.g., [2,5,17]) and empowers a KG creation pro-
cess with optimization techniques to reduce execution time. Transformations of
data sources include the projection of the attributes used in the RML+FnO
mappings. They are supported on well-known properties of the relational alge-
bra, e.g., the pushing down of projections and selections into the data sources,
and enable not only the reduction of the size of data sources but also the elimi-
nation of duplicates. Additionally, FunMap materializes functions –expressed in
FnO– and represents the results as data sources of the generated data integra-
tion system; the translation of RML+FnO into RML mappings that integrate the
materialization of functions is performed using joins between the generated RML
mappings. The combination of data source and function transformations results
in data integration systems where only the data required to execute the RML
mappings are retained. The computation of the functions used in the original
data integration system is performed once. As a result, the new data integration
system’s execution is sped up while the same knowledge graph is generated.

Contributions. i) FunMap, an interpreter of RML+FnO that resorts to syntax-
based translation [1] to push down projections and selections, and materialize
functions. ii) Empirical evaluations of the performance of FunMap in real-world
testbeds with data of various formats (CSV and Relational), sizes, and degrees
of duplication that show reductions in KG creation time by up to a factor of 18.
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The remainder of this paper is structured as follows: Section 2 motivates our
work using a use case from the biomedical domain. Section 3 describes the set of
rewriting and optimization rules that assemble FunMap, while the experimental
results are reported in Sect. 4. Finally, Sect. 5 presents the related work and
Sect. 6 outlines the main conclusions of the paper and future lines of work.

Fig. 1. Motivating example. Knowledge graph construction using RML+FnO map-
ping rules for the biomedical domain. The input source in the top is transformed to
RDF output (at the bottom) through the processing of the mapping (middle) where the
transformation functions are defined. Repeated computations of a function negatively
impacts on the performance of an RML engine.

2 Preliminaries and Motivating Example

2.1 Preliminaries

The RDF Mapping Language (RML) extends the W3C-standard mapping lan-
guage R2RML with logical sources (a.k.a. logicalSource) in heterogeneous for-
mats (e.g., CSV, Relational, JSON, and XML). As the W3C-standard R2RML,
TriplesMap corresponds to mapping rules where the resources (a.k.a. subjectM-
ap) of an RDF class and their properties (a.k.a. predicateMap) are assigned to
values (a.k.a. objectMap) based on logical data sources. An objectMap can be
also defined as a reference or a join with the subjectMap in another TriplesMap
(a.k.a. RefObjectMap and joinCondition, respectively). subjectMap, predica-
teMap, and objectMap are also referred as TermMap in general; they gener-
ate RDF terms. FnO is an ontology for describing transformation functions
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declaratively; FnO and RML relationship is described in [7]. Accordingly, the
FunctionMap class is introduced in RML; it defines transformation functions in
any part of the TriplesMap (subjectMap, predicateMap, or objectMap). These
concepts are illustrated in the next example and highlighted in Fig. 1.

2.2 A Real-World Example from the Biomedical Domain

Our work is motivated by the challenges revealed during genomic variant recon-
ciliation while creating a biomedical knowledge graph. Although the vast major-
ity of the single variations in the genome of a person causes no disease, benign
variants can appear in sequenced genomic data repeatedly. In addition to the
large heterogeneous volumes generated during genome sequencing and analy-
sis, high-frequency of genomic variants impose data integration challenges while
collecting genomic data from different sources. Additionally, genomic variants
are expressed in diverse standard formats [9] and reported at DNA, RNA, or
protein level. Moreover, this representation can be done according to any of the
accepted terminologies and genomic reference versions. Unified representations
for variants are required to semantically recognize and integrate equivalent vari-
ants residing in different data sources. Variant representations can result from a
composition of several factors, such as gene name, genomic position, and residue
alteration. Pre-processing functions (e.g., FnO functions) are needed to extract
and compose values from different attributes from each data source and generate
such a combined representation of variants. These functions are part of the data
integration system’s mapping rules that define the KG creation process.

Figure 1 depicts a mapping rule in RML+FnO where the FunctionMap class
is utilized. Consider that according to the LogicalSource provided in this exam-
ple, a FunctionMap is defined in the mapping rules to create a unified represen-
tation for a variant by extracting the values of “gene name” (e.g., BCR) from
the attribute gene and “coding alteration” (e.g., c.1001C>T) from the attribute
named hgvs and combine them (e.g., BCR 1001C˜T). Current approaches eval-
uate FunctionMap for each variant, which can be expensive in presence of large
data sources. Nevertheless, the large number of redundant values leaves room
for the scalable transformations to execute functional mappings.

3 The FunMap Approach

FunMap is an interpreter of data integration systems DISG = 〈O,S,M〉, where
O stands for a unified ontology, and S and M represent sets of sources and
mapping rules, respectively [19]. The evaluation of DISG (a.k.a. RDFize(DISG))
results into a knowledge graph G that integrates data from S according to the
mapping rules in M ; entities and properties in G are described in terms of O.
A complex data integration system DISG consists of large data sources with
high-duplicated data and mapping rules including functions for both schema-
ontology alignments and data transformations. FunMap converts DISG into an
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Table 1. Summary of the notation used for defining FunMap

Notation Explanation

DISG = 〈O,S,M〉 Data Integration System which creates a KG G

O Unified Ontology of DISG = 〈O,S,M〉
S Finite set of Data Sources Si of DISG = 〈O,S,M〉
M Finite set of TriplesMaps Ti in DISG = 〈O,S,M〉
RDFize(.) A function producing RDF triples from a data

integration system

T ′
i and T ′

k TriplesMaps resulting of applying MTRs

Fi A Transformation Function in a TriplesMap in M

S′ Finite set of Data Sources S′
i resulting of applying

DTRs

M ′ Finite set of Mapping Rules M ′
i resulting of applying

MTRs

Soutput
i Data source resulting of applying DTR1, with

attributes o′
i and a′

i representing the materialization
of a transformation function Fi

Sproject
i Data source resulting of applying DTR2

equivalent data integration system that creates the same knowledge graph but
in less time. Table 1 summarizes the notation utilized in the FunMap approach.

Problem Statement: Given a data integration system DISG = 〈O,S,M〉,
the problem of scaled-up knowledge graph creation from functional mappings
requires the generation of a data integration system DIS′

G = 〈O,S′,M ′〉:
• The knowledge graphs resulting of the evaluations of both data integration

systems are the same, i.e., RDFize(DIS′
G = 〈O,S′,M ′〉) = RDFize(DISG =

〈O,S,M〉) where RDFize(.) is a function producing RDF triples utilizing
the input data integration system.

• The execution time of RDFize(DIS′
G = 〈O,S′,M ′〉) is less than the execution

time of RDFize(DISG = 〈O,S,M〉).

Solution: FunMap implements a heuristic-based approach; it relies on the
assumption that eliminating duplicates, maintaining in the data sources only
the attributes mentioned in the mappings, and materializing the functions in
the mappings, reduces the execution time of knowledge graph creation process.
FunMap receives a data integration system DISG = 〈O,S,M〉 where the map-
pings M are expressed in RML+FnO. FunMap interprets the mappings in M
and converts DIS into the data integration system DIS′

G in which the map-
pings M ′ are function free and duplicates in the data sources S′ are reduced.
Figure 2 depicts the FunMap approach; it performs a syntax-based translation
of the mappings in M and ensures that each redundant function is evaluated
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exactly once on the same data values. FunMap transforms S to S′ by means
of data transformation rules (DTR1 and DTR2). For each Fi over a given Si,
DTR1 creates a temporal source S′

i that includes the attributes from Si that
correspond to the input of Fi; it also generates a source Soutput

i that contains
the attributes in S′

i and attributes representing the output of Fi. For each
FunctionMap defined over a source Si, DTR2 creates a source Sproject

i that
includes all attributes of Si used in the FunctionMap. Additionally, FunMap
converts mapping rules that include functions by using mapping transformation
rules (MTRs); a FunctionMap is transformed into FunctionMaps without func-
tions while connected by joinConditions; initially, S′ and S are equal, as well
as M ′ and M . Properties 1, 2, and 3 state the pre- and post-conditions of DTRs
and MTRs.

Fig. 2. The FunMap approach

3.1 Transformation Rules in FunMap

The FunMap syntax-based translation component parses FunctionMaps exactly
once, i.e., FunctionMaps repeated in various mappings are not evaluated more
than once. Given FunctionMaps, original data sources, and mappings, FunMap
executes transformation rules on data sources and mappings, accordingly. Mean-
while, given the transformed data sources, FunMap detects that a FunctionMap
has been computed for a given value and avoids repeating this computation. As
an outcome, FunMap provides a) a new set of data sources S′ consisting of the
original ones in conjunction with transformed data sources, and b) a set M ′

of transformed function-free mappings. FunMap is loyal to the formats of data
sources and mappings. Thus, any RDF mapping language is compatible with the
process implemented in FunMap, as far as the language enables the definition of
joins between mapping rules. Next, we present the transformation rules.

Data Source Transformation Rules (DTRs): Considering the fact that a
TriplesMap may only be used some attributes of a dataset, FunMap relies on
the properties of the relational algebra and performs DTRs to project only the
attributes mentioned in the TriplesMap. DTRs are followed by transformation
rules (MTRs) that update mappings defined over the transformed data sources.
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Fig. 3. Example of DTR and Object-based MTR. On the left, an exemplary
mapping including two TriplesMaps and a FunctionMap provided by the original data
integration system. On the right side, the mappings are transformed by FunMap includ-
ing two new TriplesMaps and one new TriplesMap.

DTR1: Projection of Functional Attributes: For each transformation func-
tion Fi over a given source Si in the set of data sources S, FunMap projects all
attributes a′

i in Si that are input attributes of Fi, into a temporal data source S′
i

followed by duplicate removal. Subsequently, it evaluates Fi over S′
i and stores

the results into the attribute oi. Lastly, it creates a new data source Soutput
i with

the attributes a′
i and oi; Soutput

i is added to S′.

DTR2: Projection of Non-functional Attributes: FunMap provides an
additional DTR to further optimize the knowledge graph creation process.
Exploiting transformation rules that are proposed in [16], FunMap projects all
attributes in Si that are needed by TriplesMap including those that are received
by FunctionMap as input into a new data source Sproject

i which is added to S′.
To better conceive DTRs, consider the original mappings in Fig. 3 (left-side) and
corresponding data source source1.csv that can be seen in Fig. 4. As shown in
Fig. 3, FunctionMap1 receives Mutation genome position as input. According
to DTR1, FunMap projects Mutation genome position from source1 into a
new data source named output1.csv which is shown in Fig. 5c. The rows number
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Fig. 4. Original data source for KG creation. The data source includes many
attributes among which only a few are required by the transformation function or
function-free mappings in the process of knowledge graph creation.

2 and 4 have the same value for attribute Mutation genome posit-ion which
leads FunMap to remove the duplicated value from output1.csv. Afterwards,
FunctionMap1 is evaluated given output1.csv as input and the output values
are inserted as a new attribute named functionOutput into the output1.csv
data source. Moreover, attributes GENOMIC_MUTATION_ID and Primary site
from source1.csv that are in TriplesMap1 are projected into the new data
source that is shown in Fig. 5a and duplicated values are removed. Similarly,
Projected2.csv is created based on the attributes of TriplesMap2.

Mapping Transformation Rules (MTRs). Mappings are transformed to cre-
ate the same knowledge graph utilizing the transformed data sources. MTRs are
defined considering the role of a transformation function Fi in each TriplesMap
Ti. I) Fi as an ObjectMap: We refer to the MTRs that are required in this
case as Object-based. First of all, for each Fi, a new TriplesMap T ′

i is cre-
ated; it refers to the data source generated as the outcome of Fi, i.e., Soutput

i .
Accordingly, the SubjectMap of T ′

i refers to the output attributes oi in Soutput
i .

Afterwards, in TriplesMap Ti where Fi is presented as an ObjectMap, Fi is
replaced by a joinCondition which joins Ti and T ′

i over attributes a′
i, i.e., the

input attributes of Fi. Moreover, the logicalSource of Ti is changed to Sproject
i ,

i.e., the corresponding projected data source provided as an outcome of DTR2.
II) Fi as a SubjectMap: Contrary to the Object-based, in this set of MTR -
we refer to as Subject-based- for each predicateObjectMap that follows a Fi

of the type SubjectMap, a new TriplesMap T ′
i refers to the data source Sproject

i

which is generated as an outcome of DTR2 by projecting the attribute a′
i from

Si that are referenced as objectMap in the original predicateObjectMap. The
subjectMap of T ′

k –the transformed Ti – refers to the oi and its logicalSource
is Soutput

i . Note that subjectMap of T ′
i is by definition a TermMap, which means

that its value can be any RDF term according to the RML specification. Each
objectMap in Ti that is a FunctionMap is replaced by a joinCondition between
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(a) Projected1 (b) Projected2 (c) Output1

Fig. 5. Transformed sources generated by FunMap. The DTR2 generates a new
source by projecting attributes for each TripleMap (a and b) while DTR1 projects
input and output attributes of each FunctionMap into a new source (c). Both remove
the generated duplicates.

Ti and corresponding T ′
i over input attributes a′

i of Fi. In both cases, the trans-
formed Ti– denoted as T ′

k– and T ′
i are added to M ′ and Ti is removed from M ′.

Figures 3 and 6 illustrate two examples of rewritten mappings based on
DTRs and MTRs. In the left side of both figures, the original mappings
are presented while the transformed mappings are depicted on the right
side. In the transformed mappings in Fig. 3, TriplesMap3 is created for
FunctionMap1; it refers to the attribute functionOutput in the projected data
source output1.csv– shown in Fig. 5c. Then, FunctionMap1 is replaced in
both TriplesMap1 and TriplesMap2 by a join condition over the attribute
Mutation genome position which is the input attribute of FunctionMap in
the original mapping file as it is highlighted by the same color. Accordingly,
data sources -highlighted- of TriplesMaps are also transformed to refer to the
projected data sources. Consider Fig. 6 where FunctionMap is a subjectMap.
In both predicateObjectMa-ps of TriplesMap1, FunctionMap1 is replaced by
a joinCondition over the attribute Mutation genome position that is the
input of FunctionMap1. To better clarify the performed transformation, con-
sider the first predicateObjectMap in TripleMap1 in the original mappings;
the predicate is represents and the ObjectMap refers to the attribute Muta-
tion. After the transformation, the first predicateObjectMap has the same
predicate represents and through the joinCondition refers to the same
attribute Mutation in projected1.csv.

Pre- and post-conditions of Data Source Transformation Rules (DTRs) and
Mapping Transformation Rules (MTRs) are stated in the following properties:

Property 1 (Lossless Function). Given data integration systems DISG =
〈O,S,M〉 and DIS′

G = 〈O,S′,M〉 such that DIS′
G is the result of applying
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Fig. 6. Example of Subject-based MTR. An example of mappings including a
TriplesMaps and FunctionMap are illustrated on the left and their transformed version
including three TriplesMap are shown on the right side.

one DTR1 transformation to DISG. Then, there are data sources Si and Soutput
i

in S and S′, respectively, and the following statements hold:

– S′ −S = {Soutput
i }, there is a mapping Ti in M with a function Fi, and Attrs

contains the attributes a′
i of Fi in Si and the output attributes oi of Fi.

– Soutput
i comprises the attributes Attrs and πa′

i
(Soutput

i ) = πa′
i
(Si).

– For each tuple ti,j in Soutput
i , the values of the attributes oi in ti,j correspond

to the result of Fi over the values of a′
i in ti,j , i.e., ti,j .oi = Fi(ti,j .a′

i).

Property 2 (Lossless Projection). Given data integration systems DISG =
〈O,S,M〉 and DIS′

G = 〈O,S′,M〉 such that DIS′
G is the result of applying one

DTR2 transformation to DISG. Then, there are data sources Si and Sproject
i in

S and S′, respectively, and the following statements hold:

– S′−S = {Sproject
i }, and there is a mapping Ti in M defined over the attributes

Attrs from Si, and Sproject
i = πAttrs(Si).

Property 3 (Lossless Schema-Ontology Alignments).1 Given data integration
systems DISG = 〈O,S,M〉 and DIS′

G = 〈O,S,M ′〉 such that DIS′
G is the result

of applying one MTR transformation to DISG. Then, there are TriplesMaps Ti

in M , and T ′
i and T ′

k in M ′, and the following statements hold:

– M − M ′ = {Ti} and M ′ − M = {T ′
i , T

′
k}.

1 Similarly, this property can be stated for the result of applying MTR over the subject
position of a property in a mapping of a data integration system.
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– There is a function Fi in Ti as the ObjectMap of a PredicateMap p, and
there is a data source Soutput

i in S which is the LogicalSource of Ti. The
attributes of Soutput

i are the union of a′
i and oi, while a′

i and oi are input and
output attributes of Fi, respectively.

– Ti and T ′
k are defined over the same LogicalSource Sproject

i . Soutput
i is the

LogicalSource of T ′
i and oi is the SubjectMap of T ′

i .
– Ti and T ′

k only differ on the ObjectMap p. In Ti, ObjectMap of p is defined as
Fi, while in T ′

k, a joinCondition to T ′
i on a′

i defines the ObjectMap of p.

4 Experimental Evaluation

We evaluate FunMap2 in comparison to current approaches that create a knowl-
edge graph using the specified data sources and RML+FnO mappings. We aim
to answer the following research questions: Q1) What is the impact of data
duplication rate in the execution time of a knowledge graph creation approach?
Q2) What is the impact of different types of complexity over transformation
functions during a knowledge graph creation process? Q3) How does the repe-
tition of a same function in different mappings affect the existing RML engines?
Q4) What is the impact of relational data sources in the knowledge graph cre-
ation process? All the resources used to perform this evaluation are available in
our Github repository3. The experimental configuration is as follows:

Datasets and Mappings. To the best of our knowledge, there are no testbeds
to evaluate the performance of a knowledge graph construction approach that
applies functional mappings. Consequently, following the real-world scenario that
initially motivated this research, we create our testbed from the biomedical
domain. We generate a baseline dataset by randomly selecting 20,000 records
from the coding point mutation dataset in COSMIC4 database. We keep all 39
attributes of the original dataset in the baseline dataset, while only five to seven
of them are utilized in mappings. In total, four different mapping files are gener-
ated consisting of one FunctionMap and four, six, eight, or ten TriplesMaps with
a predicateObjectMap linked to the function. To additionally validate FunMap
in case of large-sized data, we create another dataset following the same criteria,
with 4,000,000 records and the size of about 1.3 GB.

Engines. The baselines of our study are three different open source RML-
complaint engines that are able to execute RML+FnO mappings and have been
extensively utilized in multiple applications and tested by the community: SDM-
RDFizer v3.0 [15], RMLMapper5 v4.7, and RocketRML6 v1.1.7. In order to eval-
uate the impact of transformation rules, we implement FunMap v1.0 on the top
2 https://doi.org/10.5281/zenodo.3993657.
3 https://github.com/SDM-TIB/FunMap.
4 https://cancer.sanger.ac.uk/cosmic GRCh37, version90, released August 2019.
5 https://github.com/RMLio/rmlmapper-java.
6 https://github.com/semantifyit/RocketRML/.
7 We name them SDM-RDFizer**(RML+FnO), RMLMapper**(RML+FnO), and

RocketRML**(RML+FnO).

https://doi.org/10.5281/zenodo.3993657
https://github.com/SDM-TIB/FunMap
https://cancer.sanger.ac.uk/cosmic
https://github.com/RMLio/rmlmapper-java
https://github.com/semantifyit/RocketRML/
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of the aforementioned engines with DTR2 optimization as an optional parameter.
We refer to the approach which applies FunMap excluding DTR2 as FunMap−8.
We created a docker image per tested engine for reproducibility.

Metrics. Execution time: Elapsed time spent by an engine to complete the cre-
ation of a knowledge graph and also counts FunMap pre-processing; it is mea-
sured as the absolute wall-clock system time as reported by the time command of
the Linux operating system. Each experiment was executed five times and aver-
age is reported. The experiments were executed on an Ubuntu 16.04 machine
with Intel(R) Xeon(R) Platinum 8160, CPU 2.10 GHz and 700 Gb RAM.

Experimental Setups. Based on our research questions, we set up in overall
198 experiments as the combinations of the following scenarios. We create two
datasets from our baseline with 25% and 75% duplicates which means in the 25%
duplicate dataset, 25% and in the 75% duplicate dataset, 75% of the records are
duplicated. Additionally, two functions with different levels of complexity are
created. We describe the complexity level of the functions based on the number
of required input attributes and operations to be performed. Accordingly, “sim-
ple” function is defined to receive one input attribute and perform one operation,
while a “complex” function receives two input attributes and completes five oper-
ations. In total, we create eight mapping files including four, six, eight, and ten
TriplesMap and one FunctionMap to be either “simple” or “complex”. Addi-
tionally, six experiments using 75% duplicate datasets of 20,000 and 4,000,000
records and a mapping file including ten complex functions are set up in order
to be run over a relational database (RDB) implemented in MySQL 8.09.

4.1 Discussion of Observed Results

In this section, we describe the outcomes of our experimental evaluation. Figure 7
reports on the execution time of the different testbeds in which the functions
are considered to be “simple” whereas Fig. 8 shows the experiments involving
“complex” functions. Both figures represent the total execution time for con-
structing the knowledge graph applying selected engines (i.e., SDM-RDFizer,
RMLMapper, and RocketRML) in three different configurations: a) the current
version of the engine that is able to directly interpret RML+FnO mappings
in the engine (e.g., RMLMapper**(RML+FnO)); b) FunMap− in conjunction
with the engine (e.g., FunMap−+RMLMapper); and c) FunMap together with
the engine (e.g., FunMap+RMLMapper). In the case of all the configuration of
RocketRML, we only provide the results for the execution of simple functions
because the engine does not execute joins with multiple conditions10 correctly,

8 We name these combined engines as follows: a) FunMap: FunMap+SDM-RDFizer,
FunMap+RMLMapper, and FunMap+RocketRML; b) FunMap−: FunMap−+SDM-
RDFizer, FunMap−+RMLMapper, and FunMap−+RocketRML.

9 https://www.mysql.com/.
10 Check an example in the zip file of the supplementary material.

https://www.mysql.com/
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(a) SDM-RDFizer - 25% of duplicates (b) SDM-RDFizer - 75% of duplicates

(c) RMLMapper - 25% of duplicates (d) RMLMapper - 75% of duplicates

(e) RocketRML - 25% of duplicates (f) RocketRML - 75% of duplicates

Fig. 7. Total execution time of experiments with simple functions 25–75% of
duplicates. SDM-RDFizer, RMLMapper and RocketRML executing simple functions
in RML+FnO mappings and with FunMap and FunMap−.

hence, the proposed optimizations cannot be applied. For the rest of the exper-
iments, we have verified that the results are the same for all the approaches in
terms of cardinality and correctness. The results obtained by the application of
SDM-RDFizer with the repetition of simple functions (Figs. 7a and 7b) reflect
an improvement of the execution time when FunMap is applied in the process.
With the growth of number of duplicates and repeated functions, the difference
between the performance of SDM-RDFizer**(RML+FnO) and FunMap+SDM-
RDFizer increases. Using this engine, FunMap− shows the same behavior as
FunMap, however, in the case of having a large number of duplicates and a
few repeated functions FunMap− does not improve the performance of SDM-
RDFizer**(RML+FnO). In the case of using RMLMapper (Figs. 7c and 7d), we
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observe that the results obtained together with FunMap− (i.e., DTR1 optimiza-
tion) do not show better performance than RMLMapper**(RML+FnO). DTR1
which only focuses on transforming functions, delegates the removal of the dupli-
cates to the engine which is not accomplished efficiently by RMLMapper. How-
ever, in FunMap+RMLMapper, that includes DTR1 and DTR2 optimizations,
duplicates are removed before the execution of the RML mappings and leads to
obtain the results that clearly show improvements with respect to the baseline. In
the same manner as the SDM-RDFizer, the number of repetitions of the functions
affects the execution time of the RMLMapper**(RML+FnO), while FunMap
maintains similar execution times. Finally, RocketRML (Figs. 7e and 7f) seems
not to be affected by the number of duplicates over the input data, obtaining sim-
ilar execution times for 25% and 75% rate for RocketRML**(RML+FnO). How-
ever, the number of repetitions over functions impacts the performance of Rock-
etRML**(RML+FnO), increasing the total execution time. The incorporation
of DTR1 (i.e., FunMap−+RocketRML) and DTR2 (i.e., FunMap+RocketRML)
enhances the performance and scalability during the construction of the knowl-
edge graph, obtaining a similar behavior as the other two tested engines.

(a) SDM-RDFizer - 25% of duplicates (b) SDM-RDFizer - 75% of duplicates

(c) RMLMapper - 25% of duplicates (d) RMLMapper - 75% of duplicates

Fig. 8. Total execution time for complex functions 25–75% of duplicates.
SDM-RDFizer and RMLMapper executing complex functions in RML+FnO mappings
and with FunMap and FunMap−.

The effect of function complexity over SDM-RDFizer can be observed in
Figs. 8a and 8b. Whenever the number of repetitions is low (4–6), the join with
multiple conditions affects FunMap−+SDM-RDFizer, obtaining worse results
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than SDM-RDFizer**(RML+FnO). However, if repetitions increase (8–10),
DTR1 empowers SDM-RDFizer**(RML+FnO) due the reduction of repeated
operations during the evaluation of the mappings. Conversely, FunMap+SDM-
RDFizer exhibits better results than SDM-RDFizer**(RML+FnO) in all the
testbeds. Finally, the behavior of RMLMapper – when it has to execute complex
transformation functions (Figs. 8c and 8d) – is affected in terms of execution
time for the configuration FunMap−+RMLMapper in comparison to the case
of simple functions. As similar as SDM-RDFizer, the join with several condi-
tions is impacting the performance. However, together with data transformation
optimizations, FunMap+RMLMapper outperforms the baseline.

The experimental results on RDBs show even more significant improve-
ment in the performance of both RMLMapper and SDM-RDFizer in the
presence of FunMap. In FunMap+RMLMapper, applying joins in the SQL
queries that define the logicalSources instead of using joinConditions
reduces execution time by up to a factor of 18. These results evidence
that joinConditions are not efficiently implemented by RMLMapper, and
explain why FunMap+RMLMapper is showing less improvement compared to
FunMap+SDM-RDFizer in Fig. 8. Moreover, FunMap+SDM-RDFizer success-
fully performs on the large-sized relational dataset of 1.3 GB in 5,670.67 s, while
SDM-RDFizer**(RML+FnO) cannot create the KG and times out after 10,000 s.

In overall, we observe that the configurations that interpret RML+FnO map-
pings directly are affected by the repetition of the functions and the degree of
data duplicates, i.e., execution time monotonically increases with number of
functions and data duplication degree. In contrast, the incorporation of Fun-
Map to the engines shows less fluctuated behavior when the data duplication
rate increases. Additionally, the studied engines handle the repetition of the
functions during the construction of the knowledge graph thanks to the pushing
down of the execution of the functions directly over the dataset. In summary, the
observed results indicate that the FunMap heuristics improve the performance
of data integration systems and generate solutions to the problem of scaled-up
knowledge graph construction. The effectiveness of the proposed transformations
has been empirically demonstrated on various RML+FnO and RML-compliant
engines. However, we observe that there are cases where the application of DTR1
alone is not enough (i.e., FunMap−), being required the applications of all the
transformations (i.e., DTRs and MTRs) to provide an effective solution.

5 Related Work

Solutions provided to the problem of KG creation from (semi)-structured data
are gaining momentum in practitioners and users [5]. The seminal paper by Lenz-
erini [19] provides a formal framework for solving this problem and represents a
pivot for Ontology-Based Data Access/Integration (OBDA/I) [22] and the cor-
responding optimization approaches. Gawriljuk et al. [12] present a framework
for incremental knowledge graph creation. While optimized SPARQL-to-SQL
query translation techniques [4] are implemented to support virtual knowledge
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graph creation [3,23]. Albeit efficient, these approaches do not support data
transformations (i.e., functions), preventing an efficient evaluation of declarative
knowledge graph creation processes. Although FunMap is focused on customized
transformation functions for materialized KGs, it can be applied on top of these
OBDA approaches. However, this would require the definition of new transfor-
mation rules able to push down the corresponding functions into SQL engines.

Rahm and Do [24] have reported the relevance of data transformations
expressed with functions during data curation and integration. Grounding on this
statement, different approaches have been proposed for facilitating the definition
of functions to enhance data curation (e.g., [11,13,25]). Similarly, declarative lan-
guages have been proposed to allow for the definition of functions in the map-
pings; exemplar approaches include R2RML-F [8], FunUL [17], RML+FnO [7],
and D-REPR [26]. Moreover, mapping engines enable to interpret functions in
declarative mappings (e.g., Squerall [20], RMLStreamer11 and CARML12 for
RML+FnO), as well as in non-declarative formalisms [18]. FunMap optimiza-
tions currently are performed over static data and require the implementation of
the joinCondition by a KG creation engine. However, RMLStreamer works over
streaming data, while CARML does not entirely cover RML joins. Additionally,
Squerall is a SPARQL query engine over heterogeneous data able to process
RML+FnO on the fly, but Squerall does not implement RML joins. Despite
the rich repertory of these approaches, optimizing the declarative description
of complex data integration systems remains still open. The absence of frame-
works capable of efficiently execute complex data integration systems negatively
impacts on the global adoption of existing formalisms in real-world applications
of knowledge graphs. FunMap aims at bridging this gap and offering an alterna-
tive of evaluating RML+FnO over existing RML-compliant engines.

6 Conclusions and Future Work

We addressed the problem of scaled-up KG creation in complex data integra-
tion systems, i.e., systems with large data sources, high data duplication rate,
and functional mappings. We presented a heuristic-based approach for efficiently
evaluating data integration systems with data sources in diverse formats (e.g.,
CSV or relational). The proposed heuristics are implemented in FunMap, an
interpreter of RML+FnO, that converts data integration systems in RML+FnO
into equivalent data integration systems specified in RML. Besides shaping an
RML-engine independent interpreter of RML+FnO, FunMap generates data
integration systems that enhance RML-compliant engines whenever transfor-
mation functions are repeatedly used, and data sources are large and have
highly-duplicated data. Empirical evaluations of the combination of FunMap
with RML-compliant engines suggest that the execution time of RML+FnO can
be reduced by up to a factor of 18. Thus, FunMap widens the repertory of tools
to scale up knowledge graphs to the enormous increase of incoming data and
11 https://github.com/RMLio/RMLStreamer.
12 https://github.com/carml/carml.

https://github.com/RMLio/RMLStreamer
https://github.com/carml/carml
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ease the development of real-world KG applications. As the main limitation,
FunMap can only be applied with an RML-compliant engine which supports
either joinCondition or RDB on the backend. We plan to devise cost-based
optimization approaches that, together with the proposed heuristics, allow for
the generation of the best solution for a complex data integration system in
RML+FnO.
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Abstract. Providing a plethora of entity-centric information, Knowl-
edge Graphs have become a vital building block for a variety of intelligent
applications. Indeed, modern knowledge graphs like Wikidata already
capture several billions of RDF triples, yet they still lack a good cov-
erage for most relations. On the other hand, recent developments in
NLP research show that neural language models can easily be queried
for relational knowledge without requiring massive amounts of training
data. In this work, we leverage this idea by creating a hybrid query
answering system on top of knowledge graphs in combination with the
masked language model BERT to complete query results. We thus incor-
porate valuable structural and semantic information from knowledge
graphs with textual knowledge from language models to achieve high
precision query results. Standard techniques for dealing with incomplete
knowledge graphs are either (1) relation extraction which requires mas-
sive amounts of training data or (2) knowledge graph embeddings which
have problems to succeed beyond simple baseline datasets. Our hybrid
system KnowlyBERT requires only small amounts of training data, while
outperforming state-of-the-art techniques by boosting their precision by
over 30% in our large Wikidata experiment.

Keywords: Query answering · Language models · Knowledge graphs

1 Introduction

Large Knowledge Graphs (KG) like Wikidata [17], DBpedia [2], YAGO [15]
and the Google Knowledge Graph [5] have become an essential component in
data-intensive applications, like Web search, information retrieval or for adding
an additional value to machine learning techniques. Most of these knowledge
graphs contain entity-centric knowledge that is either manually curated like in
Wikidata, extracted from structured sources like tables for DBpedia or also
extracted from natural language text by relation extraction techniques [5].
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Still, modern knowledge graphs like Wikidata lack important information
about entities which drastically hampers its application. As an example, only
36% of all persons in the current Wikidata version have a birthplace. To overcome
problems with the incompleteness, several ways to complete knowledge graphs
are investigated: (1) Knowledge graph completion techniques, as for example
relational learning techniques [10], are employed for learning statistical regular-
ities in knowledge graph data to infer new facts. However, current benchmarks,
only comprising several thousand entities, show that existing techniques are far
from being able to deliver reliable results [1]. (2) On the other hand, relation
extraction method use existing triples as training data for NLP machine learn-
ing techniques to extract similar facts from textual data automatically. These
techniques need large amounts of training data and also only achieve low quality
results [13].

Very recently Petroni et al. have proposed a third idea for dealing with the
incompleteness of structured knowledge graphs: utilizing masked language mod-
els as a knowledge graph [13]. Masked language models are a technique that
lead to a quantum leap in almost all natural language processing tasks. It is a
machine learning technique, that is able to complete sentences, based on mas-
sive amounts of text that it was trained on. The language model is even able to
complete sentences correctly, if the information was not present in the training
data, since it is able to infer new knowledge. Therefore, Petroni et al. came up
with the idea of extracting relational knowledge (i. e,̇ triples) directly from the
model. As an example, we could figure out the birthplace of Albert Einstein by
a sentence completion task as follows: “Albert Einstein is born in ...”, would be
completed by the language model with the word Ulm. Hence, we could infer the
valid triple (Albert Einstein, born in, Ulm) to directly answer basic SPARQL
queries on the language model. Some follow up works [3,12], have shown that we
easily extract relational knowledge from such language model, with good quality
for a variety of semantic and syntactic relations. However, this idea still shows
several problems: In contrast to knowledge graphs, language models work on
words and not on IRIs for entities as it is common in knowledge graphs. This
leaves the open question on how to map the language model result to the cor-
rect knowledge graph entity. Existing works, are only considering entities whose
label consists of a single word. Multi-word entities cannot be found. So far, only
first experiments on how triples are extracted from a language model have been
shown.

Here, instead of just extracting knowledge from the language model, we over-
come existing problems and present - KnowlyBERT - the first read-to-use hybrid
query answering system for knowledge graphs incorporating masked language
models on the fly at query time. Our system is able to answer entity-centric
SPARQL queries on incomplete knowledge graphs, using state-of-the-art lan-
guage models to complete the results. Furthermore, we incorporate existing
semantic information from the knowledge graph in multiple ways to improve
the accuracy of the hybrid system: We developed a typing system, filtering lan-
guage model results based on knowledge graphs fine-grained class hierarchies.
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As an additional filtering step, our system uses existing answers to further filter
out incorrect answer candidates. We also use the knowledge graphs information
to automatically find good natural language sentence for the language model
prediction task [3].

We present the first ready-to-use query answering system for Wikidata com-
bined with the language model BERT [4]. In a large real-world evaluation on
Wikidata, we compare our system for various queries on an incomplete knowl-
edge graph against a state-of-the-art relation extraction system ([14]) and the
knowledge base completion system HoLE [11].

The main contributions of this paper can be summarized as follows:

– We develop a system integrating the advantages of knowledge graphs and
large-scale masked language models to answer entity-centric SPARQL queries
efficiently.

– We perform several large-scale experiments with around 6500 queries of
KnowlyBERT on the real-world knowledge graph Wikidata against two state-
of-the-art baselines.

– Our implementation and all our experimental data is openly available for easy
reproducibility of our work1.

2 Related Work

Knowledge Graph Completion is used to learn statistical regularities in the
data to predict new triples connecting existing entities in incomplete knowledge
graphs. Thus, similar to our system, such techniques may be used to complete
query results, by finding missing triples in a first step and use these triples
additionally, to existing ones to answer queries.

Basically, two approaches for knowledge graph completion are common. Rule-
based approaches, such as AMIE+ [7] are used to learn closed Horn rules from
knowledge graphs. These rules infer new triples with high precision. However,
rule induction algorithms have performance problems when it comes to large
knowledge graphs with hundreds of millions of triples such as Wikidata.

To overcome the performance problem, knowledge embedding-based tech-
niques have been proposed. These techniques have in common that they learn
high-dimensional vector representations of entities and relationships and use
these to predict new triples [10]. In practice, knowledge embeddings are hardly
used yet because their result quality for real-world knowledge graphs is poor and
it is not desirable to introduce low quality triples into a high-quality knowledge
graph [1]. Furthermore, state-of-the-art benchmarks rely on a well-chosen subset
of the knowledge graph Freebase, only comprising 15,000 entities. The prediction
quality in these benchmarks is acceptable, but mainly because of the small and
well-chosen datasets.

Overall, existing techniques for knowledge graph completion cannot work
properly with large-scale knowledge graphs and achieve high quality predictions

1 https://github.com/JanKalo/KnowlyBERT.

https://github.com/JanKalo/KnowlyBERT
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at the same time. In contrast to both techniques, our approach makes use of
pre-trained language models without the need of massive computing resources
and still can predict new triples with high quality or high recall.

To provide a comparison, we also evaluate the state-of-the-art KG embedding
technique HoLE [11] against our system in the evaluation section.

Relation Extraction is about extracting triples from natural language text using
automatic machine learning techniques. State-of-the-art techniques are based on
so called distant supervision. Existing knowledge graph triples are used to gener-
ate training data for a classification algorithm that decides for a given sentence
whether it contains a triple or not. Systems achieve a precision between 50% and
90% on small Wikidata corpora [14,16]. In contrast to our work, relation extrac-
tion systems need large amounts of training data to train a classifier for each
relation independently. Furthermore, they cannot be directly used in an on-the
fly querying answering system. Relation extraction has to be performed upfront
on large text collections to cover all possible queries, because due to its runtime
it cannot be used for on-the-fly query answering. To provide a comparison to
relation extraction, in our evaluation, we compare to the open source system
provided by Sorokin et al. [14].

Masked Language Models have recently shown great results in a plethora of dif-
ferent NLP tasks. Petroni et al. have shown that knowledge graph facts can be
directly extracted from pre-trained language models, instead performing a com-
plex relation extraction process [13]. In their work, they have manually built
sentence templates for several relationships from knowledge graphs. These tem-
plates are then used to complete a sentence and predict a word to complete
a triple, as demonstrated in the introduction. This work is only able to pre-
dict entity labels consisting of a single word, excluding almost all persons from
being a query answer. Furthermore, it only provides words as answers, but not
KG IRIs. An entity linking step is not performed yet. They evaluate on several
relations from Wikidata, but also on a variety of other relation datasets. They
achieve a high accuracy of 32% on the T-Rex datasets [6], comprising 41 different
Wikidata relations. We evaluate our system on the same relations from T-Rex,
but a larger dataset also comprising multi-word entities.

In an extension, it was shown that the quality of these predictions is highly
dependent on the input sentence. Therefore Bouraoui et al. have proposed to
automatically generate templates for relationships that achieve high quality
results [3]. They show that indeed they can double the accuracy of triple infer-
ence for some relations. Still, this approach is also restricted, since it cannot
predict entities consisting of more than a single word.

Another work in this direction circumvents the restriction to single-word
entities, by defining a new fine-tuning task on masked language models [18]. They
directly include entity knowledge from the knowledge graph to train masked
language models. However, in their work they restrict to a small amount of
most popular entities from Wikidata only. Covering a large amount of entities,
including rare entities would dramatically increase the computational effort for
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training. Thus, this approach is not suitable for general query answering in
knowledge graphs.

In contrast, our present work builds upon existing systems and further refines
their ideas to create a query answering system for incomplete knowledge graphs
without any restrictions on the type of entities or relations.

3 Preliminaries

KnowlyBERT is a query answering system for RDF-based knowledge graphs.
RDF information is expressed in the form of subject, predicate, object triples
(s, p, o) ∈ E × P × E ∪ L, whereas s represents an entity from the real-world
E, p represents a relation from the set of all relations P that can be mapped to
real-world relations and o represents an entity from E or a literal value from L.
Entities and predicates in RDF are represented by Internationalized Resource
Identifiers (IRIs). Furthermore, each entity from E and each relation from P
has a natural language text label. For readability reasons in this work, we use
these labels instead of IRIs. As an example, the triple (Albert Einstein, bornIn,
Ulm) states that the entity Albert Einstein is in a born in relation with the
entity Ulm. Entities may have multiple types from the set of classes C ⊆ E.
A type relation can also be formulated in a triple as follows: (Albert Einstein,
type, Scientist) The set of all triples in a knowledge graphs defined as KG ⊆
E × P × E ∪ L.

Queries against a KG can be performed by the query language SPARQL. In
this work, we restrict to the most prominent part of SPARQL: basic graph pat-
tern (BGP) queries. The simplest basic graph pattern query consists of a single
triple pattern with variables that are indicated by a leading ?. As an example,
a BGP query Q = (Albert Einstein, bornIn, ?x) is asking for the birthplace of
Albert Einstein. To answer the query, we need to match this triple against the
knowledge graph, whereas a variable can be matched to an arbitrary entity. In
the example case, ?x could be matched to the entity Ulm. In the present work,
we restrict to entity-centric SPARQL queries. They have one triple pattern with
a single variable either in subject or object position.

A language model is a statistical model providing the probability of an
upcoming word, given a sequence of words. Usually, it is used to complete natu-
ral language sentences, by learning the parameters of the model from large text
corpora. In this work, we work with the masked language model BERT, a neu-
ral network-based language model, which is based on the transformer model [4].
This model is created in a pre-training step, where the model learns to complete
arbitrary sentences and predict next sentences in a self-supervised fashion using
large input text corpora, e.g. Wikipedia. Thus it, for example, learns how to
complete the sentence: “The birthplace of Albert Einstein is....” with the word
Ulm. Therefore, masked language models, as BERT, may be used to answer
simple basic graph pattern queries, as demonstrated by Petroni et al. [13]. As
an example, we could translate the query Q = (AlbertEinstein, bornIn, ?x) to
the sentence “Albert Einstein is born in ...”, which would be completed with
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the word Ulm. In most masked language models, the word to be predicted is
represented by a so-called mask token “[MASK]”. The input to the language
model is a sentence including a mask token: “The birthplace of Albert Einstein
is [MASK]”. The model’s output is a list of words from its vocabulary, accom-
panied with a prediction probability for each of them.

Finding appropriate translations from triples to sentences, so that the lan-
guage model is able to answer the query is an open problem that has gained
recent interest [3,9,12]. We further investigate this problem in the present work
by comparing different schemes for sentence generation. As an additional prob-
lem, masked language models, as they are available today, are only able to predict
words, but not entities. So, to answer a query, we need to map natural language
words to an entity from our knowledge graph in E. Because of that, some lan-
guage model extensions have been developed to include entity knowledge. As
described in our related work section, this leads to problems, which is why we
stick to masked language models and develop an entity disambiguation tech-
nique on top. Existing works for extracting relational knowledge from language
models have focused on entities having labels consisting of a single word only.
We will extend the technique to multi-word entities (entities whose label consists
of more than a single word). More details of these step will be described in the
next section.

4 KnowlyBERT - Query Answering with Language
Models and Knowledge Graphs

In this section, we describe KnowlyBERT, a hybrid query answering system
using a knowledge graph and the masked language model BERT to complete
queries over an incomplete knowledge graph. We start with an overview of the
system and shortly describe all components, while we go into the details of the
different components in the following subsections.

The overview is sketched in Fig. 1. As an input for KnowlyBERT, a user can
pose an entity-centric SPARQL query to our system. First, the language model is
queried (a). Then we pose the query to the incomplete knowledge graph and get
the existing results (b). The SPARQL query is translated into multiple natural
language sentences that are completed by the language model in the Relation
Template Generation step. As a result, the language model returns multiple
lists of words together with a confidence value for each word (c). These lists
are then combined into a single list (d) and filtered using our semantic filtering
step based on knowledge graph type information (e). Furthermore, we perform
a thresholding, cutting of irrelevant results (f). As a final step, the results of the
language model and the knowledge graph are combined (g) and returned to the
user.

4.1 Relation Template Generation

As a first step to query a language model for relational knowledge, a SPARQL
query needs to be translated into a natural language sentence with [MASK]
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Fig. 1. An overview of the query answering system KnowlyBERT. A user query is
distributed to BERT using the generated templates from Sect. 4.1 (a) and the KG (b).
BERT outputs several result lists (c) with information from the KG. The results are
integrated and filtered as described in Sect. 4.2 (d). A semantic type filter (Sect. 4.3) is
applied (e) and later we employ thresholding methods to cut off incorrect results (f),
which is described in Sect. 4.4. Finally, results from the LM and KG are integrated (g)
and returned to the user.

tokens. Bouraoui et al. showed in [3] that automatically generated sentences
outperform manually build templates as presented by Petroni et al. [13]. There-
fore, in this work, we adapt the idea and automatically extract and rate sentence
candidates for each relation of a knowledge graph to generate relation sentence
templates in a pre-processing step. Such a template may have the format: “[S] is
born in [O]”, for the birthplace relation whereas [S] is replaced by the subject
entity of a query or the [O] by the object. Generating sentence templates is not
performed at query time, but is a pre-processing step.

To demonstrate this procedure, we continue with our artificial running exam-
ple from Sect. 3: (Albert Einstein, bornIn, ?x). For the relation birthplace, we
use all subject, object pairs (s, o) such that (s, bornIn, o) ∈ KG. An example
is the subject, object pair (GottfriedLeibniz, Leipzig). We use pre-annotated
Wikipedia abstracts (T-REx), where entity recognition and disambiguation as
well as relation linking have been performed already [6]. As sentence candidates,
we extract all sentences containing exactly one (s, o) pair for the bornIn relation.
For example, the sentence “Gottfried Leibniz was born in the city of Leipzig, Ger-
many”. for the respective entity pair. As template sentences, we use sentences
with at most 15 words and exactly 2 tagged entities. Longer sentences often are
too specific or consist of multiple subordinate clauses from different contexts.
Hence, choosing different parameters here, may decrease the performance of the
predictions. In contrast to the idea in [3], our input sentences have also been
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processed by basic co-reference resolution in sentences, replacing pronouns by
the respective entity names as provided by the T-REx dataset [6].

As an additional new technique, we perform a string similarity check between
the different sentences for the bornIn relation and only pick sentences that are
different to each other to end up with a diverse set of sentence templates for each
relation. We use a basic sequence pattern matching method finding the longest
sub-sequence between every two template sentences. When the similarity of such
a pair is above 0.8, it is put into the same sentence cluster. After performing sim-
ilarity checks among all sentences, we obtain a set of sentence template clusters
comprising similar sentences. From each cluster only a single sentence template
is picked as a representative.

In a final step, we rate sentence template, using the language model and valid
(s, o) pairs from the KG similar to Bouraoui et al. [3]. We rate the extracted
birthplace sentence in the following way. The sentence “Gottfried Leibniz was
born in the city of Leipzig”. is instantiated by subjects and objects, so that we
can check the language model’s predictions and compare to the correct bornIn
pairs from the KG. For example, we create the sentence “Gottfried Leibniz was
born in the city of [MASK]” using the existing pair (Gottfried Leibniz, Leipzig).
We have a look at the top predictions of the language model and check, whether
they have an overlap with existing objects of the birthplace relation in the
KG. The size overlap of these object predictions with the KG objects and size
of the overlap of the respective subject predictions are summed up and used
as a weight of the sentence template. In the end, we take the top five sentence
templates for our predictions.

Additional Context Paragraphs. An additional boost in the prediction quality
of language models is achieved by providing additional context information to
the query sentences [12]. Petroni et al. have shown that instead of only giving a
query template sentence as the input to the language model, providing additional
sentences about the entity of interest increases the precision of predictions by
around 30%. Following their description, for each entity in a query, we have
extracted the first five sentences from the respective Wikipedia abstract and
added them to the generate templates using a [SEP] token of BERT. We provide
context with the first sentences of Einstein’s Wikipedia article as follows:

Albert Einstein was born in the city of [MASK].[SEP]
Albert Einstein was a German-born theoretical physicist who developed the
theory of relativity, one of the two pillars of modern physics (alongside
quantum mechanics).

In contrast to existing works, we combine automatic template generation and
context paragraph retrieval, which in combination boost the result quality. We
use five template sentences for each query, each annotated with a five sentence
long context paragraph.

Template generation for relations and also context paragraph retrieval can be
performed in a pre-processing step. The information for all relations and entities
in the KG is indexed properly for fast access at query time.
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4.2 Querying the Language Model and Combining the Results

For the Einstein query, we now use multiple sentence templates together with the
respective context paragraph to get possible answers from the language model.
Since possible answer entity labels might consist of more than a single word, we
have to pose queries with a single [MASK] token for returning possible single-
word entities, but also queries with multiple [MASK] tokens. Changing our exam-
ple query to (?x, bornIn, Ulm), would require us to find (among others) Albert
Einstein, an entity with a label of two words, as a correct answer. To predict
such entities, we provide two or more [MASK] tokens in the query sentence as
follows: “[MASK] [MASK] was born in the city of Ulm” for a template returning
two tokens and “[MASK] [MASK] [MASK] was born in the city of Ulm” if we
want to find answer entities with three tokens. This leads to independent result
list for each [MASK], so that we have to check for valid word combinations. We
join all possible word combinations from the result lists and check whether a
valid entity label from the knowledge graph is created. This is a very impor-
tant step, since it enables us to filter out a large proportion of predicted words
which cannot be mapped to any entity. Valid word combinations are weighted
by the average of the words output probabilities. The output is a list of single
and multi-token entity labels with the correctness probabilities assigned by the
masked language model. We present an artificial result set as an example for the
query containing one correct entity in the top position and two locations below:
1. Ulm - 0.95
2. Princeton, New Jersey - 0.45
3. Munich - 0.22

Note that in this work we restrict the system to a maximum of three [MASK]
tokens. This number may be increased with small increases in the query answer-
ing time.

Aggregating Results from Multiple Templates. Different sentence templates for a
single query lead to independent result lists with different probability values for
each result entity. In our case, we obtain 5 entity lists. To combine these lists into
a single list, we stick to the idea from [3]. The lists are first simply merged. If an
entity occurs in multiple lists the maximum probability is chosen. Furthermore,
the maximum probability and the minimum probability for each entity occur-
ring in multiple lists are compared. If their difference exceeds a threshold of 0.6,
the entity is not taken into the final result list. 0.6 has been chosen as a good
compromise between precision- or recall-oriented behavior. This excludes enti-
ties, where the language model shows unstable predictions, leading to a higher
overall precision. Increasing this threshold increases the overall precision of the
results.

4.3 Semantic Type Filtering

Most knowledge graphs provide a very detailed type hierarchy for its entities
which we employ for further filtering the language model results. For every rela-
tion in the knowledge graph, we create frequency distributions over the classes
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of the subject and objects entities. A class of an entity is determined by using
the instance of relation (P31) of Wikidata, but we also consider the first level
of super classes (P279) of these classes, so that the type filter is not too specific.
Using the created frequency distributions, we only define the most frequently
occurring classes as valid types for a relation. These can be called the expected
types of a relation. Based on the expected types, we are able to filter out answer
candidates that do not fit these types, employing a semantic type filter. This
way, we are more restrictive, possibly filtering out some correct entities, but
increase the systems precision.

Entity Disambiguation. After the semantic type filtering step, we still could
end up with multiple possible answer entities, having the same entity label.
Such a homonym could for example be another entity with the name Ulm. In
Germany as an example, one large city, but also several smaller villages called
Ulm are known. For such rare cases, we need to perform an additional entity
disambiguation step. As a first simple pre-processing step, we exclude extremely
rare entities using a popularity filter. Concretely, entities are excluded when
they never occur as an object entity in the whole knowledge graph. If multiple
homonyms exist, the most popular entity is returned as an answer. Further
filtering steps using knowledge graph embeddings are possible here. However,
our evaluation has shown no benefits in precision without large losses in recall
here.

4.4 Thresholding

As a last step before returning the result list, we perform a thresholding pro-
cedure to guarantee that only high-quality results are returned to the user. We
perform two different thresholding mechanisms. The first threshold is dynami-
cally chosen for each query by a statistical outlier analysis among the prediction
values. If after several top prediction values (e.g. 0.95, 0.45, 0.22), the next pre-
diction value is significantly lower (e.g. 0.45), we pick a threshold in the gap
between 0.95 and 0.45. If no correct answer is returned by the language model,
the dynamic threshold methods do not work. Therefore, we pick an additional
static threshold that is valid for all queries. This threshold is learned automat-
ically by averaging the probabilities of known results that are already in the
incomplete knowledge graph and that are also in the language model’s result
list. Using our example result list from above, we end up with the following list
only comprising the correct answer Ulm:

1. Ulm - 0.95

Finally, we join the result lists of the incomplete knowledge graph with the result
list of our language model-based pipeline and eliminate duplicates.

5 Evaluation

In this section, we describe the evaluation of KnowlyBERT on the large real-
world knowledge graph Wikidata and the language model BERT. We evaluate
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precision and recall for 41 different relations similar to other language model-
based systems [3,12,13] and compare against a state-of-the-art relation extrac-
tion technique using distant supervision [14] and a technique for knowledge graph
completion which uses high dimensional embeddings [11]. In detail, we provide
an overview of the performance on different relations and provide an extensive
discussion on the drawbacks and advantages of language model-based techniques
for on-the-fly query answering in contrast to existing techniques which are par-
ticularly trained for inducing new triples in incomplete knowledge graphs.

5.1 Experimental Setup

Baselines. KnowlyBERT performs query answering on incomplete knowledge
graphs, which may be seen as an on-the-fly knowledge graph completion method.
Since no directly comparable baselines are available, we compare to standard
knowledge graph completion techniques that work in an offline setting. Here,
inferring new triples using external knowledge by relation extraction from text
and triple induction by structural methods purely on the knowledge graph are
the most popular methods being used today.

Therefore as a first baseline, we use a recent distant supervised relation
extraction system from [14] with available pre-trained models for Wikipedia
triple extraction. This baseline has already been used by Petroni et al. [13] to
compare to their language model-based approach. We have used their pre-trained
Wikipedia model for extracting triples from natural language text and performed
relation extraction from T-Rex [6]. T-Rex links Wikidata entities and triples to
Wikipedia abstracts. These linked entities in text are used as an input for the
relation extraction framework, to extract triples from sentences.

As a second baseline, we have compared to another state-of-the-art technique
for coping with incomplete knowledge graphs [10]. Knowledge graph embeddings
are latent machine learning models for knowledge graph completion. High dimen-
sional vector representations of entities and relations are learned from an exist-
ing knowledge graph. Arithmetic operations between these vector representa-
tions enable giving a correctness probability to every possible subject, predicate,
object-combination. Hence, it is also possible to find most likely substitutions
for subject-predicate-pairs or predicate-object pairs. In our case, we use HoLE
as a baseline, which has shown good results in benchmark datasets, and also is
scalable to the size of our large Wikidata sample [11]. Due to the size of Wiki-
data, we trained HoLE using 50 dimensions for 200 epochs. Since HoLE itself
only provides a top-k list of newly inferred triples ordered by their prediction
probability, we only took the predictions with the best possible prediction value
of HoLE. This may also include several predictions showing the same prediction
value.

Dataset. Our experiments are performed on the Wikidata Truthy dump from
February 6th, 2020. We evaluate only on triples where subject and object are
entities having an rdf:label relation. For simplicity reasons, we also restrict to
labels consisting of at most three words. We restrict to the 41 different relations
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that are used in the LAMA probe [13]. But we use different queries, since they
were restricted to entities consisting of single word labels only.

We have sampled queries for each of these 41 relations by randomly choosing
triples from the Wikidata. We remove the subject, creating an entity-centric
SPARQL query, asking for a subject entity (?x, p, o), or removing the object
respectively to ask for the object (s, p, ?x). We name the query type asking for
subjects, subject queries and the others object queries. Hence, we created 100
subject and 100 object queries for each relation, if possible. For some relations,
we could only generate fewer queries. Overall, this leads to 6649 queries.

For all queries we assume that the current Wikidata version as the ideal
knowledge graph. The incomplete knowledge graph is simulated by leaving out
existing triples by performing a leave k out evaluation, deleting at least 1 and
at most 100 answers from the answer set of each query. To be comparable to the
relation extraction baseline which extracts triples from text, we have restricted
the deleted triples to triples that actually occur in the text corpus we use. This
gives an advantage to this baseline system since it ensures that it is possible
to achieve 100% recall which is not necessarily valid for our system. The ideal
knowledge graph has 54,056,746 triples and the incomplete knowledge graph
has 125,213 fewer triples deleted for the 6,649 queries. Thus, the incomplete
knowledge graph comprises 53,931,533 triples.

Evaluation Metrics. We have evaluated every query separately by querying the
language model and removing the answer triples that already were in the incom-
plete KG. For the remaining additional results, we computed precision and recall
values. The reported results are average precision and recall values over all
queries that returned additional results.

Implementation Details. Our system KnowlyBERT is implemented in Python 3
and is openly available on Github2. We also make scripts for reproducing these
results available. Our system is based on the masked language model BERT from
Google [4]. We use the large and cased model pre-trained by Google comprising
340 m parameters. Since our system is built on the LAMA framework by Petroni
et al, we are able to include arbitrary language models3. For the relation extrac-
tion baseline, we use the original implementation also available on Github4. The
knowledge graph embedding HoLE is implemented in OpenKE [8].

5.2 Experimental Results

An overview of precision and recall of KnowlyBERT and the two baseline sys-
tems is presented in Table 1. First, we have a look at the total precision and
recall values depicted in the last row. KnowlyBERT outperforms the two other
approaches with regard to precision by more than 30% by achieving an aver-
age precision of 47.5%. In contrast to the relation extraction baseline (RE), we
2 https://github.com/JanKalo/KnowlyBERT.
3 https://github.com/facebookresearch/LAMA.
4 https://github.com/UKPLab/emnlp2017-relation-extraction.

https://github.com/JanKalo/KnowlyBERT
https://github.com/facebookresearch/LAMA
https://github.com/UKPLab/emnlp2017-relation-extraction
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Table 1. Precision (Prec) and Recall (Rec) from KnowlyBERT against two baseline
systems in percent. Relation extraction (RE) and the knowledge graph embedding
technique HoLE (KE) on 41 relations. We evaluate different query parameters.

Evaluation Parameter Statistics RE KE KnowlyBERT

#Queries #Rel Prec Rec Prec Rec Prec Rec

Cardinality 1-1 400 2 5.5 5.5 <0.1 20.2 16.9 3.0

1-n 3756 23 18.8 17.4 <0.1 11.5 55.0 13.7

n-m 2493 16 16.4 19.8 <0.1 22.6 36.0 5.9

Query type (s, p, ?x) 4029 41 37.5 17.3 <0.1 20.5 51.0 16.5

(?x, p, o) 2620 41 6.9 17.9 <0.1 9.5 10.5 0.3

Words single 2474 41 39.6 13.9 <0.1 21.1 59.6 25.9

multi 4175 41 13.0 19.7 <0.1 13.2 11.4 0.8

#Results 1 3497 41 40.5 13.2 <0.1 15.8 51.3 17.4

2–10 1367 39 18.7 20.5 <0.1 20.4 37.0 4.9

11–100 796 37 7.4 30.7 0.2 24.7 15.8 0.1

>100 989 37 5.7 18.2 <0.1 4.8 <0.1 <0.1

Total 6649 41 17.5 17.6 <0.1 16.2 47.5 10.1

improve the precision drastically, however the recall of our approach is slightly
lower with 10.1% in comparison to 17.6% of the RE baseline.

HoLE (KE) is showing good results with regard to the recall, but its precision
is extremely low at around 0.03%. This very low precision, but high recall value is
due to a high number of false positives all having top prediction values. The result
for a knowledge graph embedding technique confirms recent research results
that it is not ready for completion tasks in real-world knowledge graphs [1]. We
present the results here anyways for completeness reasons, but will not discuss
them in detail. Our main focus in this evaluation will compare the RE baseline
with KnowlyBERT.

In the first rows, we present the results ordered by the cardinality of the
relations in the query. We have analyzed two 1-1 relations5, 23 1-n relations and
16 n-m relations. KnowlyBERT show its best results for 1-n relations with a
precision of 55.0% and recall of 13.7%. Similarly, the two baselines show there
best precision here.

We also present an evaluation of subject vs. object-based queries. Here, we
observe something particularly interesting. KnowlyBERT achieves an extremely
high precision for (s, p, ?x) queries asking for the object, but low precision and
recall for queries asking for the subject of a triple. Also, the RE baseline shows
a much smaller precision here, but at least shows good recall values.

5 We follow the categorization of Petroni et al. [13]. Note that some queries for 1-1
relations have more than a single result.
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Table 2. Precision (Prec) and Recall (Rec) of KnowlyBERT and the baseline systems
for a variety of relations from Wikidata in percent.

Relation Label Statistics RE KE KnowlyBERT

#Queries Prec Rec Prec Rec Prec Rec

P17 country 145 16.6 16.7 <0.1 21.6 97.4 51.0

P19 birthplace 191 21.8 19.4 <0.1 13.7 73.3 11.5

P31 instance of 152 11.9 15.0 <0.1 17.3 <0.1 <0.1

P36 capital 200 5.5 11.1 <0.1 23.0 15.4 3.0

P101 field of work 174 11.0 9.3 <0.1 12.1 45.1 7.8

P103 native language 117 <0.1 <0.1 <0.1 31.5 100 74.3

P108 employer 173 17.1 3.2 <0.1 17.3 100 0.6

P159 headquarter 190 19.6 26.8 <0.1 9.5 56.8 13.2

P279 subclass of 197 6.8 28.8 <0.1 13.5 16.7 <0.1

P1303 instrument 128 35.0 43.4 <0.1 15.8 <0.1 <0.1

P1412 language spoken 124 6.4 2.5 <0.1 21.9 45.8 17.7

The next part of our evaluation presents on how well the different approaches
deal with multi word entities. We analyze whether the respective results of
queries who only return single word entities against queries which correct answers
comprise also multi-word entities. Here, we observe that KnowlyBERT works
best for single-word entities, as does the RE baseline. Multi-word entities are
often much harder to find using a language model-based approach. One reason
is that queries asking for persons are often multi-word queries. Answering such
person queries, is extremely difficult, since the set of possibly correct answers is
often huge. Details will be evaluated in the next category in Table 1.

The next evaluation clusters queries by the number of results they have in
the ideal KG. Here, we see that queries with few results generally show much
better results. The precision and recall of KnowlyBERT for queries with a single
result is over 50% with a recall of over 17% achieving the best results. Queries
with large result sets are only answered with a low result quality. If they have
more than 100 answers, we hardly find any correct answer, resulting in a poor
precision. The RE baseline also has worse results for queries with many results,
but at least returns some results.

In Table 2, we present the results for some particularly good working and
badly working relations. We see that for some relations we achieve a precision
of over 90% and a recall also above 70%. We see that many of the well working
relations are about locations or languages. On the other hand, we also have sev-
eral relations with an extremely low recall near to 0%. Particularly bad were the
instance of and subclass of relations. Which implies that type information
is hardly represented in the language model. But also the instrument relation
shows extremely bad results. In contrast, the RE baseline shows its best results
here.
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5.3 Discussion

The evaluation of KnowlyBERT in comparison to other techniques for coping
with incomplete knowledge graphs has shown us, that none of the existing tech-
niques is ready to deal with all problems that come with missing information.
While the knowledge graph embedding-based technique has shown poor results
in the real-world scenario as already shown in recent research on the evalua-
tion of such techniques [1], the state-of-the-art relation extraction technique has
shown a consistently moderate result quality with a precision and recall around
17%.

In contrast, a language model-based approach shows a much higher precision
with a small loss in recall. We have seen that the language model BERT has
very different quality depending on the relation used in the queries. In some
cases, we achieve almost perfect results with a precision of over 90% and high
recall values, whereas for other relations we cannot find any correct results at all.
Particularly geographic relations show good results, outperforming the baselines
by far. Queries with single-word entities are also showing good quality. However,
multi-word entities are very difficult to predict. Multi-word queries strongly cor-
relate to queries with large result sets and subject-queries. One possible problem
is that subject queries and multi-word queries often ask for long-tail entities. For
these, the language model is rarely able to provide correct answers. All of these
problems are reflected by our lower recall in contrast to the baselines. Particu-
larly the relation extraction baseline still achieves an acceptable recall for these
difficult query types.

Note that queries with large result sets are substantially more difficult to
solve. Due to the fact that we do not count predicted result entities that already
are in the incomplete KG, we add another difficulty. Even though a technique
finds correct results, its precision for such queries might be 0%.

6 Conclusion

In this work, we have presented a hybrid query answering system for knowledge
graphs using language models to cope with the incompleteness of real-world
knowledge graphs. We have seen a plethora of different techniques to find miss-
ing triples in a knowledge graph completion task in a pre-processing step. Such
techniques would introduce a lot of new and often incorrect triples into the
knowledge graph, since they are not producing high quality results. Knowledge
graph embedding techniques only show high precision in standard benchmark
datasets, but fail in large real-world knowledge graphs [1]. On the other hand,
NLP methods, that extract triples from natural language text in a binary classi-
fication task, require massive amounts of training data and a high quality entity
linking step up front. The quality of relation extraction is under 20%, which
would introduce massive amounts of incorrect data.

In contrast, we have presented a precision-oriented method that does not
extract triples in a pre-processing step to be inserted into the knowledge graph,
but an on-the-fly query answering system. This way, we do not contaminate the
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high quality of a knowledge graph and still can help to provide complete results,
if necessary. KnowlyBERT has shown that a language model is a promising way
to reduce the gap between incomplete knowledge graphs and complete result sets
when used in combination with the KG itself. The KG can help to filter many
incorrect results from the language model and helps us to also return multi-word
entities, enabling us to be used as a full-fledged query answering system. As a
drawback, we have seen that some relations could not be answered at all by
KnowlyBERT, since the language model did not return correct results.

So far, KnowlyBERT is restricted to basic entity-centric queries. Existing
question answering datasets could be used to learn natural language query tem-
plates to feature more complex queries with multiple triples. Furthermore, we
plan to further investigate the boundaries of language models in representing
relational knowledge to further characterize its benefits in knowledge graph tasks.
Additionally, the suitability of general purpose language models in more specific
domains should be investigated. In specific domains, choosing a domain-specific
language model (e.g. BioBERT, SciBERT) and different method for retrieving
contextual paragraphs would be interesting fields of research.
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Abstract. The generation of referring expressions is one of the most
extensively explored tasks in natural language generation, where a
description that uniquely identifies an instance is to be provided. Some
recent approaches aim to discover referring expressions in knowledge
graphs. To limit the search space, existing approaches define quality mea-
sures based on the intuitiveness and simplicity of the discovered expres-
sions. In this paper, we focus on referring expressions of interest for data
linking task and present RE-miner, an algorithm tailored to automati-
cally discover minimal and diverse referring expressions for all instances
of a class in a knowledge graph. We experimentally demonstrate on sev-
eral benchmark datasets that, compared to existing data linking tools,
referring expressions for data linking substantially improve the results,
especially the recall without decreasing the precision. We also show that
the RE-miner algorithm can scale to datasets containing millions of facts.

Keywords: Knowledge graphs · Referring expressions · Data linking

1 Introduction

A referring expression (RE) is a description in natural language or a logical
formula that can uniquely identify an entity. For instance, the statement “presi-
dent of the United States who was born in Hawaii” is a referring expression that
unambiguously characterizes Barack Obama. There may potentially exist many
logical expressions for uniquely identifying an entity. Referring expressions find
applications in disambiguation, data anonymization, query answering, and data
linking. The generation of referring expressions is a well-studied task in natural
language generation [22], and various algorithms with different objectives have
been proposed to discover REs automatically. These approaches vary depend-
ing on the expressivity of the logical formulas they can generate. For instance,
in [8,21], REs are created as conjunctions of atoms, while [27] presents an app-
roach that discovers more complex REs represented in description logics that
can involve the universal quantifier. To ensure efficiency and reduce the search
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space, some of these methods focus on the minimality of the expression they dis-
cover and others on predicate preferences [16]. However, most of these methods
are neither able to scale to large knowledge graphs such as YAGO or DBpedia
with millions of instances nor are suited for the data linking task.

This paper embarks on automatically discovering REs for each entity
within a class of a knowledge graph. These REs are conjunctions of atoms,
e.g., isPresident(x) ∧ isPoliticianOf(x, #USA) ∧ bornIn(x, #Hawaii)1, and
can also contain existentially quantified variables, e.g., isPresident(x) ∧
marriedTo(x, y) ∧ hasName(y, “Michelle”). Such conjunctions of atoms are
not all relevant when they are exploited in a data linking task. As knowledge
graphs are built independently and autonomously, individual IRIs are rarely re-
used in different knowledge graphs. This is the reason why a referring expression
that involves a specified IRI may not be useful for the task of linking instances.
Additionally, since data are usually incomplete and generally several referring
expressions can be associated with an individual, to foster the utility of REs, it
is preferable to diversify the sets of properties that are involved in the referring
expressions of a given individual.

In order to reduce the enormous search space of referring expressions, our
approach relies on defining types of graph patterns and quality measures that
focus on REs that are more suitable in a data linking task. Moreover, we direct
our attention to REs that cannot be found by instantiating the keys. As a
reminder, the keys of a class are sets of properties whose values can uniquely
identify one entity of that class. Hence, if the properties for the keys are instan-
tiated, they can each be considered as a referring expression. For instance, take
the class “book” and imagine that ISBN is key to this class. If we instantiate
the books with their corresponding ISBNs, we can be sure to find them each
uniquely. Recent approaches in the literature can efficiently discover keys in
knowledge graphs [28,30,31], some of which do so by first finding the maximal
non-keys [30,31]. Hence, our proposed RE-miner algorithm is based on the search
space defined by these non-keys. Furthermore, we use the discovered REs in a
data linking task and evaluate our approach on three benchmark datasets.

More precisely, our contributions are as follows:

– Defining graph patterns and several quality criteria that set forth REs, poten-
tially relevant for data linking, discovered by our algorithm.

– Proposing an efficient algorithm, RE-miner, that computes complementary
REs with regards to those REs that correspond to instantiated OWL2 keys.

– An extensive set of experiments showing that: (i) the approach scales to
datasets consisting of millions of facts; (ii) the discovered REs, when used in
a data linking task, can significantly increase the recall when compared to
other approaches.

The remainder of this paper is organized as follows. We discuss the related
work in Sect. 2. Section 3 details the formal problem statement. Section 4

1 #USA and #Hawaii are IRIs (Internationalized Resource Identifier) that refer to the
country USA and to the state of Hawaii, respectively.
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describes the RE-miner algorithm, and Sect. 5 outlines how REs can be used
for the data linking task. Section 6 shows our quantitative and data linking
experiments, and finally, Sect. 7 concludes the paper.

2 Related Work

Both the generation of referring expressions and link discovery has been an area
of active research in past years. The task of generating referring expressions, also
known as REG, finds applications in fundamental fields such as natural language
generation, text summarization, and query generation. Link discovery is rooted
in record linkage, deduplication, and data integration. Existing methods for link
discovery alleviate this task by matching the schema, instances, or both. In this
paper, we focus on rule-based instance matching.

Referring Expression Generation. Robert Dale is first to frame REG as
the problem of determining the properties that must be used to identify an
entity [7]. The Full Brevity algorithm, outputs the shortest possible descrip-
tion by incrementally testing all combinations of properties to find the RE for
the target. Later, acknowledging that finding the shortest RE is NP-hard, Dale
approximated Full Brevity into a greedy algorithm that generates a RE by itera-
tively adding to an empty expression the property with the most discriminative
power [8]. This algorithm does not necessarily produce the shortest RE but is
much more efficient than Full Brevity .

As much as the length of a RE is important (people tend to prefer short
ones), at times, a slightly longer and more informative RE is preferable. The
Incremental Algorithm adds properties to an expression based on a preference
order and does not necessarily produce the shortest RE [9]. Although logic opti-
mization techniques are used to shorten the resulting REs, in some cases this
algorithm might produce overly lengthy REs; a problem addressed in further
research [17,19]. Incremental algorithms do not lend themselves well to gener-
ating relational REs [22], that identify a target through a relation to another
entity (e.g., “the dog near the house”). Relational REs are best modelled with
a graph (the scene graph), where relations between entities are represented as
edges that link the corresponding nodes; the generation of referring expressions
reduces to searching a subgraph (the description graph) that uniquely identifies
the target [21]. Croitoru and van Deemter take this graph approach a step further
and propose the use of conceptual graphs, a logic-based knowledge representa-
tion model that enriches the factual knowledge with ontological knowledge (i.e.,
background knowledge, e.g., “a cup is a vessel”) [6]. The ontological knowledge
is particularly useful to perform automatic inference. Other approaches turn to
description logics as an alternative knowledge representation model [2,26]. Sim-
ilar to conceptual graphs, description logics can model background knowledge
and apply reasoning.

Nevertheless, the approaches discussed earlier have difficulties scaling to
today’s knowledge graphs. Galárraga et al. introduced an algorithm named
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REMI that mines intuitive REs from a knowledge base [16]. The intuitiveness
of a RE is computed with the Kolmogorov distance as a trade-off between its
length and the use of properties which people are familiar with (e.g., Paris is
better described as the capital of France than the birth place of Voltaire). REMI
represents expressions that describe a target entity x in a tree that represents
conjunctions of atoms (e.g., cityIn(x,y) ∧ officialLanguage(y, z) ∧ langFamily(z,
Romance)) and identifies the RE that has the least cost in terms of intuitive-
ness through a depth first search with backtracking. Our proposed RE-miner
algorithm differs from the previous ones by addressing some of the challenges in
the field. It discovers not just one, but all referring expressions complementary
to those that can be obtained by instantiating key properties. Moreover, to the
best of our knowledge, this is the first work that exerts REs that are useful for
linking instances of two knowledge graphs.

Link Discovery. Schema matching is the task of deriving alignments between
classes and relation in two different knowledge graphs [11]. Instance matching,
or data linking, is the ability to determine – with a certain degree of confidence
– that two individuals refer to the same real-world object [15]. Many different
approaches for schema matching and instance matching have been proposed [11,
25]. These link discovery approaches can fall into 3 different categories regarding
how they include schema and instance matching in their workflow.

Some systems only focus on instance matching. Among these systems, some
depend on declared linkage rules that can be used to logically infer identity
links [1,12] while others compute a similarity score thanks to complex rules that
can involve simple similarity measures and aggregation functions, like LIMES
or Silk [24,34]. Such rules are generally based on sets of discriminative proper-
ties or more complex graph patterns, such as OWL2 keys, and schema mappings.
Since such properties are not so easy to specify, some approaches aim to discover
discriminative properties using one or several knowledge graphs, assuming that
the mappings are known [30–32], or allowing to discover keys that involve prop-
erty mappings [4]. Other approaches can efficiently discover linkage points which
are related property paths sharing values between heterogeneous data sources.
Indeed, it has been shown that such properties can enhance the performance of
linkage algorithms [18]. However, the efficiency of such rule-based approaches is
strongly related to the quality of the discriminative properties and to the pro-
portion of instances that can be covered by them. Some approaches have defined
the quality of a key with respect to a specified linking task. In [32], keys obtained
in two datasets can be merged to generate valid keys on both datasets, while
in [13], keys that involve syntactically similar literals in both datasets are cho-
sen. Nevertheless, no approach has been defined to discover and exploit linkage
rules that are based on REs. Other systems only focus on schema matching.
These systems usually exploit terminological similarities, structural similarities,
similarity of instances, external resources, or logical axioms to discover more or
less complex schema mappings (e.g., [5,10]).
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Finally, some systems do instance and schema matching in their ontology
matching processes (e.g., [14,20,29,33]). Some of these systems like PARIS and
ILIADS perform interleaved schema matching and instance matching in itera-
tions where the mappings from one task help refine those of the other task [29,33].

In this paper, we focus on the instance matching task, and more precisely,
we aim to discover REs that can be useful for data linking. We assume that a
link discovery approach has provided a subset of class and property mappings.
It’s worth mentioning that in data linking approaches where schema matching
is to be known, the mappings do not necessarily have to be the complete set
of mappings between properties and classes, and very simple approaches can be
used. For instance, in the Knowledge Graph track of OAEI 20192, the baseline
solution adopting a terminological approach, and using only schema labels, has
achieved an F-measure of 0.79 for mapping properties.

3 Problem Statement

Knowledge Graph. A knowledge graph G is defined by a couple (O,F)
where: the ontology O = (C,DP,OP,A) is defined by a set of classes C,
a set of owl:DataTypeProperty DP, a set of owl:ObjectProperty OP, and a
set of axioms A; F is a collection of triples (subject, property, object) ∈
(I ∪ B) × (OP ∪ DP) × (I ∪ C ∪ L ∪ B)3 where I is a set of individuals, B
is a set of blank nodes, and L is a set of Literals.

In this work, we consider referring expressions that are valid for an individual
u of a class C in a knowledge graph G, that are defined as follows:

Definition 1 (Referring Expression). A referring expression, denoted by
REk(u) for the kth RE of a given individual u, of a class C can be expressed by
the following first order logic formula:

C(x)
∧

pi∈OP∪DP
pi(w, y)

such that the formula, existentially closed, is restricted to those conjunctions of
atoms that form a connected graph pattern rooted at x with the leaves being either
an individual in I or a literal in L, and the other nodes being variables.

Definition 2 (Referring Expression Validity). A referring expression
REk(u) is valid in a dataset D if it holds when x is instantiated by u and does
not hold for any other individual v �= u of C in D.

2 http://ceur-ws.org/Vol-2536/oaei19 paper0.pdf.
3 We do not consider blank nodes in this work.

http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf
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Fig. 1. Two graph patterns. G1(x) is compliant with Definition 1 and G2(x) is not.

Example. Two graph patterns G1(x) and G2(x) are shown in Fig. 1 where
(−) indicates a variable. G1(x) is compliant with Definition 1 and is a
valid referring expression for Mozart: a musician who was born in a city
named Salzburg and who died in Vienna. Musician(x) ∧ wasBornIn(x, c) ∧
cityName(c, “Salzburg”)∧ diedInCity(x,#V ienna) Nevertheless, G2(x) is not
compliant with Definition 1, since in this work we do not consider referring
expressions that include variables appearing in the leaves of the graph pattern;
hence, the following cannot be discovered as a RE.

Musician(x) ∧ wasBornIn(x, c) ∧ cityName(c, “Salzburg”) ∧ diedInCity(x, z)

Propelled by data linking, we aim to discover minimal referring expressions;
that are the simplest graph patterns allowing to distinguish one individual from
all the others.

Definition 3 (Referring Expression Minimality). A referring expression
REk(u) is minimal iff:

� ∃ REj(u) s.t. (REk(u) ∪ F ∪ A) |= REj(u)

To focus on REs that are of interest to link data when datasets are incom-
plete, we exploit various properties while limiting the number of REs and their
complexity. Hence, we do not construct REs that involve different instantiations
of the same property, and we only consider diversified REs, simply meaning
that when a valued property appears in a RE for an individual, it cannot reap-
pear in another RE for the same individual having more atoms. This should not
be confused with the notion of minimality.

Example. Take the valid RE1(u) for the film Ocean’s Eleven: Film(x) ∧
hasActor(x,#George Clooney) ∧ wasCreatedOnY ear(x, “2001”). Then the follow-
ing RE2(u), although valid for this movie and minimal, will not be dis-
covered. Film(x) ∧ hasActor(x,#Julia Roberts) ∧wasCreatedOnY ear(x, “2001”) ∧
editedBy(x,#Stephen Mirrione). Because RE2(u) is not diversified; since
it has more atoms than RE1(u) while sharing the subgraph pattern
wasCreatedOnY ear(x, “2001”) with it.
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Definition 4 (Diversified Referring Expression). A referring expression
REi(u) is diversified if there is no REj(u) with fewer number of atoms that
contains a subgraph p1(x, t1) ∧ . . .∧pi(ti−1, ti)∧pm(tm−1, vm) of REi(u), where
vm ∈ L ∪ I.

Additionally, in the data linking task, one might argue that graph patterns
that involve mostly IRIs of individuals are not relevant. Indeed, individuals that
are described in two knowledge graphs are rarely represented with the same IRI.
This is why we also consider Expanded REs that are not minimal but where
the individuals’ IRIs in a RE are replaced by a description constructed from
instantiated key properties.

Definition 5 (Referring Expression Expansion). The expansion
exp(REk(u)) of a referring expression REk(u) is a set of referring expressions
in which, each leaf node ni of REk(u) that represents an individual i is replaced
by an existential variable xj. These variables are recursively expanded by a sub-
graph G rooted by ni representing one possible instantiation of a key K for the
class typing i, such that exp(REk(u)) leads to a graph pattern whose leaves are
only literals.

Example. Consider the following referring expression for Marie Curie:
Scientist(x) ∧ wasBornOnY ear(x, “1867”) ∧ isCitizenOf(x,#Poland). We observe
that Poland is a leaf node representing an individual, thus we can expand it by
creating keys for the class country (range of the property isCitizenOf). Sup-
pose it has two sets of keys, namely {hasName} and {hasArea, isLocatedIn}.
We obtain the following RE when #Poland is replaced by an instantiation of
the first key set: Scientist(x) ∧ wasBornOnY ear(x, “1867”) ∧ isCitizenOf(x, y) ∧
hasName(y, “Poland”). And the following RE, when using the second set of key
for country, and subsequently expanding #europe by considering {hasName}
as a key for the class location (range of the property isLocatedIn): Scientist(x)∧
wasBornOnY ear(x, “1867”) ∧ isCitizenOf(x, y) ∧ hasArea(y, “312, 696 < km2 > ”)

∧isLocatedIn(y, z) ∧ hasName(z, “europe”).

4 Referring Expression Generation Approach

In this section, we present an approach to automatically discover minimal and
diversified REs for each instance within a class of a knowledge graph.

Our generation approach is composed of two successive steps. We first gener-
ate the set of minimal and diversified REs for each instance using the algorithm
RE-miner. Since recent approaches have been developed to discover keys, we
focus on complementary REs that do not represent an instantiated key. In a
second step, we can generate the expansion of each RE.

4.1 Keys, Non-keys and Complementary REs

In a knowledge graph, an OWL2 key can be defined as follows:
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Definition 6 (Key). A key {p1, . . . , pn} for a class C expresses that:

∀x∀y∀z1...zn(C(x) ∧ C(y) ∧
∧n

i=1
(pi(x, zi) ∧ pi(y, zi)) → x = y)

By definition, each instantiation of the key properties for a class C will
uniquely identify an individual present in C. This instantiation will potentially
yield many REs. Nevertheless, this does not represent the complete set of possi-
ble minimal REs that can be discovered. We are thus interested in enriching this
set with those REs that only involve non-key properties. To this end, we will
only exploit sets of properties that are included in one of the maximal non-keys
of class C to construct complementary REs.

Definition 7 (Maximal Non-Key). A maximal non-key for a class C in a
knowledge graph G is a set of properties P such that P is not a key, but the
addition of any property to P makes it a key for that class.

4.2 RE-miner Algorithm

We outline the procedure of mining the complete set of complementary, minimal,
and diversified REs in Algorithm 1. To retain a reasonable search space and to
prevent the REs from becoming too complex for data linking, the depth of the
aimed REs is restricted to 2. Nevertheless, this restriction can be dropped by
applying a recursive adaptation of the function existentialRE (G, REnew) (see
line 10 of Algorithm 1). The algorithm takes as input a knowledge graph G, a
class C, and a Boolean E which is set to True if we aim to mine REs at depth
2 (i.e., REs that contain at least an existential quantifier). If the E is False, the
REs will not contain any existential quantifiers.

To generate the set of REs for a given class C of knowledge graph G, we
first create the dataset for that class. This dataset will serve as the search space
SS (line 1), and is created by keeping all the facts (s, p, o) in G whose subjects
s belong to C. Then using SAKey [30], a key discovery approach, we create
the maximal non-key sets NK of the dataset SS (line 2). We build the powerset,
excluding the empty set, of each set in NK, and group them based on their cardi-
nality (line 3). For instance, imagine that NK = {{p1, p2}, {p3, p4, p5}}; then level
1, includes subsets of cardinality 1, composed of {{p1}, {p2}, {p3}, {p4}, {p5}},
level 2 composed of {{p1, p2}, {p3, p4}, {p3, p5}, {p4, p5}}, and level 3 containing
{{p3, p4, p5}}.

Since we desire to find minimal REs, the algorithm proceeds level by level
(line 4), starting from level 1, which results in REs containing only one atom.
To mine REs at level l, we take one set of properties P within that level at a
time (line 6). The algorithm generates subgraph patterns from the search space
with instantiated properties P (e.g. p1(x, v) for level 1 and p1(x, y) ∧ p2(x, z)
for level 2) as candidate expressions (line 7). We keep the valid REs, among the
candidates in REnew (line 8); these expressions are compliant with Definition 2
and hence uniquely identify an individual of the class C. If we also aim to find
REs of depth 2, i.e., if E is True, the existentialRE algorithm detailed in 2 is
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called on the knowledge graph G and REs found at level l with properties P (line
10). We add all the recently discovered REs composed of properties P , to RElevel

(line 12), and reiterate until all sets of properties at this level are covered. Then
RElevel is added to the resulting REs (line 14), and all the facts (s, p, o) involved
in these referring expressions are removed from the search space; to ensure both
minimality and diversity (line 14).

Algorithm 1: RE-miner
Input: A knowledge graph: G, a class: C, a Boolean:E
Output: The set of minimal REs for instances of type C: REset

1 SS ← createData (G, C) // serves as the search space

2 NK ← generateNK(SS)
3 createRankedPowerset(NK) // Dictionary level to props
4 for level = 1 to |longestNonKey| do
5 RElevel = ∅
6 foreach P ∈ props.level do
7 REcandidates ← constructSubgraphs (SS, P)
8 REnew = validSubgraphs(REcandidates)
9 if E = True then

10 REnew.add(existentialRE(G), REnew)
11 end
12 RElevel.add(REnew)

13 end
14 REset.add(RElevel)
15 SS ← suppressFacts (SS, RElevel) // reduce the search space to

preserve minimality and diversity

16 end
17 return REset

As stated in Algorithm 1, we can mine more complex REs containing the
existential quantifier where the depth of the subgraph patterns will be 2. To
do so, all the REs at a level l composed of properties P , are passed to the
existentialRE algorithm. The output of this algorithm will be a set of referring
expressions, each containing one or more existential quantifiers. The details are
sketched in Algorithm 2.

This algorithm starts by keeping a copy of REnew in the RE existential can-
didate set (line 1). This candidate set will grow as the algorithm proceeds. We
iterate over each property p in P (line 2) and get its range using G’s schema
(line 3). Let the range of p be the class C′. If not all the instances of the class C′

are literals, we can expand the leaf node with a subgraph pattern; else, we move
on to the next property (line 4). These subgraph patterns should be chosen such
that when replaced, the whole pattern remains a valid RE. To this end, using
RE-miner, Algorithm 1, we construct REs of depth 1, by setting E to False, for
the class C′ (line 5). It should be noted that to have the complete and minimal
resulting REexistential, when creating the dataset for C′ (line 1 of Algorithm 1),
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we only keep those instances o ∈ C′ that are involved in such facts (s, p, o)|s ∈ C.
The resulting REs from RE-miner are kept in inducedSubgraphs (line 5). Then
for each referring expression in the candidate set (line 6), we replace the applica-
ble node, based on p, with the appropriate subgraph in inducedSubgraphs (line
7). In the end, we remove the REs of depth one REnew we had added initially to
the existential candidate set (line 10), and return the unique subgraphs, which
are valid referring expressions having depth 2 (line 11).

Algorithm 2: existentialRE
Input: A knowledge graph: G, a set of REs having properties P : REnew

Output: The set of REs with existential variable : REexistential

1 REexistentialCands = REnew.copy()
2 foreach p ∈ P do
3 C′ ← getRange(G, p)
4 if exists an instance of C′ ∈ I then
5 inducedSubgraphs ← RE-miner(G, C′, E= False)
6 foreach RE ∈ REexistentialCands do
7 REexistentialCands.add(replaceNodeSubgraph(RE, p,

inducedSubgraphs))
8 end
9 end

10 REexistentialCands.remove(REnew)
11 REexistential = validSubgraphs(REexistentialCands)
12 end
13 return REexistential

4.3 RE Expansion

We have developed a post-processing step to obtain the expansion of referring
expressions discovered by RE-miner, as defined in Definition 5. To do so, given
a RE, for every IRI u appearing in the leaves of RE, we exploit the set of
minimal keys of the class u belongs to and expand the RE by instantiating
properties of every minimal key. If the keys involve object properties, this step is
re-performed recursively on the generated IRIs until either reaches a maximum
depth d specified beforehand, or the leaves only correspond to literal values. The
sets of minimal keys are generated each time a new class is considered, and are
stored on the disk so that there’s no need to regenerate them to expand another
RE. The graphs resulting from the expansion of one IRI are then combined to
other IRI expansions to finally construct expanded REs.
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5 Data Linking with REs

Each RE(u) declared for an individual u in the source dataset D1 can be
expressed by a linking rule as follows:

∀xRE(x) → sameAs(x, u)

where RE(x) can be rewritten using the classes and properties of a target dataset
D2 at the linking step. These rules can be represented in SWRL4. Hence, to
discover identity links between individuals described in two given datasets, we
focus on referring expressions that only involve mapped properties, and individ-
uals belonging to classes that have been aligned. Such mappings can be obtained
using existing schema matching techniques discussed in Sect. 2.

The linkage rules introduced above can be used either logically to deduce
identity links, or by linking tools where simple similarity measures and aggre-
gation functions can be introduced. Since available existing linking tools
like [23,24,34] do not consider such intricate graph patterns (i.e., not just paths
of properties), we have developed a simple bottom-up approach explained in
Fig. 2, where normalizations or classical similarity measures can be declared and
applied to datatype properties.

We consider a data linking problem between a source dataset in which the
REs are discovered and other target datasets that have a non-empty set of prop-
erties mapped to the source dataset (that can be obtained using ontology align-
ment tools [11]). The linking process is comprised of exploiting for every individ-
ual u in the source dataset, the set of distinct RE(u)s to find all the individuals x
in the target datasets that check RE(u). When a RE is discovered in the source
dataset, it cannot necessarily be assumed valid for other target datasets. Indeed,
even if the source dataset is voluminous, several distinct individuals that can
instantiate a RE may exist in the other dataset. Theoretically, when the unique
name assumption (UNA) is fulfilled, only one sameAs(u, x) link can be found
for a given RE(u) in the target dataset. If this is the case, the quality of RE(u)
has to be weakened. Therefore, we assign to every RE(u) a confidence degree
inverse proportional to the number of distinct links the RE(u) finds.

To pick the best identity link(s), we adopt a voting strategy that assigns a
weight to each link. This weight is the sum of the RE confidence degrees that
can be instantiated to generate the link. Eventually, the instance(s) associated
with the link(s) having the highest score is selected. The RE confidence degrees
can then be stored and updated when another data linking task is performed on
the source dataset.

4 https://www.w3.org/Submission/SWRL/.

https://www.w3.org/Submission/SWRL/
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Fig. 2. Bottom-up linking with REk(u). (a) is a valid RE for the film Ocean’s Eleven
in the source dataset. We adopt a bottom-up approach where the traversal begins from
leaf nodes. (b,c) For each of the RE’s leaf nodes ni in (x, p, ni), verifies the matches
(s, p, o) in the target dataset for the class of x; such that o has a high similarity with
ni. (d) The matches are intersected at the internal nodes, until those intersections at
the root are reported as the links.

6 Experimental Evaluation

To evaluate RE-miner, we conducted two series of experiments. The first is quan-
titative that is dedicated to studying the scalability of the proposed algorithm.
In the second series of experiments, we explored how REs can contribute to the
data linking task.

All experiments are run on a single machine with processor 2.7 GHz, 8 cores,
and 16 GB of RAM that runs Mac OS X 10.13. The source code of our approach
is publicly available5.

6.1 Datasets

We summarize the characteristics of the 3 datasets on which we did our experi-
ments.

DBpedia-YAGO.6 We use 10 different classes of YAGO and DBpedia knowl-
edge graphs. The data for these 10 classes are the same data used in
VICKEY [31], where the properties of the two knowledge graphs have been
aligned manually. Moreover, the properties of YAGO have been rewritten using
their DBpedia counterparts. This dataset contains 206,736 ground truth entity
pairs.

5 https://github.com/iswc2020/REGeneratipnAndLinking.
6 https://github.com/lgalarra/vickey.

https://github.com/iswc2020/REGeneratipnAndLinking
https://github.com/lgalarra/vickey
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IM@OAEI2019.7 We use the Sandbox SPIMBENCH dataset of the instance
matching track at OAEI 2019, its gold standard is available and consists of 300
entity pairs. This dataset is composed of a Tbox and an Abox for each of the
source and target ontologies. The goal of the task is to match instances describ-
ing the same Creative Work, which can be a news item, blog post, or a program.

IM@OAEI2011.8 We use IIMB (ISLab Instance Matching Benchmark) dataset
which consists of a set of interlinking tasks used by the instance matching track
of OAEI 2011. The source dataset (File 000) describes movies, locations, actors,
etc. Files 001 to 080 are generated by applying several transformations to the
source dataset. For each of these files, a gold standard containing around 12.3k
identity links has been provided.

6.2 Quantitative Results

Here, we study the scalability of our approach and will report the number of
REs found on average for each individual in the considered knowledge graph, as
well as the average number of nodes in the graphs representing the discovered
REs; first at depth 1 and then at depth 2.

Initially, we run RE-miner on the 10 classes of YAGO at depth 1, i.e., without
allowing for any existential variables. Table 1 details the characteristics of each
of these 10 classes. Furthermore, this table shows the number of discovered
referring expressions for each class as well as their run time. We can observe that
the process takes less than 2 min for all classes except for organization, which
took more than 3 hours to complete9. On average, there are less than 7 REs
per individual for all classes, except for the most voluminous class organization
with almost 158 REs for each individual. Without having limited the number
of discovered REs’ atoms, these expressions do not tend to be complex; the
maximum number of atoms among all 10 classes is 4 and on average, each RE
has 2 atoms or less10.

Example. The following examples translated to natural language, have been
chosen among the REs of depth 1: (i) Yellow Submarine is an album created by
the Beatles on date 1966-05-26. (ii) MIT university’s motto is mind and hand.
(iii) Charles Louis Alphonse Laveran is a scientist who was born on year 1845
in Paris, graduated from university of Strasbourg and has won the Nobel prize
in Physiology or Medicine.

Similar results have been obtained on OAEI2011 and OAEI2019 datasets
with 1.19 and 3.75 average atoms and a maximum of 4 and 8 atoms, respectively
(see Table 4).

7 https://project-hobbit.eu/challenges/om2019/.
8 http://oaei.ontologymatching.org/2011/instance/index.html.
9 Note that the non-key sets had been computed beforehand in all experiments.

10 Note that the rdf: type properties are not being counted in number of atoms.

https://project-hobbit.eu/challenges/om2019/
http://oaei.ontologymatching.org/2011/instance/index.html
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Table 1. Class statistics, number of non-keys (#NKs), number of discovered REs at
depth 1 (#REs), runtime, and size of the REs

Class #triples #instances #properties #NKs #REs runtime max#atoms avg#atoms

Museum 81.6k 21.1k 7 5 53.5k 2.6 s 3 1.23

Mountain 116.7k 32.9k 6 4 59.2k 1.4 s 3 1.28

Book 123.6k 41.8k 7 6 66.3k 3.5 s 3 1.27

University 131.8k 23.3k 9 9 161.8k 17.7 s 3 1.62

Scientist 335.6k 93.1k 18 92 309.9k 64.0 s 4 1.58

Album 381.1k 137.1k 5 2 212.1k 14.7 s 3 1.30

Actor 514.7k 108.4k 16 69 725.6k 95.1 s 3 1.74

Film 533.5k 123.9k 9 7 690.9k 102.3 s 4 1.77

City 1.1M 83.5k 17 29 1.2M 109.7 s 3 1.23

Organization 2.2M 430.3k 17 43 68.3M 3.48 h 4 2.05

To show how many more REs can be found at depth 2 (i.e., REs that contain
at least an existential quantifier), we run RE-miner with the Boolean E set to
True, on the 3 classes of YAGO having the least number of referring expressions
at depth 1. As described in Sect. 4.2, the algorithm should create the dataset
for the class the variable belongs to. To this end, we use instances of this class
and all its sub-classes in the non-saturated (i.e., no OWL2 entailment rule has
been applied) YAGO version 3.111 to ensure having a dataset with at least 1000
instances whenever possible.

Table 2 shows that as expected, many additional REs can be generated at
depth 2. However, the proportion of REs that have only literals values at leaf
nodes is rather small, and we can use those REs for data linking. On average,
these referring expressions have 2 atoms more than REs of depth 1.

Table 2. Number of additional REs detected at depth 2 (#REs), runtime, percentage
of REs having only literals in leaf nodes, maximum and average number of atoms.

Class #REs runtime %AllLiterals max#atoms avg#atoms

Mountain 150.8k 3006 s 13.4% 6 3.03

Museum 1.4M 3143 s 5.2% 5 3.57

Book 1.3M 1.2 h 2.50% 6 3.47

6.3 Data Linking

Here, we evaluate data linking on the 3 datasets, each time comparing the results
with the previous works in the literature that used the same datasets. We study
the advantage of using REs of depth 1 and 2, REs plus keys (i.e., the complete
set of referring expressions), and expanded REs. For each of the datasets, we

11 http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1 entire tsv.7z.

http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1_entire_tsv.7z
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compare the results with a baseline approach that picks random subgraph pat-
terns (i.e., random expressions) and uses them for linking just as it is done with
referring expressions. To be fair when comparing the random baseline results to
that of REs for data linking, for each dataset, a) the number of generated ran-
dom expressions is the same as that of discovered REs. b) the size of the random
baseline’s subgraphs comes from the same distribution as the discovered refer-
ring expressions. In other words, the same number of random subgraphs and
referring expressions with n atoms exist. c) the results for the random baseline
are averaged over three runs.

DBpedia-YAGO. We report our linking results on those 8 classes of this
dataset for which other approaches had previously published results. We have
used all REs of depth 1 whose statistics were delineated in Table 1, with strict
string equality. The quality of linking results is reported in terms of precision,
recall and F-measure, and is compared to the results of linking with keys (Ks),
keys and conditional keys (Ks+CKs) reported in [31], ontological graph keys
(OGK) reported in [23], and the random baseline (RBL). A conditional key is a
valid key for a specified part of a class’s instances [31]. Ontological graph keys
defined in [23] are a variant of keys defined by a graph pattern extended by onto-
logical pattern matching. Table 3 shows that RE-miner outperforms the other
approaches in terms of recall and F-measure on all classes except book. More
precisely, only using REs of depth 1, we can detect much more correct links
without having a significant change to the precision. We also observe that the
baseline solution – taking thousands to million of random subgraphs, depend-
ing on the dataset, and using them for linking – results in much lower scores
than REs; showcasing that using the referring expressions discovered through
RE-miner are indeed effective for linking.

Table 3. Linking results with keys (Ks), conditional keys and keys (Ks+CKs), onto-
logical graph keys (OGK), random baseline (RBL), and REs of depth 1.

Class Recall Precision F1

Ks Ks+CKs OGK RBL REs Ks Ks+CKs OGK RBL REs Ks Ks+CKs OGK RBL REs

Actor 0.27 0.60 0.66 0.19 0.69 0.99 0.99 1.00 0.37 0.99 0.43 0.75 0.79 0.25 0.81

Album 0.00 0.15 – 0.35 0.65 1.00 0.99 – 0.22 0.98 0.00 0.26 – 0.27 0.78

Book 0.03 0.13 0.85 0.12 0.80 1.00 0.99 0.97 0.38 0.98 0.06 0.23 0.90 0.18 0.88

Film 0.04 0.39 – 0.30 0.73 0.99 0.98 – 0.73 0.94 0.08 0.55 – 0.43 0.82

Mountain 0.00 0.29 – 0.05 0.78 1.00 0.99 – 0.08 0.99 0.00 0.45 – 0.06 0.87

Museum 0.00 0.29 0.42 0.20 0.85 1.00 0.99 0.99 0.34 0.99 0.00 0.45 0.58 0.25 0.91

Scientist 0.00 0.29 0.67 0.24 0.70 1.00 0.99 0.99 0.14 0.99 0.00 0.45 0.80 0.18 0.82

University 0.09 0.25 0.50 0.29 0.68 0.99 0.99 0.96 0.64 0.98 0.16 0.40 0.66 0.40 0.80

IM@OAEI2011. We first evaluate our data linking results on the entire IIMB
dataset. IIMB is made of 13 different classes (e.g., person, actor, location, etc.);
5 of which are at the top of the ontology according to the schema. We create
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the saturated dataset for these 5 classes and discover all minimal and diversified
REs of depth 1 and 2 on the source file 000. We use these REs to find identity
links in each of the files 001 to 010. The accuracy measures reported in Table 4
are averaged over these 10 files to compare to the results of the Combinatorial
Optimization for Data Integration (CODI) system [20], which reformulates the
alignment problem as a maximum-a-posteriori optimization problem. We can
observe that RE-miner outperforms CODI by a large margin of 12% to 7% in
recall and F-measure. Also the baseline solution, which generates 1.3 M random
expressions regardless of being RE or not, exhibits poor results. Similar to the
previous datasets, this performance reassures us that RE-miner algorithm is
indeed beneficial for linking. We also investigated the effects of using expanded
RE and observed that it helps increase the recall by 5.1% on average, over REs
of depth 1.

Moreover, we compare data linking results using the discovered REs, on the
class Film, against data linking with keys reported in [3]. We obtained a high
F-measure of 99% and gained about 70% increase in the recall.

Table 4. Class statistics and linking results of REs+keys, random baseline (RBL), and
other systems compared to results with REs of depth 1 and 2 on IM@OAEI2011 dataset
and the class Film of IM@OAEI2011, and with REs of depth 1 on IM@OAEI2019
dataset.

Dataset #classes #triples #properties #NKs #REs System Precision Recall F-measure

IIMB

OAEI 2011

13 87.3k 23 17 1.3M REs 0.92 0.87 0.90

REs+Ks 0.93 0.88 0.91

CODI 0.94 0.76 0.84

RBL 0.69 0.29 0.41

Film

OAEI 2011

1 11.8k 13 4 1.2M REs 0.99 0.98 0.99

Ks 1.00 0.27 0.43

REs+Ks 0.99 0.98 0.99

RBL 0.89 0.03 0.06

SPIMBENCH

OAEI 2019

1 6.2k 18 3 1.6k REs 0.98 0.84 0.91

REs+Ks 0.99 0.99 0.99

Lily 0.84 1.00 0.91

AML 0.83 0.89 0.86

FTRLIM 0.85 1.00 0.92

RBL 0.78 0.87 0.82

IM@OAEI2019. We report the linking results using the discovered REs of
depth 1 for the Creative Work class on the source dataset of SPIMBENCH; as
the datasets were not saturated, we could not mine and use REs of depth 2 for
linking. We compare our results to the 3 systems with the best performances
in the competition12: Lily, AML, and FTRLIM, as well as the baseline solu-
tion. Looking at Table 4, we observe that the random baseline approach is the
least effective and that REs alone have comparable performance to the other 3
12 http://ceur-ws.org/Vol-2536/oaei19 paper0.pdf.

http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf
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systems. However, when combined with the instantiation of keys, resulting in
the full set of REs, they outperform all other systems achieving an F-measure
of 99%. The average confidence of the discovered links is 85.5%, whereas this
number increases to 97.9% among the links that are picked through the voting
strategy described in Sect. 5.

Relevancy of Diversity. We also performed another set of experiments to
observe the effects discovering diversified REs brings to the data linking task.
By modifying the RE-miner algorithm, we discovered all minimal REs on the
same 3 classes of DBpedia-YAGO dataset presented in Table 2. We observed a
considerable increase in the number of discovered REs (e.g., it almost doubled
for the class book); whereas the recall and F-measure of the linking task either
remained the same or slightly decreased (e.g., for the class book, it dropped
by 2%). These results support that the use of diversity as a quality criterion
for referring expressions proves beneficial in limiting the number of REs while
preserving the quality of data linking.

To sum, we showed that using REs improves data linking results compared
to previous works and the random baseline. The results were verified on different
datasets containing classes with 5 to 23 properties and 300 to 137k instances.

7 Conclusion

In this paper, we proposed an approach that efficiently discovers referring expres-
sions by reducing the search space thanks to the use of maximal non-keys. The
generated REs are adapted to a data linking task through the notions of mini-
mality and diversification and the post-processing step of expansion.

We showed that RE-Miner can scale to classes consisting of millions of triples
and that the defined REs can significantly improve the performance of instance
matching and increase the recall of rule-based data linking methods.

As future work, we aim to refine REs by virtue of data linking, whereby if a
RE finds more than one match in the target dataset, we can deduce that some
information had been missing in the source dataset and hence can add the new
relevant facts to the source knowledge graph.
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Abstract. It is sometimes claimed that adding inferred axioms, e.g.
the inferred class hierarchy (ICH), to an ontology can improve reasoning
performance or an ontology’s usability in practice. While such beliefs
may have an effect on how ontologies are published, there is no con-
clusive empirical evidence to support them. To develop an understand-
ing of the impact of this practice, both for ontology curators as well as
tools, we survey to what extent published ontologies in BioPortal already
contain their ICH and most specific class assertions (MSCA). Further-
more, we investigate how added inferred axioms from these sets can affect
the performance of standard reasoning tasks such as classification and
realisation. We find that axioms from the ICH and MSCA are highly
prevalent in published biomedical ontologies. Our reasoning evaluation
indicates that added inferred axioms are likely to be inconsequential for
reasoning performance. However, we observe instances of both positive
as well as negative effects that seem to depend on the used reasoner
for a given ontology. These results suggest that the practice of adding
inferred axioms during the release process of ontologies should be sub-
ject to a task-specific analysis that determines whether desired effects
are obtained.

Keywords: Ontology engineering · Reasoning performance · OWL ·
Web ontology language · BioPortal · Class hierarchy · Concept
hierarchy

1 Introduction

In the biomedical domain, there seems to be a belief that adding certain kinds
of inferred axioms to an ontology, e.g., its inferred class hierarchy (ICH), may
improve the ontology’s usability in practice. This is even said to be a fundamental
step in the release process of ontologies and is supported by automation tools [7].
However, there are also arguments claiming that redundant subsumption axioms
can negatively affect the maintenance burden for ontology curators [13]. Overall,
there appears to be a lot of folk-wisdom about the benefits and drawbacks of
materialising entailed axioms.

To develop an understanding of the possible impact of this practice, we
introduce the notion of precompilation to distinguish between substantive and
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redundant materialisations of entailment sets. We survey to what extent pub-
lished biomedical ontologies materialise entailment sets derived from the ICH,
and how this practice affects reasoning performance. Our results indicate that
axioms of such sets are often materialised. While many ontologies contain redun-
dant axioms from the ICH, their relative proportion is often low. We find that
precompiling the ICH can positively impact the performance of reasoning tasks.
However, this does not hold in general and depends on the reasoning task, the
reasoner, and the given ontology itself.

2 Preliminaries

We assume the reader to be familiar with OWL, in particular OWL 2 [3], and
only fix some terminology. Let NC , NI , and NP be sets of class names, individual
names, and property names. A class is either a class name or a complex class
built using OWL class constructors. In the following, we use DL notation for
increased readability; in particular, we use A � B for a subclass axiom between
A and B, A ≡ B for an equivalence axiom between A and B, ⊥,� for owl:Thing,
owl:Nothing, A(a) for a class assertion between an individual a and a class A,
and write O |= α to denote that the ontology O entails the axiom α. We also
use ≡(A1, . . . ,An) to denote the n-ary equivalence axiom between the classes Ai

and take the OWL view that its parameters are a set, i.e, ≡(A1,A2) = ≡(A2,A1).
In particular, we say that the axioms A � B, ≡(A1, . . . ,An) are atomic if
A,B,A1, . . . ,An ∈ NC ∪ {⊥,�}. Similarly, we say that the assertion A(a) is
atomic if A ∈ NC ∪ {⊥,�}. Other axioms are called complex.

Furthermore, we use [A] to denote the set {Ai | O |= A ≡ Ai} for a class
name A in ontology O. By abuse of notation we write [A] � [B] to denote
the set of axioms {A′ � B′ | A′ ∈ [A],B′ ∈ [B]} and [A](a) to denote the set
{Ai(a) | A ≡ Ai}.

An ontology is a set of axioms. An ontology is logically empty if it entails
only tautologies. We write O1 ≡ O2 to denote that O1 and O2 are equivalent,
i.e., have the same models, and use O for an ontology and ˜O for the set of
class, property, and individual names in O. Finally, since we are concerned with
entailments, we only consider consistent ontologies.

3 Precompilation

We introduce the notion of precompilation to capture the idea of systematically
adding inferred axioms to an ontology. The characteristics of related axioms are
defined in terms of entailment sets.

Definition 1 (Entailment Set, Materialisation). Let O be an ontology. An
entailment set of O is a set of axioms E such that O |= α for each α ∈ E. An
entailment set E is materialised in O if E ⊆ O.
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Note that an axiom in a materialised entailment set is not necessarily entailed
by the remainder of the ontology. For example, consider an ontology O with a
single axiom α. Clearly, the set {α} is an entailment set of O and is materialised.
However, unless α is a tautology, removing it from O changes O’s meaning.
Hence, a materialisation may in fact be a substantive part of the ontology as
opposed to a semantically redundant addition.

Definition 2 (Redundancy). An entailment set E of an ontology O is redun-
dant in O if E is also an entailment set of O \ E.

In the following, we often call an axiom α redundant in O as a shorthand
for {α} being redundant in O. Of course, adding entailed axioms to an ontology
adds redundancy. To capture the idea of purposefully adding sets of entailed
axioms as a form of preprocessing, we propose the notion of precompilation as
redundant materialisations.

Definition 3 (Precompilation). An entailment set E of an ontology O is
precompiled in O if E is materialised and redundant in O.

Any entailment set can be partitioned into three (possibly empty) subsets
of precompiled, materialised but not redundant, and non-materialised axioms.
Note that such a partition is not necessarily unique as we will explain in Sect. 4.

A standard OWL reasoning service is classification, i.e., the computation of
the entailment set of all atomic subsumption axioms. As discussed in [1], fixing
reasonable sets of even atomic entailments is tricky.

Definition 4 (Inferred Class Hierarchy). The inferred class hierarchy
ICH(O) of O is defined as follows:

ICH(O) = {A � B | A,B ∈ NC ∪ {⊥,�},O |= A � B} ∪
{≡(A1, . . . ,An) | A1, . . . ,An ∈ NC ∪ {⊥,�},O |= ≡(A1, . . . ,An)}.

While the inferred class hierarchy of an ontology is a well understood and
widely used (finite) entailment set, it has been noted that informal references
to this set are often understood as some more restrictive subset [1]. In our case,
we include redundant versions of equivalence axioms, e.g., if ≡(A1,A2,A3) ∈
ICH(O), then ≡(A1,A2) ∈ ICH(O). In practice, the ICH is most commonly rep-
resented by some form of a transitive reduct and may include or exclude tau-
tologies, e.g., A � � or ⊥ � A. Therefore, we distinguish between four distinct
entailment sets that capture different aspects of an ontology’s ICH.

Definition 5 (Transitive Reduct). A transitive reduct of ICH(O), written
TR(O), is

1. a subset of ICH(O) that is equivalent to ICH(O) and
2. cardinality minimal, i.e., if O′ ⊆ ICH(O) and O′ ≡ O, then |TR(O)| ≤ |O′|.



Class Hierarchy Precompilation in Biomedical Ontologies 333

Note that a transitive reduct is not necessarily unique in the presence of
equivalences. Consider Oex = {AlaskanMoose � Moose,Moose ≡ Elk,Elk �
Deer} as an example. Here, TR(Oex) = Oex is only one of four transitive
reducts. Also, the transitive reduct mentions ⊥ iff the ontology contains unsat-
isfiable classes (which are all gathered in a single maximal equivalence axiom
that includes ⊥). Dually, it mentions � iff the ontology contains global classes
(which are all gathered in a single maximal equivalence axiom that includes �).
In case there is only a single global class, this leads to two reducts, one with an
equivalence class and one with a subclass axiom with/of �.

Second, we define the set of tautologies that would be included in the tran-
sitive reduction of an ontology’s class hierarchy if ⊥ and � were “normal” class
names.

Definition 6 (Tautological Completion). The tautological completion
�⊥-TR(O) of O is defined as follows:

�⊥-TR(O) = {A � � | A ∈ NC \ [�] and O |= A � B implies B ∈ [A] ∪ [�]} ∪
{⊥ � A | A ∈ NC \ [⊥] and O |= B � A implies B ∈ [A] ∪ [⊥]}.

In this definition, TR(O) occurs unquantified as it does not matter which one
we pick in case there are more than one: they only differ in subclass axioms to and
from equivalent classes and do not contain tautologies, hence �⊥-TR(O) always
contains all subclass axioms between top-level classes (not equivalent to �) and
� and between ⊥ and bottom-level classes (not equivalent to ⊥). Continuing
our example Oex, we have �⊥-TR(Oex) = {⊥ � AlaskanMoose,Deer � �}.

Third, we define short-cuts in the class hierarchy, i.e., non-tautological but
inferred subsumption axioms that are not in any transitive reduction of an ontol-
ogy’s class hierarchy.

Definition 7 (Short Cut). The set of short cuts SC(O) is an defined as
follows:

SC(O) = ICH(O) \
⋃

TR(O)

(TR(O) ∪ �⊥-TR(O)).

Please note that short cuts can also contain equivalence axioms. For example,
consider O′ = Oex ∪ {Elk ≡ AlcesAlces}. Then we have Moose ≡ Elk,Elk ≡
AlcesAlces ∈ SC(O′) because ≡(Moose,Elk,AlcesAlces) ∈ TR(O′) (for all transi-
tive reducts of O′). Also note that short cut axioms are not necessarily redun-
dant in an ontology as demonstrated by the example. Lastly, we define short
cut tautologies in an ontology’s class hierarchy that are not in the tautological
completion of its transitive reduction.

Definition 8 (Short Cut Tautologies). The set of short cut tautologies,
written �⊥-SC(O), is defined as follows:

�⊥-SC(O) = {A � � | A ∈ ˜O,A � � 
∈ �⊥-TR(O)} ∪
{⊥ � A | A ∈ ˜O,⊥ � A 
∈ �⊥-TR(O)} ∪
{A � A | A ∈ NC ∪ {⊥,�}}.
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In the case of our example Oex, we have for instance AlaskanMoose � � ∈
�⊥-SC(Oex). The distinction between atomic axioms in (i) transitive reducts,
(ii) the tautological completion of transitive reducts, (iii) non-tautological short
cuts, and (iv) short cut tautologies results in a unique partition of the ICH(O)
for a given transitive reduct.

In addition to ICH(O), which only captures the terminological knowledge
about named class, another important entailment set in practice is the set of
class assertions for individuals contained in an ontology.

Definition 9 (Inferred Class Hierarchy Assertions). The set of inferred
class hierarchy assertions of O is defined as follows:

ICHA(O) = {A(a) | A ∈ ˜O, a ∈ NI ,O |= A(a)}
As for ICH(O), there may be some variance in terms of how ICHA(O) is

understood. Therefore we define the set of most specific class assertions as the
smallest entailment set that still captures the ICHA(O), which is realised as
another standard OWL reasoning service called realisation.

Definition 10 (Most Specific Class Assertions). A set of most spe-
cific class assertions of O, written MSCA(O), is a (cardinality) minimal set
MSCA(O) ⊆ ICHA(O) such that MSCA(O) ∪ ICH(O) |= ICHA(O).

Extending Oex with {Elk(a),Deer(a), hasCalf(a, b)}, yields MSCA(Oex) =
{Elk(a)}.

Analogously to what we did for the ICH, we define the (unique) tautological
completion for MSCAs:

Definition 11 (Tautological Completion). The tautological completion of
MSCA(O) is defined as follows:

�⊥-MSCA(O) = {�(a) | a ∈ ˜O and there is no A(a) ∈ MSCA(O)}.

In case of our extended example Oex, we have �⊥-MSCA(Oex) = {�(b)}.
Similarly, we define a notion for short-cuts w.r.t. class assertions:

Definition 12 (Short Cut Assertions). The set of short cut assertions of
SCA(O) is defined as follows:

SCA(O) = ICHA(O) \
⋃

MSCA(O)

(MSCA(O) ∪ �⊥-MSCA(O)).

Continuing our extended example Oex, we find Deer(a) ∈ SCA(Oex).
And finally, we define a notion for short-cut assertion tautologies:

Definition 13 (Short Cut Assertion Tautologies). The set of short cut
assertion tautologies �⊥-SCA(O) is defined as follows:

�⊥-SCA(O) = {�(a) | O |= �(a)} \ �⊥-MSCA(O).

Analogously to the case of the ICH, the Definitions 10–13 give rise to a
unique partition of the ICHA into four sets for a given set of most specific class
assertions.
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4 Determining the Extent of Precompilation

In this section, we discuss how we can determine the extent of precompilation
in an ontology. Given an entailment set E of an ontology O, we check whether
it is materialised in O by simply checking whether E ⊆ O holds. To deter-
mine whether E is precompiled, we simply test whether O \ E |= E holds. This
straightforward way of determining precompilation suffers, however, from two
issues: firstly, it is insensitive to different but equivalent representations of an
entailment set. For example, a subsumption entailed from an equivalence axiom
is not necessarily a precompiled axiom. Secondly, it considers the entailment
set as a whole: if a single axiom of a large entailment set is not precompiled,
then the whole entailment set is not precompiled. Therefore, instead of search-
ing for precompiled entailment sets, it is more appropriate to search for maximal
precompiled subsets of a given entailment set in an ontology.

Identifying sets of redundant axioms in ontologies is known to be challenging
in practice [6,13]. While it is straightforward to identify a single axiom α in an
ontology O as redundant by testing whether O\{α} |= α holds, such axioms do
not, in general, form redundant subsets when grouped together. As an example,
consider the ontology O = {A � B,A � C,A � B � C}. Then for all axioms
α ∈ O, we have O \ {α} |= α. However, all three axioms taken together, i.e. O
itself, does not constitute a redundant set. As a consequence of this, removing
redundant axioms from an ontology comes down to a choice between a number of
alternatives. This also means, that for a given ontology, there may exist several
irredundant equivalent ontologies.

Since we are interested in identifying redundant axioms with respect to some
entailment set, we define a notion of irredundancy for ontologies accordingly.

Definition 14 (Reduced Ontology). Let O be an ontology and E an entail-
ment set of O. An ontology O− ⊆ O is a reduction of O with respect to E,
if

(i) O \ O− ⊆ E,
(ii) O− ≡ O,
(iii) there exists no α ∈ E such that {α} is redundant in O−.

Each reduction O− of O can be associated with its corresponding precompiled
subset of E , namely O \O−. With this, we can elaborate on the statement made
in Sect. 3 with respect to possible partitions of an entailment set into subsets of
precompiled, materialised but not redundant, and non-materialised axioms.

Proposition 1. A reduction O− of an ontology O wrt. an entailment set E
uniquely identifies a partition of E into three subsets defined as follows:

1. P = O \ O− precompiled axioms in O,
2. M = O− ∩ E = (O ∩ E) \ P of materialised but not redundant axioms in O−,
3. N = E \ O non-materialised axioms in O.
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5 Methods

5.1 Materials

Ontology Corpus. We use a publicly available snapshot of BioPortal from
2017.1 The data set of ontologies with their imports closure merged in encom-
passes a total of 438 ontologies. We select ontologies for individual reasoners
according to the following criteria: (i) can be processed using the OWL API, (ii)
contains logical axioms, (iii) is found to be consistent by a reasoner, and (iv) can
be classified by a reasoner within one hour. The last criterion is chosen primarily
for practical reasons owing to the large scale of our empirical investigation. This
choice is justified by empirical evidence that most ontologies can be classified
well within one hour [5].

No ontologies have been excluded based on criterion (i). A total of 13 ontolo-
gies were excluded based on criterion (ii). As for criteria (iii) and (iv), note
that an ontology is not necessarily deemed consistent or classifiable by all rea-
soners. In particular, HermiT found three ontologies to be inconsistent, Pellet
five, JFact eight, and Konclude seven. Likewise, 352 ontologies of the remaining
ontologies could by classified by HermiT, 319 by Pellet, 381 by JFact, and 406
by Konclude. Any statements involving a reasoner will be made w.r.t. these the
reasoner’s respective ontologies.

In experiments, we distinguish between ontologies that consist of atomic
axioms only, axioms expressible in EL++, and rich otherwise. We refer to these
three kinds of ontologies as atomic, EL++, and rich ontologies respectively.

Experimental Environment. Ontologies in this study are processed using the
OWL API (version 4.5.13). With the exception of Konclude2 (version 0.6.2), all
reasoning tasks are orchestrated via a reasoner’s OWL API support. The used
reasoners are HermiT3 (version 1.3.8.413), JFact4 (version 4.0.4), and Pellet5

(version 2.3.3). Konclude is used via its command line interface.
All reasoning performance experiments are run on a machine with an Intel

Core i5-3470 Quad-Core processor at 3.2 GHz with 8 GB of RAM. The reasoners
were given 5 GB of RAM and the remaining 3 GB were reserved for the operating
system (Ubuntu 16.04.04 LTS). The installed Java runtime environment was
“OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.4+11)”.

Source code used for this work is available online.6

5.2 Research Questions

The notion of precompilation raises a number of research questions. Here, we
distinguish between two broad categories of such questions. On the one hand, we
1 https://zenodo.org/record/439510#.XoR4Td-YVhF.
2 https://www.derivo.de/en/produkte/konclude.html.
3 http://www.hermit-reasoner.com/.
4 http://jfact.sourceforge.net/.
5 https://github.com/stardog-union/pellet.
6 https://github.com/ckindermann/precompilation.

https://zenodo.org/record/439510#.XoR4Td-YVhF
https://www.derivo.de/en/produkte/konclude.html
http://www.hermit-reasoner.com/
http://jfact.sourceforge.net/
https://github.com/stardog-union/pellet
https://github.com/ckindermann/precompilation


Class Hierarchy Precompilation in Biomedical Ontologies 337

are interested in the prevalence of precompiled entailment sets in practice. On
the other hand, we are interested in the implications of precompiled entailment
sets for practitioners.

To develop a first understanding of precompilation in practice, we focus on
entailment sets that are related to entailment sets of standard OWL reasoning
services. In particular, we investigate entailment sets revolving around the class
hierarchy and class assertions (cf. Sect. 3). We determine to what degree such
entailment sets are materialised and to what extent they are redundant and
precompiled. Furthermore, we qualify the size of materialised entailment sets
relative to an ontology overall size and draw comparisons w.r.t. an ontology’s
reduction (w.r.t. said entailment set).

Lastly, we shed some light on the practical impact of precompilation by evalu-
ating its effects on reasoning performance. In particular, we investigate reasoning
performance with respect to the standard reasoning tasks (i) classification and
(ii) realisation.

5.3 Experimental Design

The notion of precompilation is partially predicated on the materialisation of
entailment sets and partially on their redundancy. Hence, both the extent of
materialisation and redundancy are partial indicators for precompilation. In this
work, we investigate precompilation w.r.t. entailment sets revolving around an
ontology’s class hierarchy (c.f. Sect. 3). Our investigation consists of four distinct
experiments that we run over biomedical ontologies as described in Sect. 5.1.
The four experiments concern the extent of materialisation, redundancy, and
precompilation of entailment sets, as well as the impact of precompilation on
reasoning performance. In the following, we give a brief description for each of
these experiments.

Materialisation. We determine to what extent an ontology consists of atomic
axioms and what kinds of atomic axioms are most prevalent. We analyse an
ontology’s TBox and ABox in the same fashion according to their respective
sets defined in Sect. 3. As the entailment sets of transitive reducts and most
specific class assertions are of special interest, we shed light on both their mate-
rialised and non-materialised proportions. As already mentioned these sets are,
in general, not uniquely determined, which makes counting their axioms rather
difficult. To avoid over-counting axioms in transitive reducts due to their non-
determinism, we adopt the following approach: first, we take an injective func-
tion r that returns a representative element r([A]) for each equivalence class [A].
The transitive reduct induced by r is called rTR(O), and we consider the axiom
r([A]) � r([B]) ∈ rTR(O) to be materialised in O if some axiom in [A] � [B]
is materialised. Analogously, r induces most specific class assertions rMSCA(O),
and a class assertion r([A])(a) ∈ rMSCA(O) is considered to be materialised if
some axiom in [A](a) is materialised.
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For this experiment, we use Konclude to compute an ontology’s classifica-
tion and realisation.7 When analysing TBoxes, we exclude ontologies with empty
TBoxes or empty transitive reducts (TR) of their inferred class hierarchy. Like-
wise, when analysing ABoxes, we exclude ontologies with empty ABoxes or an
empty set of most specific class assertions (MSCA).

Redundancy. We determine to what extent atomic axioms are redundantly
contained in ontologies. We test for each axiom α in an ontology O whether
O \ {α} |= α holds. As we work with a large number of ontologies that may
include many axioms expressed in very expressive DLs, testing atomic axioms
individually for redundancy is an expensive operation. Therefore, we configure
two timeouts. One timeout, set to two minutes, limits the time a reasoner has to
answer an individual redundancy test. A second timeout, set to one hour, limits
the time a reasoner has to test all atomic axioms in an ontology. We run this
experiment for all three reasoners supported by the OWL API (HermiT, JFact,
and Pellet) separately.

Precompilation. We investigate the impact of precompilation on published
ontologies by drawing a threefold comparison. We distinguish between the cases
of (i) published ontology, (ii) no precompilation, and (iii) minimal precompila-
tion.

For atomic TBox axioms, these three cases are defined as follows: for a given
(i) published ontology O we compute its (ii) reduction O− w.r.t. ICH(O), and (iii)
a minimally precompiled ontology defined by O+ = O− ∪TR(O) for a transitive
reduct that results in a minimal number of added axioms. For atomic ABox
axioms, define conditions (i)–(iii) analogously w.r.t. ICHA(O) and MSCA(O).

Using Proposition 1, we compare O− with O and O+ under set difference
to measure the impact of precompiling class hierarchy entailment sets on an
ontology’s size in practice.

Reductions are computed brute-force by iteratively removing redundant
axioms. We configure two timeouts as in the redundancy experiment to limit
individual reasoning calls and the overall computation. We run this experiment
for all three reasoners supported by the OWL API (HermiT, JFact, and Pellet)
separately.

Reasoning Performance. We investigate the impact of precompilation on
reasoning performance w.r.t. class hierarchy entailment sets. In particular, we
time the standard reasoning tasks classification and realisation under three
experimental conditions respectively. The three experimental conditions distin-
guish between the cases of (i) published ontology, (ii) no precompilation, and

7 Konclude does not compute the realisation of an ontology as it is defined in Sect. 3.
Instead, Konclude’s realization command returns all inferable atomic class asser-
tions for an ontology. However, given the inferred class hierarchy of an ontology, one
can easily determine the most specific class assertions.
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(iii) precompilation as defined in the precompilation experiment. We time the
classification of O, O−, and O+ w.r.t. ICH(O) and TR(O) and the realisation
w.r.t. ICHA(O) and MSCA(O).

In the classification experiment, we remove ABoxes from ontologies to control
for confounding effects due to large ABoxes. As there is no analogous operation
for the realisation experiment we will discuss confounding factors and limitations
in Sect. 7. We run this experiment for all three reasoners supported by the OWL
API (HermiT, JFact, and Pellet) separately.

6 Results

6.1 Experiment 1: Materialisation

The experimental conditions as specified in Sect. 5.3 resulted in a total of 394
ontologies (65 atomic, 55 EL++, 274 rich) in the case of TBoxes and 132 (6
atomic, 2 EL++, 124 rich) in the case of ABoxes.

We begin the presentation of results with the materialisation of the transitive
reduct (TR)8 and most specific class assertions (MSCA).

In the case of the TR, we find that 274 (65 atomic, 53 EL++, 156 rich) of
the 394 ontologies materialise TR in its entirety. An additional 38 ontologies
materialise their TR to at least 99%. Overall, there are only 30 (one EL++,
29 rich) ontologies that materialise their TR to less than 90%. Only 4 of which
materialise their TR to less than 50% (the smallest percentage of materialisation
is 27%).

In the case of the MSCA, we find that 94 (6 atomic, one EL++, 87 rich) of the
132 ontologies materialise their MSCA in its entirety. An additional 6 ontologies
materialise their MSCA to at least 90%. There are only 7 (rich) ontologies that
materialise their MSCA to less than 50%; two of which do not materialise any
axiom of the MSCA.

While most ontologies materialise their TR and MSCA to generally high per-
centages, it is important to relate these percentages to absolute counts. Figure 1A
shows absolute counts for the number of axioms in an ontology’s TBox, materi-
alised TR axioms, and non-materialised TR axioms. While the total number of
non-materialised axioms is below 1000 for most ontologies, there are exceptions.
For example, the “The Drug Ontology”, shown on index 391, materialises 97%
of the TR. Yet, the corresponding number of non-materialised axioms is 12,883.

Figure 1B shows absolute counts for the number of axioms in an ontology’s
ABox, materialised MSCA axioms, and non-materialised MSCA axioms. We note
that ontologies with the huge ABoxes tend to contain a large (absolute) number
of axioms from MSCA and materialise their MSCA to 100%; e.g., the RadLex
ontology (shown at index 131 in Fig. 1B) has an ABox with 398,016 axioms
which includes 46,936 axioms of a materialised MSCA.

8 Here, we use TR and MSCA as the more abstract concepts that stand for all TR(O)
and MSCA(O), and remind the reader that we use rTR(O) and rMSCA(O) and
suitable counting to avoid over-counting these entailments.
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Fig. 1. Size comparison between an ontology’s TR and TBox (A), and MSCA and
ABox. The legend indicates the drawing order. This order ensures that purple squares
(a) cannot hide green triangles (b) nor blue dots (c). Also, a blue dot cannot hide green
triangles (b) or purple squares due to its smaller size. (Color figure online)

Figure 1 suggests that the absolute size of materialised TR axioms and MSCA
axioms correlate with the size of an ontology’s TBox and ABox respectively.
However, the logarithmic scale makes it hard to determine visually whether
these axioms from the TR and MSCA make up a large proportion of an ontol-
ogy’s TBox or ABox. Figure 2 shows the relative proportions of atomic axioms
w.r.t. an ontology’s TBox and ABox respectively. It also shows to what extent
these axioms are TR axioms or MSCA axioms, short cut axioms, or tautologies.

For TBoxes of non-atomic ontologies, we note that there are both TBoxes
with a very small proportion of atomic axioms and TBoxes that consist almost
exclusively of atomic axioms. Instances of ontologies with a low proportion of
atomic axioms, e.g., at index 112, 118, 212, 275, contain a large number of axioms
involving properties (which are non-atomic by our definitions). Interestingly, the
proportions of atomic axioms in rich ontologies seem to be almost uniformly
distributed in our experimental corpus. We also note, that in most cases, atomic



Class Hierarchy Precompilation in Biomedical Ontologies 341

Fig. 2. Relative size comparison between an ontology’s atomic axioms and TBox (A)
and ABox (B).

TBox axioms are indeed TR axioms. However, there are examples where short
cuts and tautologies dominate, e.g. at index 121 or 230. While almost all ontolo-
gies include a few tautological subclass axioms involving �, the vast majority
of axioms from the tautological completion of the TR are not materialised in
ontologies.

For ontologies with ABoxes of more than 100 axioms (starting at index 80),
we note that the proportion of atomic class assertions tends to decrease. Further-
more, we note that atomic class assertions often contain relatively large numbers
of both short cut axioms and tautologies. In particular, we find example ontolo-
gies, e.g. at index 77, that materialise all inferred class hierarchy assertions.

6.2 Experiment 2: Redundancy

We report the results of our redundancy experiments for each reasoner by dis-
tinguishing for each ontology’s ABox and TBox whether (1) redundant atomic
axioms could be identified, (2) no redundant atomic axioms could be identified,
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(3) the search for redundancies timed out, and (4) whether the case of no redun-
dancies is due to the ABox or TBox being empty. The results are summarised
in Table 1.

Table 1. Number of ontologies that contain/do not contain (yes/no) redundant atomic
axioms.

Reasoner ABox Empty
ABox

TBox Empty
TBox

Servicable
ontologies

Yes No Timeout Yes No Timeout

HermiT 59 47 5 241 190 133 24 5 352

JFact 56 46 24 255 200 136 40 5 381

Pellet 41 48 3 227 162 131 21 5 319

While reasoners differ with respect to what ontologies they can service, there
is a large overlap of 295 ontologies between all three. Also, while there exist
cases in which different reasoners come to different conclusions as to whether a
given axiom in a given ontology is redundant, these cases are rare. Therefore, we
continue the discussion of experimental results by way of example for HermiT.

We report percentages for the ratio of redundant atomic axioms over all
atomic axioms in both TBox and ABox separately. As already mentioned in
Sect. 6.1, such percentages may not always give an accurate account of abso-
lute numbers. However, we will defer the discussion of absolute numbers to the
experiment on precompilation where ontology reductions are computed.

In TBoxes, the percentage of redundant atomic axioms is rather small for
most ontologies. In Fig. 3, on the upward-directed axis, we show to what extent
atomic axioms in an ontology’s TBox are redundant. For 50 of the 190 ontologies
we report that at least 10% of all atomic axioms are redundant. For eight of these
ontologies the percentage even surpasses 50%. On the downward-directed axis,
we show to what degree redundant axioms are transitive reduct axioms, short cut
axioms, or tautologies. We notice that EL++ ontologies contain predominantly
redundant short cut axioms. However, in rich ontologies all three kinds of atomic
axioms occur as redundant to varying proportions.

In ABoxes, we report comparatively high percentages of redundant atomic
axioms. For 31 of the 59 ontologies at least 80% of their atomic class assertions
are redundant. Only 20 ontologies contain less than 50% of redundant atomic
class assertions. We note, that all three reasoners find redundant atomic class
assertions almost exclusively in rich ontologies. In case of Hermit, 57 of the 59
ontologies with redundant atomic class assertions are rich. Lastly, we note that
the majority of redundant atomic class assertions are axioms from the MSCA
or tautologies. Redundant short cuts occur in 13 ontologies and only make up
more than 50% of all redundant atomic axioms in three ontologies.
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Fig. 3. Prevalence of redundant atomic TBox axioms. Percentages in the upward direc-
tion show the ratio of redundant atomic axioms over all atomic axioms of an ontol-
ogy’s TBox (a). Percentages in the downward direction show to what extent redundant
atomic axioms are transitive reduct axioms (b), short cut axioms (c), or tautologies
(d). Ontologies are ordered by the size of their atomic axioms.

6.3 Experiment 3: Precompilation

We report the results of our precompilation experiment by building on the find-
ings of our materialisation and redundancy experiments. In light of the large pro-
portions of atomic axioms in many ontologies of reasonably large size, removing
or adding even small percentages of redundant entailment sets may have a signif-
icant impact in practice. For example, in the “FoodOn” ontology, we identified
a precompiled set of atomic axioms in its TBox that makes up only 1% of all
its atomic axioms. Removing this set from the ontology changed the ontology’s
overall size only by 0.6%. Yet, more than 100 axioms have been removed.

The results of our precompilation experiment show that such cases are not
uncommon. Figure 4 shows absolute counts for the number of axioms in an
ontology’s TBox, the number of removed axioms in comparison with its reduction
(as computed by HermiT), the minimal number of axioms required to add to
the reduction so that the TR is materialised in its entirety. We note that 34 of
the 190 ontologies (c.f. Fig. 3 in Sect. 6.2) contain precompiled sets of more than
100 atomic axioms.9 We also note, that there are quite a number of ontologies
for which O+ \O− is rather large. For example, in case of the “Non-coding RNA
Ontology”, adding a minimal number of axioms to its reduction amounts to the
addition of 7659 axioms.

Lastly, we mention that the results of the precompilation experiment for
ABoxes are similar to the results we report for TBoxes.

9 We remind the reader of Proposition 1 according to which a reduction of an ontol-
ogy w.r.t. an entailment set uniquely identifies a precompiled set of axioms in that
ontology.
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Fig. 4. Size comparison between O,O−, and O+ w.r.t. TBox changes. Absolute counts
for axioms of an ontology O’s TBox (a), axioms of O’s precompiled set associated with
O− (b), the minimal number of axioms to add to O− so as to fully materialise its
TR (c).

6.4 Experiment 4: Reasoning Performance

We report the results of our reasoning performance in relation to ontologies for
which a reasoner spent more than 10 s to solve a reasoning task. For HermiT
there are 12 such ontologies for classification and 21 for realisation. For JFact
we have 11 and 2 respectively, and for Pellet we have 3 and 4. All results were
found for rich ontologies.

Our experiments indicate that precompilation can affect classification times
both positively as well as negatively depending on which reasoner is used on
what ontology.

HermiT is either consistently unaffected by precompilation of an ontology’s
TR or seems to benefit. Table 2 summarises the classification times for four
of five cases in which the classification times noticeably improve as a result of
precompilation. The table also includes the one exception, namely the Immuno-
genetics Ontology (imgt), for which HermiT’s performance suffers under the
effect of precompilation.

JFact on the other hand is consistently affected negatively by precompilation.
For 8 of the 11 ontologies, JFact’s classification time increases considerably. In
one case the time increases from 3 min to more than 15 – in another case, the
time increases from 16 min to more than 40. There is only one ontology that did
not incur performance degradation with JFact under precompilation.

Pellet shows improved reasoning times for one ontology, no effect for another,
and yet slightly more volatile behaviour in terms of minimal and maximal classi-
fication times that produce similar averages as the no-precompilation condition.

Reasoning behaviour with respect to realisation appears to be largely unaf-
fected by precompilation of the MSCA. JFact was negatively affected by pre-
compilation for one ontology resulting in an increased time from 10 s (no-
precompilation) to 30 s (precompilation). Pellet’s reasoning time, on the other
hand, improved for one ontology from 20 s (no-precompilation) down to 4 s (pre-
compilation).
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Table 2. HermiT Classification time for five experimental runs

Ontology bt-biotop fb-cv imgt ntdo stato

Condition Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

O− 146 s 171 s 206 s 38 s 46 s 52 s 19 s 19 s 20 s 190 s 259 s 322 s 415 s 438 s 456 s

O 96 s 116 s 152 s 11 s 13 s 16 s 77 s 79 s 82 s 142 s 174 s 224 s 276 s 290 s 305 s

O+ 84 s 102 s 131 s 12 s 13 s 15 s 72 s 77 s 80 s 137 s 144 s 155 s 283 s 300 s 306 s

7 Discussion

We find that a good portion of ontologies indexed in BioPortal contains their
TR in its entirety. However, consistent with the hypothesis of low redundancy
formulated in [6], we find that most materialised axioms from the ICH are indeed
not redundant and hence not precompiled. Yet, in case of large ontologies, it is
important to keep in mind that even small percentages of redundant axioms may
in fact correspond to a large absolute number of axioms. Concerns about such
redundancies have been raised on the grounds of their informational value for
ontology curators as well as tools [10,13].

Furthermore, the observed differences in reasoning times by a factor of three
or more may be of practical relevance. Even in case of only a few seconds, such
differences may become noticeable if ontologies need to be classified frequently
or in bulk.

Limitations. We have limited the scope of our investigation to the biomedical
domain. This design choice is primarily motivated by the view that precompila-
tion of entailment sets is a “fundamental step in the release process for biomedical
ontologies [7].” While the notion of precompilation is independent of a particular
domain, we are unaware of strong beliefs about precompilation in other domains.
Apart from this, BioPortal is a large corpus of actively maintained ontologies
that are highly heterogeneous in terms of size and complexity [5,9]. Thus, the
generally small effect size of precompilation w.r.t. BioPortal is unlikely to change
w.r.t. other corpora of comparable size and complexity.

By using a one-hour timeout in combination with a straightforward method
to identify redundancies and computing ontology reductions, we may have sys-
tematically excluded computationally challenging ontologies from our reasoning
evaluation. Note, however, that our chosen approach proves to be sufficient for
the majority of ontologies in our corpus. For example, in the case of HermiT, we
only exclude 24 out of 352, i.e., less than 7% of serviceable ontologies. Also note,
that a successful treatment of these excluded ontologies would not change the
quintessence of our two primary observations. Namely, that precompilation has
no effect for the vast majority of ontologies and that precompilation can have
both positive as well as negative effects in specific instances.

Lastly, we need to point out that our reasoning experiments were primarily
designed to investigate the impact of precompilation in practice. We did not
investigate the potential of precompilation to affect reasoning performance in
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general. Although we controlled for long classification times due to large ABoxes,
we did not control for factors that could (in theory) interact with precompilation.
For example, it is conceivable that realisation times depend on both precompi-
lation of the MSCA as well as precompilation of the TR. Similarly, one can
speculate that different kinds of precompiled entailment sets would affect each
others impact w.r.t. reasoning performance.

Future Work. Given the observed effects of precompilation on reasoning per-
formance in a few instances, an understanding of cause and effect would be valu-
able. For this purpose, we plan a study on computationally challenging ontologies
(not restricted to a domain). Here, we give a brief description of crucial points
for future experimentation.

To investigate the potential impact of precompilation, ontology reductions
w.r.t. to the whole ontology need to be considered. Since the number of such
reductions is (in theory) exponential, stochastic sampling for exploring this
search space may be sensible. Similarly, different precompilations of an entail-
ment set, e.g., via minimal but non-unique representations, need to be analysed
(also possibly by stochastic sampling).

A straightforward approach to compute ontology reductions is unlikely to
be sufficient for a study on computationally challenging ontologies. Thus, opti-
misations and approximation techniques are needed; especially for large scale
experiments.

A detailed analysis of used algorithms and concrete implementations of rea-
soners is necessary to develop an understanding of reasoner specific behaviour.
Software profiling techniques may provide useful information for pinpointing
implementation-specific factors contributing to effects of precompilation on rea-
soning time.

Ultimately, the potential impact of precompilation on reasoning performance
involves three independent factors: an ontology, an entailment set, and a rea-
soner. Thus, a full investigation of this impact will need to examine all three
factors as well as their potential interactions.

Related Work. Precompilation and materialisation of entailment sets is
discussed in a range of settings. First, related but different precompilation
approaches involve rewriting an ontology into a certain normal form to make
subsequent tasks, including reasoning, easier [2,4]. Here, we focus on extending
an ontology with entailed axioms.

Second, materialisation is used to compensate for shortcomings of tools. In
[12], the materialisation of entailment sets is proposed to mitigate limitations
of incomplete reasoners. The main idea is to determine entailment sets R that
function as a repair without which an incomplete reasoner would fail to derive
answers to some queries.

Third, materialisation is used to preserve an ontology’s entailments when it
is translated into a less expressive description logic in [11]. We could say that
materialisation, in this setting, compensates for lack of expressive power which,
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in turn, can be motivated by reasoner or tool performance requirements or other
reasons like readability.

Fourth, materialisation of TBox entailments has been used to improve the
performance of (ABox) query answering in a range of settings, e.g., in [8].

Finally, while there are numerous surveys of properties of existing ontologies,
there are none—to the best of our knowledge—that investigate the extent of
materialisation.

8 Conclusion

We find that biomedical ontologies materialise class hierarchy entailment sets in
both their TBox and Abox. While these entailment sets are to large proportions
a substantive part of the ontology and cannot be removed without changing the
ontology’s meaning, there exist redundant subsets in ontologies that are of non-
trivial size. Likewise, adding the TR to an ontology may result in a non-trivial
increase in size. While our experiments on reasoning performance suggest that
precompilation is inconsequential in most cases, there are instances where this
practice can have a noticeable impact, both positive as well as negative, that
depends on the used reasoner for a given ontology.

Overall, we conclude that the practice of precompilation has to be treated
with due diligence. Adding entailment sets in an automated manner can have
a significant impact on both an ontology’s size and its usability in practice.
Whether the precompilation of an entailment set provides its desired beneficial
effects needs to be tested on a case by case basis. Tool support to facilitate such
testing will be of great value moving forward.
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Abstract. Tables in scientific papers contain a wealth of valuable knowl-
edge for the scientific enterprise. To help the many of us who frequently
consult this type of knowledge, we present Tab2Know, a new end-to-
end system to build a Knowledge Base (KB) from tables in scientific
papers. Tab2Know addresses the challenge of automatically interpreting
the tables in papers and of disambiguating the entities that they con-
tain. To solve these problems, we propose a pipeline that employs both
statistical-based classifiers and logic-based reasoning. First, our pipeline
applies weakly supervised classifiers to recognize the type of tables and
columns, with the help of a data labeling system and an ontology specifi-
cally designed for our purpose. Then, logic-based reasoning is used to link
equivalent entities (via sameAs links) in different tables. An empirical
evaluation of our approach using a corpus of papers in the Computer Sci-
ence domain has returned satisfactory performance. This suggests that
ours is a promising step to create a large-scale KB of scientific knowledge.

1 Introduction

Often, scientific advancement requires an extensive analysis of pre-existing tech-
niques or a careful comparison with previous experimental results. For instance,
it is common for researchers in Artificial Intelligence (AI) to ask questions like
“Which are the most popular datasets used for graph embeddings?” or “What is
the F1 of BERT on TACRED?”. Finding the answers obliges the researchers to
spend much time in perusing existing literature, looking for experimental results,
techniques, or other valuable resources.

The answers to such questions can be frequently found in tabular form, espe-
cially the ones that describe the output of experiments. Unfortunately, tables in
papers are made for human consumption; thus, their layout can be irregular or
contain specific abbreviations that are hard to disambiguate automatically. It
would be very useful if their content were copied into a clean Knowledge Base
(KB) where tables are disambiguated and connected using a single standard-
ized vocabulary. This KB could assist the users in finding those answers without
accessing the papers or could be used for many other purposes, like categorizing
papers, finding inconsistencies or plagiarized content.
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 349–365, 2020.
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To build such a KB, we present Tab2Know, an end-to-end system designed to
interpret the tables in scientific papers. The main challenge tackled by Tab2Know
lies in the interpretation of the table, which is a necessary step to build a KB. In
this context, the peculiarities of tables in scientific literature make our domain
quite different from previous work (e.g., [3,23,32]), which mainly focused on
Web tables. First, the interpretation of Web tables benefits from the existence
of large, curated KBs (e.g., DBPedia [5]), which allows the linking of many
entities. In our case, there is no such KB. Second, a large number of Web tables
can be categorized as entity-attribute tables, i.e., tables where each row describes
one entity, and the columns represent attributes [23,32,39]. In our context, we
observed that many tables are of different types, namely they express n-ary
relations, such as the results of experiments. For such tables, existing techniques
designed for entity-attribute tables cannot be reused.

With Tab2Know, we propose a pipeline for knowledge extraction that
includes both weakly supervised learning methods and logical reasoning.
Tab2Know is designed to 1) detect the type of the table; 2) disambiguate the
types of columns, and 3) link the entities between tables. The first operation is
applied to distinguish, for instance, tables that report experiments from tables
that report examples. The second operation recognizes the rows that contain the
headers of the table and disambiguates the columns, linking them to classes of
an ontology. The third operation links entities in different tables.

We implement the first two operations using statistical-based classifiers
trained with bag-of-words and context-based features. These classifiers have an
accuracy that largely depends on the quality and amount of training data. Unfor-
tunately, labeling training data is increasingly the largest bottleneck as it often
requires an expensive manual effort and/or expertise that might not be readily
available. To counter this problem, we propose a weakly supervised method that
relies on SPARQL queries and Snorkel [30]. The SPARQL queries are used to
automatically retrieve samples of a given class, type, etc., while Snorkel resolves
potential conflicts in the prediction with a sophisticated voting mechanism.

After the first two operations are completed, we transform the tables into
an RDF KB and apply reasoning with existentially quantified rules to identify
and link entities in different tables. Reasoning with existentially quantified rules
is a well-known technology for data integration and wrangling [22]. For our
problem, we designed a set of rules that considers the types of columns and
string similarities to establish links using the sameAs relation. Then, we used
VLog [8] to materialize the derivations and link the entities across the tables.

We evaluated our approach considering open access CS papers. In particular,
we evaluated the performance of our pipeline using gold standards and compared
it to another state-of-the-art method. We also applied our method to a larger
corpus with 73k scientific tables. In these tables, we found 312k entities, which
are linked to the table structure and metadata in our large-scale KB.

We release the datasets, gold standards, and resulting KB as an open
resource for the research community at https://doi.org/10.5281/zenodo.3983012.

https://doi.org/10.5281/zenodo.3983012
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The code, ruleset, and instructions to replicate our experiments are also publicly
available at https://github.com/karmaresearch/tab2know.

2 Related Work

Extracting knowledge from tables is a process that can be divided into three main
tasks: table extraction, structure detection, and table interpretation. Once a set of
tables is interpreted, another problem consists of recognizing whether multiple
tables mention the same entities. We call this task entity linking, but this is also
known as entity resolution [28], record linkage [10], or entity matching [6].

Table Extraction. This task consists of recognizing the parts of a PDF/image
which contain a table. Existing methods can be categorized either as heuristic
(e.g., [11,27]) or supervised (e.g., [29]). In this paper, we use the system PDFFig-
ures [11], which is a recent approach based on heuristics with very high precision
and recall (≥ 90%) that is used in Semantic Scholar [1].

Structure Detection. Given as input an image-like representation of a table,
some systems focus on recognizing the table’s structure so that it can be correctly
extracted. A popular system is Tabula (https://tabula.technology/), which rec-
ognizes the table’s structure using rules. More recently, some deep learning meth-
ods based on Convolutional Neural Networks (CNN) [34], Conditional Genera-
tive Adversarial Networks (CGAN) [37], and a combination of a CNN, saliency
and graphical models [20] have been evaluated. The performance of these meth-
ods is good (F1 ≥ 0.95), but not much different from Tabula, which returns a
F1 between 0.86 and 0.96 and has the advantage that is unsupervised.

Table Interpretation. The goal of table interpretation consists of linking the
content of the table to a KB so that new knowledge can be extracted from the
table [24]. In this context, most of the previous work has focused on tables that
represent entity-attribute relations [23]. These tables have rows that describe
entities and columns that describe attributes. Thus, their interpretation consists
of mapping each row to an entity in the KB, and linking each column to a relation
in the KB. Some work has focused only on the first task (e.g., [3]) while others
on the second (e.g., [9,14,25]). The work at [9], in particular, is similar to ours
as it also uses SPARQL queries to create training data. The difference is that
in [9], SPARQL is used to query a rich KB automatically, whereas in our case,
we let users specify queries since we lack such a KB. In terms of methodology,
current work in this field either relies on statistical models, like PGMs [3,24], or
introduces an iterative process that filters out candidates [32,33,39].

As far as we know, the only systems that offer a end-to-end table interpreta-
tion are T2K [32], TableMiner+ [39], and TAKCO [23], but these are designed
for Web tables and rely on a rich KB like DBPedia [5], which we do not have.

The only work that has focused on the interpretation of tables from scientific
literature is [38]. The authors describe an approach to automatically extract
experimental data from tables based on ensemble learning. Although we view this
work as the most relevant to our problem, there are several important differences

https://github.com/karmaresearch/tab2know
https://tabula.technology/
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between our work and theirs. First, our approach employs a different set of
technologies and performs entity linking, which is not considered in [38]. Then,
our approach is more general. In fact, [38] focuses only on the extraction of tuples
(method, dataset,metric, score, source) while ours extracts a larger variety of
knowledge. Finally, our approach yields a better accuracy (see Sect. 6).

Entity Linking. The problem of resolving entities in tables has received consid-
erable attention in database research (96+ papers in VLDB, KDD, etc. in 2009–
2014) [10,21,28]. One of the most popular systems is Magellan [21]. Magellan is
a tool to help users to perform entity matching, providing different implemen-
tations of matching and blocking algorithms. Recently, Mudgal et al. [26] have
studied the application of deep learning for entity matching, but concluded that
it does not outperform existing methods on structured data. Other works have
explored the usage of embeddings for this task: For instance, Cappuzzo et al. [7]
have shown how we can construct embeddings from tabular data. Another line
of work has been focusing on crowds, e.g., [12] and citations therein, while other
works have focused on entity resolution using knowledge bases (e.g., LINDA [6]).
Our work differs from the ones above because they either focus on highly struc-
tured table sets or require the existence of KBs (which we do not have). More-
over, another important difference is that we take a declarative approach with
rules. Rules are useful because they can be easily debugged/extended directly
by domain experts, and they can be integrated with ontological reasoning.

Other Related Works. We mention, as further related work, the systems
by [13] and TableNet [17] which focus on searching for tables related to a given
query. Other, less relevant works focus on extracting and searching for figures
on papers [35,36]. These works complement our approach and can further assist
the user to find relevant knowledge in papers.

3 Overview

Our goal is to construct a clean and large KB from the content of tables in sci-
entific papers stored as PDFs. To do so, we need to address two main challenges:
first, we must resolve the ambiguities that might arise during the noisy extrac-
tion process and reduce the error rate as much as possible. Second, we must
counter the problem that we lack both: 1) a pre-existing KB that can guide the
extraction process and 2) a large amount of training data. We must, in other
words, find a way to build a KB from scratch.

Our proposal is a pipeline with three main tasks, as shown in Fig. 1:

• Task 1: Table Extraction. The system receives as input an image-like
representation of a table, recognizes its structure, and returns its content as a
CSV file. For this task, we use external tools. We provide more details below;

• Task 2: Table Interpretation. The system processes the CSV to recognize
the headers and the type of the table. Then, it disambiguates the columns by
mapping them to ontological classes. We describe this task in Sect. 4;
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Table Extraction1

Ontology

Table Interpretation2

SPARQL Queries

SPARQL Query 1
SPARQL Query 2
SPARQL Query 3

Input: PDF Figure

APIs

Output: KB (with linked entities)

3 Entity Linking

VLog
Rule 1
Rule 2
Rule 3

Rules

Assets

Header detection

Fig. 1. Tab2Know: system overview

• Task 3: Entity Linking. Finally, the system performs logical-based reason-
ing to link the entities across tables. We describe this task in Sect. 5.

While in principle our method can be applied to scientific papers in any
domain, we restrict our analysis to papers in Computer Science, which is our
area of expertise. In particular, we consider Open Access papers and have been
published in top-tier venues in subfields like AI, semantic web, databases, etc.

Before we describe the components, we describe two additional assets that
we use for different purposes. The first one is an ontology constructed annotating
a sample of random tables. A first version of this ontology contained 44 classes
organized in a hierarchy with a maximum depth of 6. After further annotations,
we decided to simplify it to a set of 27 classes (depth 3) for which we had sub-
stantial evidence in our corpus. The final ontology has 4 root classes: Example,
Input, Observation, and Other. These classes define general table types.
Then, the subclasses describe column types, e.g., Dataset, Runtime, or Mean.
As an example, one of the longest chains is Recall � Metric � Observation
with � denoting the subclass relation. The ontology is serialized in OWL using
WebProtégé [19] and is publicly available as resource.

The second asset is an external KB that contains metadata of the papers,
namely Semantic Scholar [1]. We access it using the provided APIs to retrieve
the list of authors, the venue, and other contextual data.

Table Extraction. Our input consists of a collection of papers in PDF format.
The first operation consists of launching PDFFigures [11] to extract from the
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PDFs the coordinates of tables and related captions. We use the coordinates
to extract an image-like representation of the tables, see for instance the table
reported in Fig. 1. Then, we invoke Tabula, which is a tool also used in similar
prior works [38], to recognize the structure of the tables using their coordinates
and to translate them into CSV files.

After the images are converted, we perform a näıve conversion of the tables
into RDF triples. We assign a URI to every table, column, row, and cell and link
every cell, row, and column to the respective table with positional coordinates.

Example 1. Consider the table in Fig. 1. We report below some triples that are
generated while dumping its content into RDF.

PREFIX : http://xzy/tab2know
:Table1 :hasRow :Table1-r1 :Table1 :hasCol :Table1-c1

:Table1-r1 rdf:type :Row :Table1-c1 rdf:type :Column

:Table1-r1 :rowIndex 1^^〈xsd:int〉 :Table1-c1 :colIndex 1^^〈xsd:int〉
:Table1-r1c1 :cellOf :Table1 :Table1-r1c1 rdf:type :Cell

:Table1-r1c1 :rowIdx 1^^〈xsd:int〉 :Table1-r1c1 :colIdx 1^^〈xsd:int〉
:Table1-r1c1 rdf:value "Method name" :Table1-r2c1 rdf:value "USTB TexStar"

...

As we can see from the triples in Example 1, the KB generated at this stage
is a direct conversion of the tabular structure into triples. Despite its simplicity,
however, such a KB is already useful because it can be used to query the n-ary
relations expressed in the tables in combination with the papers’ metadata. For
instance, we can write a SPARQL query to retrieve all the tables created by one
author with a caption containing the word “results”, or to retrieve the tables
containing “F1” and which appear as proceedings of a certain venue.

The main problem at this stage is that we can only query using string sim-
ilarities, which severely reduces the recall. For instance, a query could miss a
column titled Prec. if it searches for Precision. The next operation, described
below, attempts to disambiguate the tables to create a KB that is more robust
against the syntactic diversity of the surface form of their content.

4 Table Interpretation

Tab2Know performs three main operations to interpret the tables. First, it iden-
tifies the rows with the table’s header (Sect. 4.2). Then, it detects the type of the
table (Sect. 4.3). Finally, it maps each column to an ontological class (Sect. 4.4).
First, we describe the procedure to obtain training data.

4.1 Training Data Generation

Statistical models are ideal for implementing a table interpretation that is robust
against noise. However, their accuracy depends on high-quality training data,
which we do not have (and it is expensive to obtain such data with human anno-
tators). We counter this problem following the paradigm of weak supervision.
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The idea is to employ many annotators, which are much cheaper than a human
expert but also much noisier. These annotators can deliver a large volume of
labeled data, but the labels might be incorrect or conflicting. To resolve these
problems, we can either rely on procedures like majority voting or train a ded-
icated model to computed the most likely correct label. In the second case, we
can use Snorkel, one of the most popular models for this purpose [30].

Snorkel’s goal is to facilitate the learning of a model θ that, given a data
point x ∈ X , predicts its label y ∈ Y. Instead of training θ by fitting it to a
set of pre-labeled data points, as it would happen in a traditional supervised
approach, Snorkel trains an additional generative model with unlabeled data
and uses pre-labeled data only for validation and testing. For these two tasks,
the amount of pre-labeled data can be much smaller, and thus cheaper to obtain.
Then, the generative model can be used to train θ.

Snorkel introduces the term labeling function to indicate a data annotator
with possibly low accuracy. A labeling function λ : X → Y ∪ {∅} can encode a
heuristic or be a simple predictor. It receives a data point x in input and either
returns a label in Y or abstains, i.e., returns ∅. Given m unlabeled data points
and n labeling functions, Snorkel applies the labeling functions to the data points
and computes a matrix M ∈ (Y ∪ {∅})m×n.

Then, Snorkel processes M to compute, for each xi where i ∈ {1, . . . , m},
a probabilistic training label ỹi. The processing consists of creating a generative
model using a matrix completion-style algorithm over the covariance matrix of
the labels [31]. Then, this model can be used to generate labeled data for training
θ. In this work, we considered models such as Näıve Bayes (NB), Support Vector
Machine (SVM), and Logistic Regression (LR) [4] to implement θ. We have also
experimented with deeper learning models, but we did not obtain improvements
because such models are more prone to overfitting if training data is scarce.

The effectiveness of Snorkel largely depends on the number and quality of
the labeling functions. In our context, we implemented them using SPARQL
queries, which are supposed to be entered by a (human) user. SPARQL queries
are ideal because they can assign labels to many data points at once. For each
query Q, we create a labeling function that receives in input a column/table x
and returns an assigned class label (e.g., a table type, or the class of a column)
if x is among the answers of Q. Otherwise, the function abstains.

Example 2. We show below an example of a SPARQL query that labels columns
with the class F1 if they have a header cell with value “f1” and contain any cell
with a numeric type.

select distinct ?column where {
?table :column ?column ; :cell ?cell .

?column :hasTitle "f1" . ?cell rdf:type xsd:decimal . }
Clearly, this query is not a good predictor if taken alone, but if we combine

its output with the ones of many other functions, then the resulting predictive
power is likely to be superior. This is the key observation used by Snorkel.
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Fig. 2. Examples of tables of each category

In our pipeline, we execute all the user-provided SPARQL queries and then
use their outputs to build the matrix M for a large number of data points. Next,
we train the final discriminative model θ. We compute two different θ: One to
generate training data for predicting the tables’ types (Sect. 4.3) while the other
is for predicting the columns’ types (Sect. 4.4).

4.2 Table Header Detection

First, we identify the rows that define the headers. To this end, we can either
always select the first row as header or employ more sophisticated methods to
recognize multi-row headers, like [16]. We observed that a simplified unsupervised
version of [16] yields a good accuracy on our dataset. We describe it below.

Our procedure exploits the observation that header rows differ significantly
from the rest of the table with respect to character-based statistics. Hence,
we categorize characters either as numeric, uppercase, lowercase, space, non-
alphanumeric, or other. Then, for each column, we count how many characters
of each class (e.g., numeric) appear in its cell. We compute the average count per
class across the column and use these values to determine the standard deviation
for each cell. The outlier score of a row r is determined as the average of the
standard deviations of all classes of its cells. If the outlier score or r is greater
than τ (default value is 1, set after cross-validation), then r is marked as header.

4.3 Table Type Detection

In scientific papers, tables are used for various reasons. We classified them in the
classes Observation, Input, Example, and Other (See Fig. 2 for examples).

Knowing the class of a table is useful for reducing the search space when
the user is interested in some specific content (e.g., The F1 measure is typically
not mentioned in tables of type Example). Moreover, we can also use this
information as a feature for the column disambiguation.
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We predict the table type with a statistical classifier. As features for the clas-
sifier, we selected bags-of-ngrams of lengths 1 to 3 that occurred more than once,
weighted by their TF-IDF score. Tables often contain abbreviations and domain-
specific symbols that address an audience of experts. These provide strong hints
for determining the type of the table; thus we consider the ngram in the content
of the cells and the table caption. We also included other numerical features. In
particular, we use the fraction of numeric cells in the table and the minimum,
maximum, median, mean and standard deviation of numerical columns. This
resulted in a total of 5804 features.

To train the models, we first ask the users to specify some SPARQL queries
which will be used by Snorkel to create a large volume of training data. Then,
we experimented with three well-known types of classifiers: NB, SVM, and LR.
Eventually, we selected LR because it returned the best performance on the
noisiest dataset.

4.4 Column Type Detection

Finally, the interpretation procedure attempts at linking the columns to one of
the available classes in our ontology. The ontology includes popular classes that
we identified while annotating a sample (e.g., Dataset, Runtime,. . . ), while
infrequent classes with very few columns are mapped to the class Other. In
general, we assume that a column is untyped if it is mapped to Other.

For this task, we also used bag-of-ngram features of lengths 1 to 3, extracted
from the table caption, the column header cells, the header cells of the other
columns, and the column body. We restricted the set of ngrams to only the top
1000 most frequent per extraction source. Additionally, we added features about
the numerical columns, identical to those in Sect. 4.3. This resulted in a total of
3076 features.

Similarly as before, we first rely on user-provided SPARQL queries to gen-
erate training data. Then, we considered NB, SVM, and LR as classifiers. Once
the models for the table and column types are trained, we use them to predict
the types of every table and column in our corpus. Finally, we use the predicted
class to annotate the table/column in the KB with a semantic type.

5 Entity Linking

Rationale. Predicting the types of tables and columns is useful to map the
table schema into a meaningful n-ary relation. The last operation in our pipeline
consists of associating cells to entities so that we can populate the n-ary relations
with new instances.

We start by assuming that every non-numerical cell contains an entity men-
tion, which implies the existence of one entity. This assumption is not unre-
alistic. Indeed, if we look at the table in Fig. 1, then we see that every non-
numerical cell that is not in the table’s header refers to an entity (e.g., the cell
“USTB TextStar” refers to an algorithm to detect text inside images).
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In practice, it is likely that some entities are mentioned multiple times. This
consideration motivates us to discover whether two entity mentions (possibly on
different tables) refer to the same entity. When we do so, then we gain more
knowledge about the entity and reduce the number of entities in the target KB.
We call this task entity linking because we are linking, with the sameAs relation,
equivalent entities across tables.

With this goal in mind, we start by assuming that every entity has the
content of the corresponding cell as label. For instance, the entity mentioned in
the cell with “USTB TextStar” has “USTB TextStar” as label. Using the labels
to determine equality can be surprisingly effective in practice, but it is not an
operation without risks. In fact, there are cases where different entities have the
same label, or the same entity has multiple labels. These cases call for a more
sophisticated procedure to discover equalities.

Reasoning. Reasoning with existentially quantified rules is an ideal tool to
establish non-trivial equalities between entities since it was already previously
used for data integration problems [15,18]. For our purposes, we are interested
in applying two types of rules: Tuple Generating Dependencies (TGDs) and
Equality Generating Dependencies (EGDs). We describe those below.

Consider a vocabulary consisting of infinite and mutually disjoint sets of
predicates P, constants C, null values N , and variables V. A term is either a
constant, a variable, or a null value. An atom is an expression of the form p(�x)
where p ∈ P, �x is a tuple of terms of length equal to the arity of p, which is
fixed. A fact is an atom without variables. A TGD is a rule of the form:

∀�x, �y.(B → ∃�z.H) (1)

where B is a conjunction of atoms over �x and �y while H is a conjunctions of
atoms over �y and �z. Let x, y ∈ �x. A EGD is a rule of the form:

∀�x.(B → x ≈ y) (2)

Intuitively, TGDs are used to infer new facts from an existing set of facts
(i.e., the database). Their execution consists of finding in the database suitable
replacements for the variables in �x and �y that render B a set of facts in the
database. Then, these replacements and mappings from �z to fresh values in N
are used to map H into a set of facts, which is the set of inferred facts.

EGDs are used to establish the equivalence between terms. Their execution
is similar to the one of TGDs, with the difference that whenever they infer that
a ≈ b, where a and b are terms and a < b according to a predefined ordering,
then every occurrence of b in the database is replaced with a.

The chase [15] is a class of forward-chaining procedures that exhaustively
apply TGDs and EGDs to infer new knowledge with the rules. A formal definition
of various chase procedures is available at [2]. In this work, we apply the restricted
chase, one of the most popular variants. It is known that sometimes the chase
may not terminate, but this is not our case since we use an acyclic ruleset [15].
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We first map the content of the KB extracted from the tables into a set of
facts. For example, the first two RDF triples in Example 1 map to the facts
hasRow(Table1,Table1-r1) and hasCol(Table1,Table1-c1) respectively.

Then, we use the two TGDs

type(X, Column) → ∃Y.colEntity(X,Y ) (r1)
type(X, Cell) → ∃Y.cellEntity(X,Y ) (r2)

to introduce fresh entities for every column and cell in the tables. The predicates
colEntity and cellEntity link entities (Y ) to the columns and cells respectively.
Note that we use null values to represent entities, thus we are simply stating
their existence with some placeholders. To reason and discover whether two
different entities are equivalent, we employ EGDs. In particular, we use five
EGDs, reported below:

ceNoTypLabel(X,L), ceNoTypLabel(Y,L) → X ≈ Y (r3)
eNoTypLabel(X,C,L), eNoTypLabel(Y,C,L) → X ≈ Y (r4)

eTableLabel(X,T, L), eTableLabel(Y, T, L) → X ≈ Y (r5)
eTypLabel(X,S,L), eTypLabel(Y, S,M), STR EQ(L,M) → X ≈ Y (r6)

eAuthLabel(X,A,L), eAuthLabel(Y,A,M), STR EQ(L,M) → X ≈ Y (r7)

where ceNoTypLabel, eNoTypLabel, eTableLabel, eTypLabel, and eAuthLabel
are auxiliary predicates that we introduce for improving the readability. We
describe their intended meaning as follows. The fact ceNoTypeLabel(X,L) is
true if colEntity(Y,X) is true and Y is an untyped column with header value
L; eNoTypeLabel(X,C,L) is true if X is an entity with a label L that appears
in a cell inside an untyped column associated to entity C; eTableLabel(X,T, L)
is true if entity X with label L appears in table T ; eTypeLabel(X,S,L) is true
if entity X with label L appears in a column with type S; eAuthLabel(X,A,L)
is true if entity X with label L appears in a table authored by author A.

The rationale behind each EGD is the following:

• Rule r3 : This rule is introduced to disambiguate untyped columns. Since we
were unable to discover the columns’ types and assigned them to the class
Other, we use the value of the header to determine whether they contain the
same type of entities. Thus, the rule will infer that their associated entities
are equal if they share the same header.

• Rule r4 : This rule infers that two entities are equal if they appear in the
same group of columns (created by r3), and they share the same label.

• Rule r5 : This rule encodes a simple heuristics, namely that if two entities
with the same label appear in the same table, then they should be equal,
irrespective of the type of columns where they appear.

• Rule r6 : This rule disambiguates entities in columns of the same type. Here,
we no longer consider the header of the column (as done by r3 and r4) but
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compare the entities’ labels. After experimenting with approximate string
similarity measures, like the Levenshtein distance, we decided to use a case
insensitive string equality (STR EQ) to reduce the number of false posi-
tives. Case-insensitive similarity is more expensive than an exact string match
because it requires dictionary lookups. We use it here and not in r3, r4, and
r5 because the comparisons are done only between entities of the same type.

• Rule r7 : This rule implements another heuristic which takes into account the
authors of the paper. It assumes that two entities are equal if they appear
in two tables authored by the same author (we used the IDs provided by
Semantic Scholar to disambiguate authors) and have the same label.

Once the reasoning has terminated, we introduce a new entity for each differ-
ent null value and add RDF triples that link them to the corresponding cells and
columns. Notice that the list of presented rules is not meant to be exhaustive.
The ones that we describe show how we can exploit the predictions computed in
the previous step (r6) and external knowledge (r7) relying on string similarity
when no extra knowledge is available. We believe that additional EGDs, possibly
designed to capture some specific cases, can further improve the performance.

6 Evaluation

Inputs. We considered two datasets: A corpus of tables that we manually con-
structed, and the dataset by [38], which is called Tablepedia.

Our corpus of tables contains 142,966 open-access PDFs distributed by
Semantic Scholar. These papers appear in the proceedings of top venues in CS
(the full list of venues is reported in our data repository). From these papers,
we extracted 73,236 tables with PDFFigures and Tabula. These tables have
6.23 rows on average (SD = 6.58), and they have 7.11 columns (SD = 6.27).
We converted the tables into RDF, resulting in a KB with 23M triples. We used
Blazegraph to execute the SPARQL queries. After adding the table types and
column types, we loaded the KB into VLog [8] to perform rule-based reasoning.

Tablepedia contains 451 tables, which have the columns annotated only
with three classes: Method, Dataset, and Metric. To use this dataset in our
pipeline, we created a graph representation of the tables without the annota-
tions. Then, we translate the 15 seed concepts that are used in [38] to create
the tables into labelling queries, so that we could apply Snorkel using both
datasets. In contrast to Tablepedia, our annotated dataset maps to a much
larger number of classes. Notice that the most frequent column types in our
dataset (Observation, Accuracy, and Count), do not occur in Tablepedia.

Training Data. To create the training data for weak supervision, two human
annotators (one PhD and one bachelor CS student) wrote SPARQL queries for
labeling with the aid of a web interface designed for this purpose. The annotators
examined the results of these queries on a sample of 400 tables, ensuring that
the queries represented heuristics that covered a reasonable amount of the data.
The quality of the SPARQL queries is fundamental to produce a good training
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Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

dataset, and hence return good predictions. It is crucial that the queries have
large coverage to avoid introducing a bias and to increase the training data size.
For instance, if the queries label only a few tables, then the model will not receive
enough evidence. To this end, we encouraged them to write queries which also
matched a large number of items on the entire set of tables, and that did not
excessively overlap. This resulted in 39 queries for labeling 98,570 tables with
the corresponding type and 55 queries for labeling 165,302 columns.

Gold Standards. To test the performance, the same human annotators as
before manually annotated 400 random tables. The tables in this sample have,
on average, 9.92 rows (SD 7.28) and 5.07 columns (SD 3.20). These tables were
annotated with the number of header rows, and table and column types. This
process resulted in 321 table type and 873 column type annotations (excluding
Other). Most tables were annotated with the Observation class (258), followed
by Input (50); the smallest class was Example (13). The human annotators
have annotated the table and column types looking at the images of the tables,
the table captions, and possibly the full paper in case it was still not clear. The
annotators have annotated the tables independently and resolved the conflicts
together whenever they disagreed. After the first round of annotation using the
first version of the ontology (44 classes), we marked as infrequent all classes with
fewer than 10 annotations. These classes were removed from the ontology and
the annotations were redirected to Other. For the Tablepedia dataset, we used
the annotations provided by the original authors.

We highlight two aspects of our gold standard that have a direct impact on
the evaluation. First, in contrast to [38], we decided not to filter out tables that
were incorrectly extracted by Tabula. This makes our corpus more challenging
because it might contain errors due to incorrect parsing. Second, our choice of
merging infrequent column types into the type Other ensures that for each
type there is always some evidence, but it has the downside that some classes in
the long tail are ignored. Interpreting such types is an additional challenge that
deserves a thorough study in future work.
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6.1 Table Interpretation

Figure 3a reports the accuracy of our header detection heuristic compared to
the baseline that consists of always selecting the 1st row. We observe that our
technique has superior performance, although it still makes some mistakes.

In Fig. 3b, we report the performance of our table type detection models on
our gold standard. In general, we observe that all three models return reasonably
high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Fig. 3d, we report the classifiers’ performance for the column types on
our gold standard, while Fig. 3e reports the same for Tablepedia. In both cases,
we see that LR performs best, likely due to the combined importance of textual
and numeric features for this task. Additionally, we observe that our model
significantly outperforms the model of [38] on their dataset. If we compare the
scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most
frequently predicted class. In Fig. 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our corpus.
This was expected because, in this last case, our labeling functions (i.e., SPARQL
queries) have frequently abstained. Consequently, M has a low label density, and
whenever this occurs, Snorkel is unable to compute optimal weights that diverge
from MV [30].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the
decrease of entities that refer to cells after the execution of rules r4, . . . , r7. Here,
the bar titled ri reports the number of entities if only ri is executed while the
right-most column indicates the number of entities when all rules are included.
We observe that every EGD contributes to merge some entities, but the best
results are obtained when all EGDs are activated: here, the EGDs merged about
55% of the entities.

To evaluate the quality of entity links, we manually evaluated a sample of
100 merged entities. For each sampled entity, we first determined whether the
entity was a meaningful one. From this analysis, we discovered that 65% of the
entities are correct while the remaining have either nonsensical labels or some
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Fig. 4. Analysis of the performance of entity linking

text resulted from errors of Tabula. In Fig. 4b, we report examples of good and
bad entities with their number of links.

Then, we looked at the cells which referred to the entity, which were 541
in total. Since the rules could make a mistake and link two cells to the same
entity although they meant different ones, we evaluated, for each entity, the
precision of its links. Given the set of n cells that link to the same entity, the
precision is computed by taking the cardinality of the largest subset of cells that
refer to the same concept and divide it by n. For instance, consider an entity X
with label Y which is linked to n = 4 cells. Three of these cells contain the text
Y but refer to a dataset while one cell contains Y but refers to something else.
In this case, the precision for X is 3

4 . In our sample, the average precision over
the meaningful entities was about 97%, which is a relatively high value. This
indicates that reasoning produced an accurate entity linking.

7 Conclusion

Summary. We presented Tab2Know, an end-to-end system for building a KB
from the knowledge in scientific tables. One distinctive feature of Tab2Know is
the usage of SPARQL queries for weak supervision to counter the lack of training
data. Another distinctive feature is the usage of existentially quantified rules to
link the entities without the help of a pre-existing KB.

Our pipeline effectively combines statistical-based classification and logical
reasoning, exploiting SPARQL and remote KBs like Semantic Scholar. Therefore,
we believe that ours is an excellent example of how semantic web technologies,
statistical- and logic-based AI can be used side-by-side.

Future Work. Although our results are encouraging, and the current KB is
already able to answer some non-trivial queries, future work is required to
improve the performance. First, a more accurate table extraction procedure is
needed to improve the accuracy of table interpretation and entity linking. More-
over, our current ontology links classes only via �. It is interesting to study



364 B. Kruit et al.

whether new relations can lead to better extractions. For instance, specifying
the range of some classes could be used to exclude mappings to columns with
incompatible values. Finally, a natural continuation of our work is to further
research whether additional rules can return a better entity linking. In partic-
ular, we believe that rules that take into account the context of the table or
co-authorship networks will be particularly useful.

To conclude, we believe that Tab2Know represents one more step that brings
us closer to solve the problem of constructing an extensive and accurate KB of
scientific knowledge. Such a KB is a useful asset for assisting the researchers,
and it can play a crucial role in turning the vision of open science into a reality.
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9. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.A.: ColNet: embedding the
semantics of web tables for column type prediction. In: AAAI, pp. 29–36 (2019)

10. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. TKDE 24(9), 1537–1555 (2012)

11. Clark, C., Divvala, S.: PDFFigures 2.0: mining figures from research papers. In:
JCDL, pp. 143–152 (2016)

12. Das, S., et al.: Falcon: scaling up hands-off crowdsourced entity matching to build
cloud services. In: SIGMOD, pp. 1431–1446 (2017)

13. Das Sarma, A., et al.: Finding related tables. In: SIGMOD, pp. 817–828 (2012)
14. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Match-

ing web tables with knowledge base entities: from entity lookups to entity embed-
dings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 260–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 16

15. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

16. Fang, J., Mitra, P., Tang, Z., Giles, C.L.: Table header detection and classification.
In: AAAI, pp. 599–605 (2012)

17. Fetahu, B., Anand, A., Koutraki, M.: TableNet: an approach for determining fine-
grained relations for wikipedia tables. In: WWW, pp. 2736–2742 (2019)

https://doi.org/10.1007/978-3-319-25007-6_25
https://doi.org/10.1007/978-3-319-68288-4_16


Tab2Know: Building a Knowledge Base from Tables in Scientific Papers 365

18. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes
open source. PVLDB 7(13), 1565–1568 (2014)
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training data creation with weak supervision. VLDB J. 29(2), 709–730 (2020)

31. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., Ré, C.: Training
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Abstract. The Shapes Constraint Language (SHACL) allows for for-
malizing constraints over RDF data graphs. A shape groups a set of
constraints that may be fulfilled by nodes in the RDF graph. We investi-
gate the problem of containment between SHACL shapes. One shape is
contained in a second shape if every graph node meeting the constraints
of the first shape also meets the constraints of the second. To decide
shape containment, we map SHACL shape graphs into description logic
axioms such that shape containment can be answered by description logic
reasoning. We identify several, increasingly tight syntactic restrictions of
SHACL for which this approach becomes sound and complete.

1 Introduction

RDF has been designed as a flexible, semi-structured data format. To ensure
data quality and to allow for restricting its large flexibility in specific domains,
the W3C has standardized the Shapes Constraint Language (SHACL)1. A set
of SHACL shapes are represented in a shape graph. A shape graph represents
constraints that only a subset of all possible RDF data graphs conform to. A
SHACL processor may validate whether a given RDF data graph conforms to a
given SHACL shape graph.

A shape graph and a data graph that act as a running example are pre-
sented in Fig. 1. The shape graph introduces a PaintingShape (line 1–4) which
constrains all instances of the class Painting . It requires the presence of at least
one property (line 3) as well as that each node reachable via the

property from a Painting conforms to the PainterShape (line 4). The

1 https://www.w3.org/TR/shacl/.
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Fig. 1. Example of a shape graph (a) and a data graph (b).

PainterShape (lines 5–8) requires all incoming properties to conform
to PaintingShape (line 6) as well as the presence of exactly one
property. Lastly, the shapes define a CubistShape (lines 9–11) which must have
an incoming property from a node that has an outgoing prop-
erty to the node cubism . The graph shown in Fig. 1 conforms to this set of shapes
as it satisfies the constraints imposed by the shape graph.

In this paper, we investigate the problem of containment between shapes:
Given a shape graph S including the two shapes s and s′, intuitively s is con-
tained in s′ if and only if every data graph node that conforms to s is also a
node that conforms to s′. An example of a containment problem is the ques-
tion whether CubistShape is contained in PainterShape for all possible RDF
graphs. While containment is not directly used in the validation of RDF graphs
with SHACL, it offers means to tackle a broad range of other problems such
as SHACL constraint debugging, query optimization [1,5] or program verifica-
tion [16]. As an example of query optimization, assume that CubistShape is
contained in PainterShape and that the graph being queried conforms to the
shapes. A query querying for ?X and ?Y such that ?X , ?X

and ?X can be optimized. Since nodes that are
results for ?Y must conform to CubistShape and CubistShape is contained in
PainterShape, nodes that are results for ?X must conform to PaintingShape.
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Subsequently, the pattern ?X can be removed without conse-
quence.

Given a set of shapes S, checking whether a shape s is contained in another
shape s′ involves checking whether there is no counterexample. That means,
searching for a graph that conforms to S, but in which a node exists that con-
forms to s′ but not to s. A similar problem is concept subsumption in description
logics (DL). For DL, efficient tableau-based approaches [4] are known that either
disprove concept subsumption by constructing a counterexample or prove that
no counterexample can exist. Despite the fundamental differences between the
Datalog-inspired semantics of SHACL [10] and the Tarski-style semantics used
by description logics, we leverage concept subsumption by translating SHACL
shapes into description logic knowledge bases such that the shape containment
problem can be answered by performing a subsumption check.

Contributions. We propose a translation of the containment problem for SHACL
shapes into a DL concept subsumption problem such that the formal semantics
of SHACL shapes as defined in [10] is preserved. Our contributions are as follows:

1. We define a syntactic translation of a set of SHACL shapes into a description
logic knowledge base and show that models of this knowledge base and the
idea of faithful assignments for RDF graphs in SHACL can also be mapped
into each other.

2. We show that by using the translation, the containment of SHACL shapes
can be decided using DL concept subsumption.

3. Based on the translation and the resulting description logic, we identify syn-
tactic restrictions of SHACL for which the approach is sound and complete.

Organization. The paper first recalls the basic syntax and semantics of SHACL
and description logics in Sect. 2. We describe how sets of SHACL shapes are
translated into a DL knowledge base in Sect. 3. Section 4 investigates how to
use standard DL entailment for deciding shape containment. Finally, we discuss
related work in Sect. 5 and summarize our results. An extended version of this
paper including full proofs and additional explanations is available on Arxiv2.

2 Preliminaries

2.1 Shape Constraint Language

The Shapes Constraint Language (SHACL) is a W3C standard for validating
RDF graphs. For this, SHACL distinguishes between the shape graph that con-
tains the schematic definitions (e. g., Fig. 1a) and the data graph that is being
2 https://arxiv.org/abs/2008.13603.

https://arxiv.org/abs/2008.13603
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validated (e. g., Fig. 1b). A shape graph consists of shapes that group constraints
and provide so called target nodes. Target nodes specify which nodes of the data
graph have to be valid with respect to the constraints in order for the graph to
be valid. In the following, we rely on the definitions presented by [10].

Data Graphs. We assume familiarity with RDF. We abstract away from concrete
RDF syntax, representing an RDF Graph G as a labeled oriented graph G =
(VG, EG) where VG is the set of nodes of G and EG is a set of triples of the
form (v1, p, v2) meaning that there is an edge in G from v1 to v2 labeled with
the property p. We use V to denote the set of all possible graph nodes and E
to denote the set of all possible triples. A subset VC ⊆ V represents the set of
possible RDF classes. We use G to denote the set of all possible RDF graphs.

Constraints. While shape graphs and constraints are typically given as RDF
graphs, we use a logical abstraction in the following. We use NS to refer to the
set of all possible shape names. A constraint φ from the set of all constraints Φ
is then constructed as follows:

φ ::= � | s | v | φ1 ∧ φ2 | ¬φ |�n ρ.φ (1)

ρ ::= p | ˆρ | ρ1/ρ2 (2)

where � represents a constraint that is always true, s ∈ NS references a shape
name, v ∈ V is a graph node, ¬φ represents a negated constraint and �n ρ.φ
indicates that there must be at least n successors via the path expression ρ that
satisfy the constraint φ. For simplicity, we restrict ourselves to path expressions ρ
comprising of either standard properties p, inverse of path ˆρ, and concatenations
of two paths ρ1/ρ2. We therefore leave out operators for transitive closure and
alternative paths. We use P to indicate the set of all possible path expressions.
A number of additional syntactic constructs can be derived from these basic
constructors, including φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2), �n ρ.φ for ¬(�n+1 ρ.φ),=n ρ.φ
for (�n ρ.φ) ∧ (�n ρ.φ), and ∀ ρ.φ for ≤0 ρ.¬φ. As an example, the constraint of
CubistShape (see Fig. 1) can be expressed as �1 (ˆcreator/style).cubism.

Evaluation of constraints is rather straightforward with the exception of ref-
erence cycles. To highlight this issue, consider a shape name Local with its con-
straint ∀ knows.Local. In order to fulfill the constraint, any graph node reachable
through must conform to Local. Consider a graph with a single vertex
b1 whose property points to itself Intuitively, there are two possible

solutions. If b1 is assumed to conform to Local, then the constraint is satisfied
and it is correct to say that b1 conforms to Local. If b1 is assumed to not
conform to Local, then the constraint is violated and it is correct to say that
b1 does not conform to Local. We follow the proposal of [10] and ground eval-

uation of constraints using assignments. An assignment σ maps graph nodes v
to shape names s. Evaluation of constraints takes an assignment as a parameter
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and evaluates the constraints with respect to the given assignment. The case
above is therefore represented through two different assignments—one in which
Local ∈ σ( b1 ) and a different one where Local 	∈ σ( b1 ). We require assign-
ments to be total, meaning that they map all graph nodes to the set of all shapes
that the node supposedly conforms to. This disallows certain combinations of
reference cycles and negation in constraints, in essence requiring them to be
stratified. In contrast, [10] also defines partial assignments, lifting this restric-
tion. Due to the lack of space, we refer to [10] for an in depth discussion on the
differences of total and partial assignments.

Definition 1 (Assignment). Let G = (VG, EG) be an RDF graph and S a
set of shapes with its set of shape names Names(S). An assignment σ is a total
function σ : VG → 2Names(S) mapping graph nodes v ∈ VG to subsets of shape
names. If a shape name s ∈ σ(v), then v is assigned to the shape name s. For
all s 	∈ σ(v), the node v is not assigned to the shape s.

Evaluating whether a node v in G satisfies a constraint φ, written �φ�v,G,σ, is
defined as shown in Fig. 2.

Fig. 2. Evaluation rules for constraints and path expressions.

Shapes and Validation. A shape is modelled by a triple (s, φ, q). It consists of
a shape name s, a constraint φ and a query for target nodes q. Target nodes
denote those nodes which are expected to fulfill the constraint associated with
the shape. Queries for target nodes are built according to the following grammar:

q ::= ⊥ | {v1, . . . , vn} | class v | subjectsOf p | objectsOf p (3)

where ⊥ represents a query that targets no nodes, {v1 . . . vn} targets all explic-
itly listed nodes with v1, . . . , vn ∈ V, class v targets all instances of the class
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represented by v where v ∈ VC , subjectsOf p targets all subjects of the prop-
erty p and objectsOf p targets all objects of p. We use Q to refer to the set
of all possible queries and �q�G to denote the set of nodes in the RDF graph G
targeted by the query q (c.f. Fig. 3).

Fig. 3. Evaluation of target node queries.

A shape graph is then represented by a set of shapes S whereas S represents
the set of all possible sets of shapes. We assume for each (s, φ, q) ∈ S that, if a
shape name s′ appears in φ, then there also exists a (s′, φ′, q′) ∈ S. Similar to
[10], we refer to the language represented by the definitions above as L. As an
example, Fig. 4 shows the shape graph defined in Fig. 1a as a set of shapes.

Fig. 4. Representation of the shape graph shown in Fig. 1a as a set of shapes.

Validating an RDF graph means finding a faithful assignment. That is, finding
an assignment for which two conditions hold: First, if a node is a target node of
a shape, then the assignment must assign that shape to the node. Second, if an
assignment assigns a shape to a graph node, the constraint of the shape must
evaluate to true. Third, when a constraint evaluates to true (false) on a node,
that node must (not) be assigned to the corresponding shape.

Definition 2 (Faithful assignment). An assignment σ for a graph G =
(VG, EG) and a set of shapes S is faithful, iff for each (s, φ, q) ∈ S and for
each graph node v ∈ VG, it holds that:

– s ∈ σ(v) ⇔ �φ�v,G,σ.
– v ∈ �q�G ⇒ s ∈ σ(v).

A graph that is valid with respect to a set of shapes is said to conform to the
set of shapes.

Definition 3 (Conformance). An RDF graph G conforms to a set of shapes S
iff there is at least one faithful assignment σ for G and S. We write Faith(G,S)
to denote the set of all faithful assignments for G and S.

For the data graph shown in Fig. 1b, there is a faithful assignment σ1 that
maps PaintingShape to guernica and both PainterShape and CubistShape to
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PaintingMuseum

guernica

type

picassocreator “25.10.1881”birthdatemncars exibitedAt

type

cubism

style

σ1( ) = ∅ σ1( ) = {PaintingShape} σ1( ) = {PainterShape, CubistShape}

Fig. 5. Faithful assignment σ1 for S1 and the data graph shown in Fig. 1b.

picasso (see Fig. 5). The assignment is faithful because all instances of Painting

are assigned to PaintingShape and all nodes that are assigned to a shape satisfy
the constraints of the shape.

2.2 Description Logics

We focus on the highly-expressive DL ALCOIQ(◦) as well as decidable subsets of
this logic. We follow routine syntax and interpretation-based semantics (c. f. [3,4,
13]). Sig(K) = (NA, NP , NO) is the signature of a knowledge base K comprising
of a set of atomic concept names NA that is a subset of the set of all possible
atomic concept names NA, a set of atomic property names NP (a subset of NP )
and a set of object names NO (a subset of NO). From these, more complex role
expressions, denoted by r, and concept expressions, denoted by C and D, are
built (see Fig. 6) whereby C denotes the set of all possible concept expressions
and R the set of all possible role expressions.

Fig. 6. Syntax and semantics of roles r (above the line) and concept expressions C, D
(below the line).

Axioms are either concept inclusions, concept assertions or role assertions (see
Fig. 7). We use C ≡ D as a shorthand for the two axioms C � D and D � C. In a
given interpretation I = (Δ, ·I) comprised of a universe Δ and an interpretation
function ·I , an axiom ψ is either true or false. An interpretation in which all
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Fig. 7. Syntax and semantics of axioms.

axioms of K are true is a model of K. We use Mod(K) to denote the set of all
models of K. An axiom ψ is entailed by K written K |= ψ if it is true in all
models of K. Lastly, we use K for the set of all possible knowledge bases.

3 From SHACL Shape Containment to Description Logic
Concept Subsumption

Given two shapes s and s′ that are elements of the same set of shapes S, we say
that s is contained in s′ if any node that conforms to s will also conform to s′

for any given RDF data graph G as well as any given faithful assignment for S
and G.

Definition 4 (Shape Containment). Let S be a set of shapes with s, s′ ∈
Names(S). The shape s is contained in shape s′ if:

∀ G ∈ G : ∀ σ ∈ Faith(G, S) : ∀v ∈ VG : s ∈ σ(v) ⇒ s′ ∈ σ(v)with s, s′ ∈ Names(S)

We use s <:S s′ to indicate that shape s is contained in s′ with respect to S.

Both SHACL and description logics use syntactic formulas inspired by first-
order logic. However, their semantics are fundamentally different. For SHACL,
we follow the Datalog-inspired semantics introduced by [10]. Description logics
on the other hand adopt Tarskian-style semantics. To decide shape containment,
we map sets of shapes syntactically into description logic knowledge bases such
that the difference in semantics can be overcome.

The function τshapes maps a set of shapes S to a description logic knowl-
edge base K<S> using four auxiliary functions (see Fig. 8): First, τname maps
shape names, RDF classes as well as properties and graph nodes onto atomic
concept names, atomic property names and object names. Second, τrole maps
SHACL path expressions to DL role expressions. Third, τconstr maps constraints
to concept expressions. Fourth, τtarget maps queries for target nodes to concept
expressions. The function τshapes maps a set of shapes S to a set of axioms such
that s <:S s′ is true if K<S> |= τname(s) � τname(s′).

To prove this property, we show that every finite model of K<S> can be used
to construct an RDF graph G and an assignment that is faithful with respect
to G and S. Likewise, a model of K<S> can be constructed from an assignment
that is faithful with respect to S and any given RDF graph G.
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Fig. 8. Syntactic translation of SHACL to description logics.

3.1 Syntactic Mapping

We map the set of shapes S into a knowledge base K<S> by constraints and
target node queries of each shape using the functions τrole, τconstr , τtarget, and
τshapes. All those functions rely on τname which maps atomic elements used in
SHACL to atomic elements of a DL knowledge base:

Definition 5 (Mapping atomic elements). The function τname : NS ∪ VC ∪
V ∪E → NA ∪NP ∪NO is an injective function mapping shape names and RDF
classes onto atomic concept names, graph nodes onto object names as well as
properties onto atomic property names.

Definition 6 (Mapping path expressions to DL roles). The path mapping
function τrole : P → R, is defined as follows:
τrole(p) = τname(p)
τrole(ˆρ) = τrole(ρ)−

τrole(ρ1/ρ2) = τrole(ρ1) ◦ τrole(ρ2)

Definition 7 (Mapping constraints to DL concept expressions). The
constraint mapping τconstr : Φ → C is defined as follows:
τconstr (�) = �
τconstr (s) = τname(s)
τconstr (v) = {τname(v)}
τconstr (φ1 ∧ φ2) = τconstr (φ1) � τconstr (φ2)
τconstr (¬φ) = ¬τconstr (φ)
τconstr (�n ρ.φ) = ≥n τrole(ρ).τconstr (φ)
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Definition 8 (Mapping target node queries to DL concept expres-
sions). The target node mapping τtarget : Q → C is defined as follows:
τtarget(⊥) = ⊥
τtarget({v1, . . . , vn}) = {τname(v1), . . . , τname(vn)}
τtarget(class v) = τname(v)
τtarget(subjectsOf p) = ∃ τname(p).�
τtarget(objectsOf p) = ∃ τname(p)−.�
The mapping τtarget(q) of a target query q is defined such that querying for the
instances of q returns exactly the same nodes from the data graph. Likewise,
the mapping τconstr (φ) is defined such that it contains those nodes for which
φ evaluates to true and τrole that the interpretation of the role expression con-
tains those nodes that are also in the evaluation of the path expression. τshapes
generalizes the construction to sets of shapes:

Definition 9 (Mapping sets of shapes to DL axioms). The shape mapping
function τshapes : S → K is defined as follows:

τshapes(S) =
⋃

(s,φ,q)∈S

{τtarget(q) � τname(s), τconstr (φ) ≡ τname(s)}

To illustrate the function τshapes, the translation of the set of shapes τshapes(S1) =
K<S1> is shown in Fig. 9.

Fig. 9. Translation τshapes(S1) = K<S1> of the set of shapes S1.

3.2 Construction of Faithful Assignments and Models

Given our translation, we now show that the notion of faithful assignments of
SHACL and finite models in description logics coincide.

Definition 10 (Finite model). Let K be a knowledge base and I ∈ Mod(K)
a model of K. The model I is finite, if its universe ΔI is finite [7]. We use
Modfin(K) to refer to the set of all finite models of K.

Given an RDF data graph G, a set of shapes S and an assignment σ that is
faithful with respect to S and G, we construct an interpretation IG,σ that is a
finite model for the knowledge base K<S>.
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Definition 11 (Construction of the finite model IG,σ). Let S be a set of
shapes, G = (VG, EG) an RDF data graph and σ an assignment that is faithful
with respect to S and G. Furthermore, let τnode be the inverse of the function
τname. The finite model IG,σ for the knowledge base τshapes(S) = K<S> is con-
structed as follows:

1. All objects are interpreted as themselves: ∀ o ∈ NO : oI = o.
2. A pair of objects is contained in the interpretation of a relation if the two

objects are connected in the RDF data graph:
∀ p ∈ NP : ∀ o1, o2 ∈ NO : (oIG,σ

1 , oIG,σ

2 ) ∈ pIG,σ

if (τnode(o1), p,
τnode(o2)) ∈ (EG \ {(v1, type, v2) ∈ EG}).

3. Objects are in the interpretation of a concept if this concept is a class used in
the RDF data graph and the object is an instance of this class according to
the graph:
∀Av ∈ NA : ∀o ∈ NO : oIG,σ ∈ AIG,σ

v if (τnode(o), type, τnode(Av)) ∈ EG.
4. Objects are in the interpretation of a concept if the concept is a shape name

and the assignment σ assigns the shape to the object:
∀As ∈ NA : ∀o ∈ NO : oIG,σ ∈ AIG,σ

s if τnode(As) ∈ σ(τnode(o)).

The interpretation IG,σ is a model of the knowledge base K<S>. Before we
show this, it is important to notice that the interpretation of role expressions
constructed through τrole contains the same nodes in the interpretation IG,σ as
the evaluation of the path expression.

Lemma 1. Let S be a set of shapes, G an RDF data graph and σ an assignment
that is faithful with respect to S and G. Furthermore, let IG,σ be an interpretation
for K<S>. It holds that ∀(o1, o2) ∈ τrole(ρ)I

G,σ ⇒ (τnode(o1), τnode(o2)) ∈ �ρ�G

for any path expression ρ.

Proof. The interpretation IG,σ contains all properties of the RDF graph. The
result is then immediate from the evaluation rules of path expressions (c. f. Fig. 2)
and semantics of role expressions (c. f. Fig. 6). ��
Theorem 1. Let S be a set of shapes, G an RDF data graph and σ an assign-
ment that is faithful with respect to S and G. Furthermore, let K<S> be a
knowledge base that is constructed through τshapes(S). The interpretation IG,σ

is a finite model of K<S> (IG,σ |= K<S>).

Proof (Sketch). IG,σ is finite because the RDF graph G has only a finite number
of graph nodes. Furthermore, IG,σ satisfying the axioms created by τshapes can
be shown via induction over the mapping rules for τconstr and τtarget. ��
Furthermore, we show that any finite model I of a knowledge base K<S> built
from a set of shapes S can be transformed into an RDF graph GI and an
assignment σI such that σI is faithful with respect to S and GI . We construct
GI and σI in the following manner:
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Definition 12 (Construction of GI and σI). Let S be a set of shapes
and K<S> a knowledge base constructed via τshapes(S). Furthermore, let I ∈
Modfin(K<S>) be a finite model of K<S>. The RDF graph GI = (V I

G, EI
G) and

the assignment σI can then be constructed as follows:

1. The interpretations of all relations are interpreted as relations between graph
nodes in the RDF graph:
∀p ∈ NP : (oI , o′I) ∈ pI ⇒ (τnode(o), p, τnode(o′)) ∈ EI

G.
2. The interpretations of all concepts that are not shape names are triples indi-

cating an instance in the RDF graph:
∀A ∈ NA : (oI ∈ AI ∧ A 	∈ Names(S)) ⇒ (τnode(o), type, τnode(A)) ∈ EI

G.
3. The interpretations of all concept names that are shape names are used to

construct the assignment
σI : ∀A ∈ NA : (oI ∈ AI ∧ A ∈ Names(S)) ⇒ τnode(A) ∈ σI(τnode(o)).

An assignment σI constructed in this manner is faithful with respect to the
constructed RDF graph GI and the set of shapes S.

Theorem 2. Let S be a set of shapes and K<S> be a knowledge base constructed
through τshapes(S). Furthermore, let I ∈ Modfin(K<S>) be a finite model for
K<S>. The assignment σI is faithful with respect to S and GI .

Proof (Sketch). The two axioms that are generated by τshapes coincide with the
two conditions for faithful assignments (c. f. Definitions 2 and 9). This can be
shown by induction over the translation rules. ��

3.3 Deciding Shape Containment Using Concept Subsumption

Given the translation rules and semantic equivalence between finite models of a
description logic knowledge base and assignments for SHACL shapes, we can
leverage description logics for deciding shape containment. Assume a set of
shapes S containing definitions for two shapes s and s′. Those shapes are rep-
resented by atomic concepts in the knowledge base K<S>. As the following
theorem proves, deciding whether the shape s is contained in the shape s′ is
equivalent to deciding concept subsumption between s and s′ in K<S> using
finite models.

Theorem 3 (Shape containment and concept subsumption). Let S be a
set of shapes and K<S> the knowledge base constructed via τshapes(S). Let |=fin

indicate that an axiom is true in all finite models. It holds that:

s <:S s′ ⇔ K<S> |=fin τname(s) � τname(s′)

Proof (Sketch). Using Theorems 1 and 2, any counterexample for one side can
always be translated to a counterexample for the other side. ��
As an example, reconsider the translation of the set of shapes τshapes(S1) =
K<S1> (see Fig. 9). From K<S1> follows that K<S1> 	|= CubistShape �
PainterShape
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cubismI1

ΔI1

CubistShapeI1 PainterShapeI1

creatorI1styleI1 birthdateI1

(a) Model of K<S   >1 showing that CubistShape �� PainterShape.

b1b2 creatorcubism style “...” b4birthdate

σ1( ) = ∅ σ1( ) = {CubistShape} σ1( ) = {PainterShape}

(b) Graph and assignment showing that CubistShape is not contained in PainterShape.

Fig. 10. Counterexamples for CubistShape <:S1 PainterShape.

as there is a finite model I1 ∈ Modfin(K<S1>) in which the concept expression
CubistShape � ¬PainterShape is satisfiable (see Fig. 10).

An important observation is that it is possible to express arbitrary concept
subsumptions C � D despite the syntactic restrictions of τshapes.

Lemma 2. For any axiom C � D, one can define some (s, φ, q) ∈ S and
(s′, φ′, q′) ∈ S such that τconstr (φ) = C and τconstr (φ′) = D and τshapes(S) |=
C � D.

Proof (Sketch). Given constraints φ and φ′, it is possible to introduce unique
shape names sC and sD as well as an RDF class vC . Constraint φ is then extended
with vC , allowing shape sD to target vC . ��

For shapes belonging to the language L, the corresponding description logic
is ALCOIQ(◦). To the best of our knowledge, finite satisfiability has not yet
been investigated for ALCOIQ(◦). Path concatenation can be restricted such
that the fragment of SHACL corresponds to the description logic SROIQ. The
fragment for which constraints map to syntactical elements of SROIQ, called
Lrestr, uses the following constraint grammar:

φrestr ::= � | s | v | φ1
restr ∧ φ2

restr | ¬φrestr | ∃ ρ.φrestr |�n p.φrestr

Finite satisfiability is known to be decidable for SROIQ [14] and all its sublogics
such as ALCOIQ which completely removes role concatenation.

4 Deciding Shape Containment Using Standard
Entailment

While shape containment can be decided using finite model reasoning (c.f. Theo-
rem 3), practical usability of our approach depends on whether existing reasoner
implementations can be leveraged. Implementations that are readily-available
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rely on standard entailment which includes infinitely large models. We there-
fore now focus on the soundness and completeness of our approach using the
standard entailment relation.

Using standard entailment, the description logic ALCOIQ(◦) which corre-
sponds to the language L, satisfiability of concepts, and thus concept subsump-
tion, is undecidable [13]. First-order logic is semi-decidable. As ALCOIQ(◦)
can be translated to first-order logic through a straightforward extension of the
translation rules for SROIQ [21], ALCOIQ(◦) is also semi-decidable. There-
fore, a decision procedure can verify whether a formula is entailed in finite time,
but may not terminate for non-entailed formula. More restricted description log-
ics such as SROIQ, which corresponds to Lrestr, are decidable, meaning that
an answer by the decision procedure is guaranteed in finite time. However, the
question arises whether the satisfiability of a concept implies the existence of a
finite model.

Definition 13. (Finite Model Property). A description logic has the finite
model property if every concept that is satisfiable with respect to a knowledge
base has a finite model [4].

If C is a concept expression that is satisfiable with respect to some knowledge
base K that belongs to a description logic having the finite model property, then
there must be a finite model of K that shows the satisfiability of C. Thus, finite
entailment and standard entailment are the same if a description logic has the
finite model property.

Proposition 1. The finite model property does not hold for the description logic
ALCOIQ [7] or more expressive description logics such as ALCOIQ(◦) and
SROIQ. If a concept expression C is satisfiable with respect to a knowledge
base K written in ALCOIQ or a more expressive description logic, then it may
be that there are only models with an infinitely large universe.

Given Proposition 1, it may be that there are only models with an infinitely
large universe that show the satisfiability of a concept expression. There are three
different possibilities: (1) τname(s) � ¬τname(s′) is neither finitely nor infinitely
satisfiable, meaning that K<S> |= τname(s) � τname(s′). It follows that s <:S s′

is true, as there is no counterexample. (2) τname(s) � ¬τname(s′) is not finitely,
but only infinitely satisfiable. It follows that K<S> 	|= τname(s) � τname(s′), but
s <:S s′ is true since the infinitely large model has no corresponding RDF graph.
(3) τname(s)�¬τname(s′) is both, finitely and infinitely, satisfiable. It follows that
K<S> 	|= τname(s) � τname(s′) and indeed s <:S s′ is false since the finite model
can be translated into an RDF graph and a faithful assignment. Deciding shape
containment for the shape languages that are translatable into ALCOIQ(◦),
SROIQ or ALCOIQ is therefore sound, if the decision procedure terminates.

Theorem 4. Let S be a set of shapes of the language Lrestr. It then holds that:

s <:S s′ ⇐ τshapes(S) |= τname(s) � τname(s′)
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Proof. For Lrestr, the corrseponding DL is SROIQ for which the finite model
property does not hold. If K<S> |= τname(s) � τname(s′), then there is neither a
finitely nor an infinitely large model in which τname(s)�¬τname(s′) is satisfiable.
The shape s must therefore be contained in the shape s′ as there is no RDF
graph and assignment that acts as a counterexample. ��
However, the approach is incomplete as it may be that s <:S s′ but K<S> 	|=
τname(s) � τname(s′) because due to an infinitely large model in which τname(s)�
¬τname(s′) is satisfiable.

To restore the finite model property, inverse path expressions have to be
removed. That is, the set of SHACL shapes S must belong to the language
fragment Lnon-inv that uses the following grammar:

φnon-inv ::= � | v | s | φ1
non-inv ∧ φ2

non-inv | ¬φnon-inv |�n p.φnon-inv

qnon-inv ::= ⊥ | {v1, . . . , vn} | class v | subjectsOf p

As a result, the description logic that corresponds to Lnon-inv is ALCOQ.

Proposition 2. The description logic ALCOQ has the finite model prop-
erty [17].

Subsequently, for SHACL shapes that belong to Lnon-inv shape containment
and concept subsumption in the knowledge base constructed from the set of
shapes are equivalent.

Theorem 5. Let S be a set of shapes belonging to Lnon-inv. Let K<S> be the
knowledge base constructed through τshapes(S). Then it holds that

s <:S s′ ⇔ K<S> |= τname(s) � τname(s′)

Proof (Sketch). Due to ALCOQ having the finite model property, it is always
possible to construct counterexamples for either side (c. f. Theorem 3). ��

In summary, using standard entailment our approach is sound and com-
plete for the fragment of SHACL not using path concatenation or inverse path
expressions. If inverse path expressions are used, then the approach is still sound
although completeness is lost. Once arbitrary path concatenation is added, the
resulting DL becomes semi-decidable. While an answer is not guaranteed in finite
time, shape containment is still sound.

5 Related Work

SHACL containment has also been studied by [19], whereas this work studies
theoretical shape satisfiability (and thus containment) by defining an equisatis-
fiable FOL language. In contrast, our approach focuses on practical applicability
by leveraging standard entailment of description logic reasoners. Before SHACL,
several constraint-based schema languages for RDF have been proposed before
SHACL. Among those are [2,12]. To the best of our knowledge, containment
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has not been investigated for those languages. Additionally, SPIN3 proposed
the usage of SPARQL queries as constraints. Then, the containment problem
for constraints is equivalent to query containment. ShEx [6] is a constraint lan-
guage for RDF that is inspired by XML schema languages. While SHACL and
ShEx are similar approaches, the semantics of the latter is rooted in regular bag
expressions. Validation of an RDF graph with ShEx therefore constructs a single
assignment whereas the SHACL semantics used in this papers deals with mul-
tiple possible assignments. The containment problem of ShEx shapes has been
investigated in [22]. Due to the specific definition of recursion in ShEx, any graph
that conforms to the ShEx shapes will also conform to an equivalent SHACL
definition. However, not all graphs that conform to SHACL shapes conform to
equivalent ShEx shapes.

Similar to dedicated constraint languages, there have been proposals for the
extension of description logics with constraints. While standard description log-
ics adopts an open-world assumption not suited for data validation, extensions
include special constraint axioms [18,23], epistemic operators [11], and closed
predicates [20]. Constraints constitute T-Box axioms in these approaches, mak-
ing constraint subsumption a routine problem.

Lastly, containment problems have been investigated for queries [8,15]. The
query containment problem is slightly different as result sets of queries are typ-
ically sets of tuples whereas in SHACL we deal with conformance relative to
faithful assignments. Given an RDF graph and a set of shapes there may be
several, different faithful assignments. Operators available for SHACL are more
expressive than operators found in query languages for which subsumption has
been investigated. In particular, recursion is not part of most query languages.
There is a non-recursive subset of SHACL that is known to be expressible as
SPARQL queries [9]. When constraints are expressed as queries, containment of
SHACL shapes becomes equivalent to query containment. Recursive fragments
of SHACL, however, cannot be expressed as SPARQL queries.

6 Summary

In this paper, we have presented an approach for deciding SHACL shape contain-
ment by translating the problem into a description logic subsumption problem.
Our translation allows for using efficient and well-known DL reasoning imple-
mentations when deciding shape containment. Thus, shape containment can be
used, for example, in query optimization. We defined a syntactic translation of a
set of shapes into a description logic knowledge base. We then showed that finite
models of this knowledge base and faithful assignments of RDF graphs can be
mapped onto each other. Using finite model reasoning, this provides a sound and
complete decision procedure for deciding SHACL shape containment, although
the decidability of finite satisfiability in ALCOIQ(◦) is still an open issue. As
part of future work, we plan to adapt the proof used by [14], which comprises
of a translation of SROIQ into a fragment of first-order logic for which finite
3 http://spinrdf.org/.

http://spinrdf.org/
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satisfiability is known. To ensure practical applicability, we also investigated the
soundness and completeness of our approach using standard entailment. Our
findings are summarized in Fig. 11. Our approach is sound and complete for
the SHACL fragment Lnon-inv that uses neither path concatenation nor inverse
roles, as the finite model property holds for the corresponding description logic
ALCOQ. Thus, finite entailment and standard entailment are the same for this
description logic. The finite model property is lost as soon as inverse roles are
added. Using standard entailment, our procedure is still sound for the fragment
Lrestr which translates into SROIQ knowledge bases, but is incomplete due to
the possibility of a knowledge base having only infinitely large models. Lastly,
the SHACL fragment L translates into ALCOIQ(◦) knowledge bases. Our app-
roach is sound, but incomplete. However, due to the semi-decidability of the
description logic, it may be that the decision procedure does not terminate.

Fig. 11. Soundness and completeness for deciding shape containment through descrip-
tion logics reasoning using standard entailment.
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Abstract. To alleviate the cold start problem caused by collaborative
filtering in recommender systems, knowledge graphs (KGs) are increas-
ingly employed by many methods as auxiliary resources. However, exist-
ing work incorporated with KGs cannot capture the explicit long-range
semantics between users and items meanwhile consider various connec-
tivity between items. In this paper, we propose RGRec, which combines
rule learning and graph neural networks (GNNs) for recommendation.
RGRec first maps items to corresponding entities in KGs and adds users
as new entities. Then, it automatically learns rules to model the explicit
long-range semantics, and captures the connectivity between entities by
aggregation to better encode various information. We show the effective-
ness of RGRec on three real-world datasets. Particularly, the combination
of rule learning and GNNs achieves substantial improvement compared
to methods only using either of them.

Keywords: Recommender system · Rule learning · Graph neural
network · Knowledge graph

1 Introduction

Recommender systems play an important role in modern society. They provide
users convenient access to the needed resources out of massive information on the
Internet. For services offering content to users like YouTube [3] and Alibaba [25],
recommender systems are almost a necessity. Collaborative filtering is a widely-
used and effective solution, which recommends items by exploring existing user-
item interactions. However, collaborative filtering often suffers from the so-called
cold start problem. It may perform poorly for recommending brand new items
or suggesting items to new users. To alleviate this problem, many efforts [1,27]
have been devoted to designing methods for using auxiliary resources like user or
item profiles. In recent years, knowledge graphs (KGs) are increasingly selected.
KGs contain structural data of high quality, which provide a wealth of relations
between items. Thus, brand new items, which are rarely interacted with users,
can be better recommended by the relations recorded in KGs.
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 384–401, 2020.
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Fig. 1. Overview of RGRec. Expansion is denoted by dashed arrows, which means that
we search the connected entities of user based on each rule. Aggregation is denoted by
solid arrows, which means that we combine the representations of user and the entities
connected to it.

Existing works incorporated with KGs can be roughly divided into three cat-
egories: embedding-based, path-based and aggregation-based. The embedding-
based methods [32] often model the direct relations between entities only; they
lack the capability of capturing the long-range semantics between entities. A
few path-based methods [31] leverage experts to manually construct (meta)paths
between users and items, while others [18,28] learn rules automatically but ignore
various relations between different entities; they only consider the relations pre-
sented in rules. Aggregation-based methods [24,26] model relations between dif-
ferent entities by the attention mechanism. They can preserve rich information
around a central entity (i.e. the entity that we want to obtain its representa-
tion) by aggregating the representations of its directly or indirectly connected
entities. However, it is usually hard to model the explicit relations between the
central entity and its indirectly connected entities. Thus, the explicit long-range
semantics is still not fully explored in aggregation-based methods.

In this paper, we design RGRec, a method integrating automatic rule learning
and graph neural network (GNN)-based aggregation for recommendation. As
shown in Fig. 1(a), we model the users, items, and entities by a graph, where rules
present relation paths between them. Taking u as an example, at first, we extract
the entities for u along a rule. Then, we aggregate the representations of entities
in the relation path to form the representation of u, which can be regarded
as the representation on one dimension. We repeat the step on different rules,
and form the representations of u on multiple dimensions which corresponds to
different rules. Furthermore, different rules have different strengths to extract
entities, which corresponds to rules with different confidence. So, the generated
multi-dimensional representations are gathered selectively to construct the final
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representation of u. Through this procedure, the rules capture the explicit long-
range semantics between entities, and the aggregation makes different entities
share their information. Compared with the three categories aforementioned, our
method has three key merits:

1. We combine rule learning and GNNs to capture the long-range semantics
between users and items and the connectivity between entities simultane-
ously. To construct user representations, the rules capture the long-range
semantics between users and items, and also guide the procedure of sampling
entities, which can alleviate the information loss caused by random sampling
in aggregation-based methods. GNNs preserve various connectivity between
entities, which can provide richer information to users in addition to rules.

2. We propose strategies to leverage KG embeddings for rule filtering, which
provides a more precise way to calculate the confidence of rules when the KGs
are incomplete. We also use rule learning techniques to pre-train the weights
of rules, which make different rules have different contributions according to
their importance.

3. We conduct experiments on three real-world datasets and compare with a
number of methods in all the three categories mentioned above. Our results
demonstrate the effectiveness of the combination of rule learning and GNNs.

2 Related Work

Recommender systems incorporated with KGs can be generally classified into
three categories. The first category borrows the idea from KG embedding. MKR
[23] designs a cross-and-compress unit to share latent features between items in
the recommendation task and entities in the KG embedding task. CKE [32] gen-
erates embeddings for structural knowledge with TransR [13] and combines the
embeddings of structural, textual and visual knowledge for collaborative filtering.
DKN [21] incorporates KG embeddings into news recommendation. It designs
a multi-channel and word-entity-aligned knowledge-aware convolutional neural
network that fuses word-level and knowledge-level representations of news. These
works only consider the direct relations between entities, so they cannot model
the long-range semantics between entities.

The second category is based on paths. A part of works uses metapaths,
which are defined as the sequences of entity types between users and items, e.g.,
user → song → singer → song. PER [31] introduces metapath-based latent
features to represent the connectivity between users and items along different
types of paths. It defines recommendation models at both global (same for all
users) and personalized levels. FMG [34] incorporates more complex semantics
between users and items by introducing metagraphs, which are composed of
many different metapaths. HERec [16] and metapath2vec [4] use metapaths to
sample entities and generate embeddings. MEIRec [5] presents the metapath-
guided neighbors to aggregate rich neighbor information. It needs users, items,
and queries (a.k.a. intents) as input, and studies the intent recommendation
problem, which means that the recommendation for a user is personalized queries
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rather than items. The performance of metapath-based methods depends heavily
on the quality of handcrafted metapaths. To resolve this problem, several works
like RKGE [18] and KPRN [28] mine paths (rules) automatically. Although they
can capture the long-range semantics between users and items, their strategies
to use rules can be improved. For all rules about a user-item pair, the released
code of RKGE1 and KPRN2 shows that they only sample a very small amount
of rules randomly. These strategies may omit much useful information. We think
that a better way is to delete low-quality rules and save high-quality rules by
designing rule filtering algorithms. Generally speaking, modeling with rules is
precise because the information is collected by the control of predicates presented
in rules, but this also makes the rule-based methods weak in capturing the
various connectivity between entities and insufficient in generalization ability.

The third category is characterized by iterative aggregation. RippleNet [20]
classifies the entities around one entity as 1-hop, 2-hop, . . ., k-hop neighbors,
and aggregates the representations of all these neighbors from different hops
in a weighted manner. Differently, KGCN [24] and KGAT [26] are inspired by
GNN architectures like GCN [9], GraphSage [7], GAT [19] and HAN [29] to
aggregate the representations of only 1-hop neighbors around one entity, and
the entity will get the information of k-hop neighbors by repeating the aggrega-
tion k times. Note that, different GNN architectures are designed to capture the
information of a graph more precisely, and they are often evaluated on the classi-
fication and clustering tasks; while KGCN and KGAT just utilize GNNs to build
recommender systems. In these methods, when we choose neighbors for a central
entity, we usually cannot know the explicit relations between the central entity
and its indirectly connected neighbors. So, less informative neighbors may be
collected as noises. Contrary to the path-based methods, the aggregation-based
methods are strong in generalization ability because they can capture various
connectivity between entities, but weak in precision because the quality of sam-
ple entities cannot be guaranteed.

3 Problem Formulation

In this paper, we define a KG G as a set of RDF triples. An RDF triple, denoted
by (s, p, o), consists of three components: subject s, predicate p and object o.
According to the common recommendation scenario, we refer to subjects and
objects in G as entities, and the set of entities is denoted by E = {e0, . . . , ene

}.
Predicates represent the relations between entities, and the set of predicates is
denoted by P = {p1, . . . , pnp

}.
A typical recommender system contains a set of users U = {u1, . . . , unu

}, a
set of items M = {m1, . . . ,mnm

}, and the interactions between them (usually
modeled as an interaction matrix H). To link U and M to KGs, we map an item
m in M to a corresponding entity e in E , then a new triple (u, interacts, e) is

1 https://github.com/sunzhuntu/Recurrent-Knowledge-Graph-Embedding.
2 https://github.com/eBay/KPRN.

https://github.com/sunzhuntu/Recurrent-Knowledge-Graph-Embedding
https://github.com/eBay/KPRN
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added in G, where u is regarded as a new entity and the relation between u and
e is denoted by interacts. This newly-supplemented G is denoted by GH.

A rule specifically refers to an inference rule of predicate interacts. So,
the rules are means to reason whether a user-item pair instantiates predicate
interacts. We define the set of rules as R = {r1, . . . , rnr

}, where a rule r in R is
composed by a set of predicates {p, p1, . . . , ph}, written as r : p ⇐ p1 ∧ . . . ∧ ph.
p on the left of ⇐ is called rule head, the part on the right of ⇐ is called rule
body, and the number of predicates in the rule body is the rule length. When
a user u and an item m instantiate a rule r, it means that there are entities
{e1, e2, . . . , eh−1} connecting u and m as u

p1−→ e1
p2−→ . . .

ph−1−→ eh−1
ph−→ m,

which is recorded as (u, r,m) ∈ GH. We distinguish directly connected entities
(rule length = 1) and indirectly connected entities (rule length ≥ 2). We believe
that rules of length over 1 can help reflect the explicit relations between those
indirectly connected entities.

Definition 1 (Problem definition). Given a KG G and the interaction
matrix H between users U and items M, our goal is to learn a function
F(u,m |Θ,R,GH) that can predict the probability of each user-item pair (u,m)
instantiating predicate interacts, where u ∈ U ,m ∈ M, Θ denotes the parameter
to learn, R is the set of rules and GH is the KG supplemented with H.

4 RGRec

RGRec imitates the ways that humans recommend things and focuses on express-
ing user features precisely and completely. Taking songs for example, we may
consider several aspects when we want to recommend songs to a user u. Assume
that u likes song m1. We may consider songs that are composed by the singer
of m1, or have the same singer as m1, or are recorded in the same album as
m1. These three linear modes of thinking can be expressed by r1, r2 and r3,
respectively:

r1 : interacts(u,m1) ⇐ interacts(u,m2) ∧ singer(m2, c1) ∧ composer−1(c1,m1),
(1)

r2 : interacts(u,m1) ⇐ interacts(u,m2) ∧ singer(m2, s1) ∧ singer−1(s1,m1), (2)

r3 : interacts(u,m1) ⇐ interacts(u,m2) ∧ album(m2, a1) ∧ album−1(a1,m1), (3)

where p−1 denotes the inverse predicate of p, e.g., composer−1(c1,m1) expresses
the same meaning as composer(m1, c1).

KGs contain various entities and rich connections, which provide a wealth of
resources to generate the representations of users. To construct a user represen-
tation, we leverage the rules that can capture the long-range semantics between
entities as the guidance. Different rules lead to different user representations,
which can be regarded as the representations from various dimensions. A com-
plete user representation is formed by aggregating the collected representations
selectively. In Fig. 1(a), user u is expanded with three rules, and the expanded
entities converge to u in the opposite direction (from outside to inside) iteratively
to generate the representation of u. To achieve this, we face three challenges:
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Fig. 2. A KG fragment

1. How to learn rules of high quality?
2. How to model the user representation with a single rule?
3. How to aggregate various representations collected under different rules?

We describe our method in detail in the rest of this section.

4.1 Rule Learning

In this paper, we aim to find high-quality inference rules for predicate interacts,
which express users like some things. We divide our rule learning process into
two steps: rule finding and rule filtering.

For rule finding, we define that each candidate inference rule of interacts is
a connected path from a user to an item, where the user and the item instantiate
predicate interacts and the direction of predicates in the path is omitted. For
example, in Fig. 2(a), a user interacts with a song called Style, the connected
paths between the user and Style can be regarded as candidate rules. These rules
can represent the reasons why this user likes Style. For instance, we may infer that
the user likes Style because the singer of Style is the same as a song interacted

with the user, through user
interacts−−−−−−→ Red

singer−−−−→ Taylor Swift
singer−1

−−−−−−→ Style.
To facilitate path finding, we add an inverse predicate to every edge in the KG

like Fig. 2(b) to make the KG undirected, i.e. adding an inverse triple (o, p−1, s)
in the KG for every (s, p, o). With the triple (s, interacts, o) as input, we use
bidirectional breadth-first search to find connected paths between s and o of
length at most I as the candidate rules of interacts.

For rule filtering, there are two reasons to adopt it:

1. Getting rid of low-quality rules that are harmful. In Fig. 2(b), in addition to
the path passing Red, two other paths between the user and Style are: (1)
The mother tongue of the user is English, Style is an English song, so the

user interacts with Style through user
motherTongue−−−−−−−−−−→ English

language−1

−−−−−−−→
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Style; (2) The user interacts with the singer whose nationality is U.S.A.,
so the user interacts with other singers from U.S.A. through user

interacts−−−−−−→
Katy Parry

nationality−−−−−−−→ U.S.A.
nationality−1

−−−−−−−−−→ Taylor Swift
singer−1

−−−−−−→ Style.
We argue that these two rules are less rational, so rule filtering is necessary.

2. From the implementation aspect, too many rules (e.g., more than 10,000)
would challenge the method to keep efficient. Therefore, the number of rules
needs to be reduced by filtering for this reason.

As demonstrated in AMIE [6], partial completeness assumption (PCA) and
closed world assumption (CWA) are two effective ways to calculate the confi-
dence of rules. CWA assumes that KGs are complete. PCA holds the idea that,
if a KG knows some p-facts of subject s, i.e. the triples involving predicate p
of s, then it knows all p-facts of s. So, it neglects the inferred (s, o) whose s is
not involved in any p-facts. Since users interact with at least one item in our
scenario, PCA is identical to CWA for predicate interacts. Also, interacts is
assumed to be very incomplete in recommendation tasks, i.e. there are many
potential items that may interact with users. Consequently, the confidence cal-
culated under CWA may have a great loss. On the other hand, the embeddings
of a KG have the ability to complete the graph [2]. Thus, it can make up the
shortcomings of CWA. We design an efficient algorithm to filter rules based on
a KG embedding model called RotatE [17]. Below, we briefly describe it. For a
triple (s, p, o), RotatE maps s, p and o into a complex vector space and defines p
as the rotation from s to o. It expects o = s ◦p, where s,p,o ∈ C

dre denote the
embeddings, ◦ is the Hadamard (a.k.a. element-wise) product, and the modulus
of each element of p is 1. RotatE can infer the composition pattern of predicates,
e.g., p = p1 ◦ . . . ◦ph holds if the rule r : p ⇐ p1 ∧ . . . ∧ ph is absolutely correct.
So, the distance between p1 ◦ . . .◦ph and p can reflect the confidence of r, which
is calculated as follows:

conf(r) = −||p − f(p) ||2, (4)
f(p) = p1 ◦ . . . ◦ ph , (5)

where || · ||2 represents the L2-norm of a complex vector. Taking r1 in Eq. (1) as
an example, we denote interacts, singer, composer−1 by pt, ps and p−1

c , respec-
tively. If r1 is correct, i.e. m1 = u ◦ pt ,m2 = u ◦ pt , c1 = m2 ◦ ps and
m1 = c1 ◦ p−1

c hold, pt = pt ◦ ps ◦ p−1
c can be inferred by u ◦ pt = c1 ◦ p−1

c =
(m2 ◦ ps) ◦ p−1

c = ((u ◦ pt) ◦ ps) ◦ p−1
c .

Finally, we reserve top-L rules with the highest confidence as output.
In addition to RotatE, DistMult [30] and RLvLR [14] can also use the compo-

sition pattern of predicates and embeddings to measure the confidence of rules.
However, DistMult, which represents relations by matrices in bilinear transfor-
mation, needs special constraints to infer the composition pattern of predicates,
but the constraints may not hold in implementation. RotatE points out that
DistMult cannot infer the composition pattern of predicates, but TransE [2] and
itself can [17]. For RLvLR, by only using the composition pattern, it performs
poorly when rules are longer than 2. So, it designs another strategy based on
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co-occurrence for longer rules. Compared with these two methods, our strategy
of using the embeddings trained by RotatE to model the composition pattern
of predicates is theoretically reasonable and practical in reality. Still, RotatE
has some detrimental effects, such as the fixed composition pattern mentioned
in QuatE [33]. This causes the performance of RotatE not particularly good
when some predicates participating in a compositional pattern are the same. We
will consider other advanced KG embedding models to alleviate this problem in
future work.

4.2 User Representation Guided by Single Rule

Inspired by GraphSAGE [7], which is a general inductive framework for graph
representation learning, we design a rule-guided GNN model. To learn the rep-
resentation of a user u along a rule r, we firstly select fixed-size k-hop neighbors
of u along r. Then, we aggregate the representations of entities to their directly
connected neighbors and apply a non-linear transformation to construct the rep-
resentations of entities aware of neighbors. Finally, we repeat this process for a
few iterations to make u receive the information from all selected neighbors. We
take rule r1 in Eq. (1) as an example to explain how to obtain the representa-
tion of a user under the guidance of r1. As shown in Fig. 1(b), we expand the
user along the rule (direction: Expand), then we aggregate the representations
of the expanded entities to the user reversely (direction: Aggregate) to obtain
the representation of the user under this rule.

We define the k-hop expanding entity set of user u on r as Dk
u(r) = {o | (s, pk,

o), s ∈ Dk−1
u (r)}, where k ∈ [1, h] and D0

u(r) = {u}. When we expand u along r,
if there exist entities in Dk−1

u (r) that cannot use the k-th predicate to conduct
the k-hop expansion, then it receives a negative feedback that r is infeasible
for u to some extent. In practice, we return a blank entity B as the negative
feedback for {s | � o, (s, pk, o) ∈ GH, s ∈ Dk−1

u }. The blank entities are shown as
white circles in Fig. 1(b).

The entity set whose representations to be aggregated is denoted by Ji =
{D0

u(r)∪. . .∪Dh−i
u (r)}, where i ∈ [1, h], and h is the length of rule r, which is also

the total number of aggregation iterations in r. The aggregation proceeds from
J1 to Jh in turn. The (i + 1)-th iteration is shown in the upper part of Fig. 3.
During this iteration, the state e of entity e (self entity) in Ji+1 is transformed
from ei to ei+1 (new state) as follows:

ei+1 = c
(
ei ⊕ (

1
Y

Y∑
y=1

eiy)
)
, (6)

c(x) = σ(Waggx + b), (7)

where the states of entities which should be aggregated to ei are denoted by
{ei1, . . . ,eiY } (linked entities), e is of size dr, ⊕ means vector concatenation,
and σ is a nonlinear function like Sigmoid. At each round of iterations, RGRec
applies the aggregation operation to entities along the direction of Expand,
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Fig. 3. The framework of RGRec

where user is the first entity to be applied the aggregation operation in the first
iteration. After h iterations, the final representation of u under r is uh

r .

4.3 Multi-dimensional Representation Aggregation

Given L representations {uh1
r1 ,uh2

r2 , . . . ,uhL
rL } of user u under the guidance of L

rules {r1, r2, . . . , rL}, where hj denotes the length of rj , the final representation
u of u is aggregated as follows:

u =
[
uh1
r1 ;uh2

r2 ; . . . ;uhL
rL

]
W , (8)

where W is the rule weights of size (L × 1) and the size of
[
uh1
r1 ;uh2

r2 ; . . . ;uhL
rL

]
is (dr × L).

The loss function lossRGRec of RGRec is defined as

lossRGRec =
1
N

N∑
i=1

(
li − q(uT

i mi)
)2

+ μ||W ||2, (9)

where, for N training data {(ui,mi, li)}Ni=1, ui, mi and li are the user repre-
sentation, item representation and label (1 if the user and the item instantiate
predicate interacts, and 0 otherwise), respectively. μ is the hyperparameter of
L2-regularization. mi has size (dr × 1). q is a nonlinear function like Sigmoid.
The idea behind the loss function is that, if a user u and an item m instantiate
interacts, their label l is 1, and the inner product of their representations is
expected to be 1; otherwise, their label is 0, and the inner product is expected
to be 0. μ||W ||2 is a regularization term to avoid overfitting.
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4.4 Rule Weights Pre-training

Not every rule should play an equal role during the formation of the final repre-
sentation. However, the confidence of rules calculated by embeddings does not
work well here. That confidence only measures whether the rules can interpret
predicate interacts. It checks rules in isolation and lacks the consideration for
the whole rule set. In fact, rules can affect each other, including both positive
and negative influences. For example, if r1 (Eq. (1)) or r3 (Eq. (3)) hold between
user u and item m, m is less likely to be recommended to u just by one rule,
but when m has the same composer and belongs to the same album as one song
that u interacts, i.e. r1 and r3 both hold, the probability of being recommended
is higher. In this paper, we design a pre-training procedure to learn rule weights
W automatically from a more holistic perspective.

Assume that we have L rules R = {r1, r2, . . . , rL} for interacts and N user-
item pairs {(ui,mi)}Ni=1. For each user-item pair that instantiates interacts, we
label it with 1, otherwise we label it with 0. The label set for all user-item pairs
is denoted by {li}Ni=1. Then, we test every user-item pair (ui,mi) against every
rule rj , i.e. returning 1 if (ui, rj ,mi) ∈ GH, and 0 otherwise, which generates the
feature set {Xi}Ni=1. Xi is a vector of size L and composed of 0/1.

With training data {(Xi, li)}Ni=1, we convert the problem whether the user
and the item instantiate interacts to a binary classification problem, and the
parameters to learn are the rule weights W . The loss function is defined as

losspre-train =
1
N

N∑
i=1

(
li − z(W TXi)

)2

+ λ||W ||2, (10)

where λ is the hyperparameter of L2-regularization and z is a nonlinear function
like Sigmoid. W is pre-trained in Eq. (10) and fine-tuned in Eq. (9) to obtain
the representations of users and items. Here, our method to form each feature
vector Xi is inspired by PRA [11]. Each dimension feature is corresponding to
the probability of the connectivity between the user and the item by the relation
path. We simplify the process by assigning 0/1 to each feature, which makes the
procedure more efficient.

5 Experiments and Results

We implement RGRec on a workstation with an Intel Core i9-9900K CPU, 64
GB memory and a NVIDIA GeForce RTX 2080 Ti graphics card. The source
code is available online3. In our experiments, we want to answer the following
two research questions:

Q1. Compared to the state-of-the-art rule-based and GNN-based methods, how
does RGRec perform? Are rule learning and GNNs both effective? Partic-
ularly, does RGRec work well in the cold start scenario?

Q2. How do rule length and number, rule filtering strategy, and rule weights
pre-training affect the overall performance?

3 https://github.com/nju-websoft/RGRec.

https://github.com/nju-websoft/RGRec
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Table 1. Statistical data of the datasets

Last.FM MovieLens-1M Dianping-Food

#Users 1,872 6,036 2,298,698

#Items 3,864 2,445 1,362

#Interactions 42,346 753,772 23,416,418

#Entities 9,366 182,011 28,115

#Predicates 60 12 7

#KG triples 15,518 1,241,995 160,519

5.1 Preparation

Datasets. We pick three real-world datasets: Last.FM (released in KGCN [24]),
MovieLens-1M (in RippleNet [20]) and Dianping-Food (in KGCN-LS [22]). They
all use Microsoft Satori4 to prepare the corresponding KGs. The statistical data
of the three datasets are depicted in Table 1, where “#Entities”, “#Predicates”
and “#KG triples” denote the numbers before complementing interaction matrix
H. Following conventions [22,24], we split all the data to training : validation :
testing = 6 : 2 : 2.

Evaluation Metrics. We use two sets of metrics: AUC and F1 under the click
through rate scenario, and Hits@k and NDCG@k (k ∈ {5, 10}) under the top-k
recommendation scenario. To reduce the complexity of measuring Hits@k and
NDCG@k during the testing stage, following KPRN [28], we sample 100 nega-
tives for one positive. Also, following KGCN [24], we implement AUC and F1
with the ratio of positives and negatives being 1 : 1. Each experiment is repeated
five times and the average results are reported.

Hyperparameters. For RotatE, we select the implementation in [8]. The
dimension of predicate embeddings dre is set to 1,024, and other hyperparameters
strictly follow the settings in [8]. For RGRec, we perform a grid search. The used
hyperparameters are determined by optimizing AUC on the validation set with
the early stop strategy, i.e. stopped if not improved in successive three epochs.
As a result, we set the maximum length of rules I = 3, the maximum number
of used rules L = 30, the dimension of entity embeddings dr = 8, the number of
neighbors for every entity Y = 4, the learning rate to 0.05 for Last.FM and to
0.0005 for MovieLens-1M and Dianping-Food, the L2-regularization parameter
μ = 0.0001, and the batch size to 128 for Last.FM and to 64 for MovieLens-1M
and Dianping-Food. To pre-train rule weights W , we assign the L2-regularization
parameter λ = 0.0001, the learning rate to 0.0001 and the batch size to 256. For
the choices of non-linear functions q, z and σ, we set q and z to Sigmoid, and σ
to ReLU for non-last iterations and to tanh for the last iteration.

Competitors. We pick SVD [10], LibFM [15], LibFM+TransE, PER [31],
RKGE [18], CKE [32], KGCN [24] and KGAT [26] as our competitors. SVD and
4 https://searchengineland.com/library/bing/bing-satori.

https://searchengineland.com/library/bing/bing-satori
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Table 2. AUC and F1 in the click through rate scenario

Last.FM MovieLens-1M Dianping-Food

AUC F1 AUC F1 AUC F1

SVD 0.772 0.683 0.833 0.757 0.787 0.729

LibFM 0.773 0.716 0.830 0.777 0.809 0.766

LibFM+TransE 0.726 0.669 0.825 0.772 0.820 0.761

PER 0.633 0.596 0.712 - 0.746 -

CKE 0.727 0.649 0.771 0.680 0.773 0.703

RKGE 0.745 0.689 0.894 0.825 0.847 0.766

KGCN 0.797 0.719 0.869 0.789 0.842 0.774

KGAT 0.706 0.709 0.906 0.838 - -

RGRec 0.825 0.747 0.913 0.838 0.884 0.809

LibFM are two classical methods for recommendation. LibFM+TransE adds
embeddings trained by TransE [2] to LibFM. PER represents those methods
using manually constructed metapaths, while RKGE represents those methods
mining paths automatically. CKE is a typical embedding-based method. KGAT
and KGCN represent the aggregation-based methods. The hyperparameters for
the competitors follow the settings in [24] or the settings suggested in their orig-
inal papers. We develop SVD, LibFM, LibFM+TransE, RKGE and CKE by
ourselves, while reuse the source code of KGAT and KGCN. We cannot imple-
ment PER because the three datasets do not provide entity types to construct
metapaths. The results of PER on Last.FM, MovieLens-1M and Dianping-Food
are quoted from [20,22,24], respectively, and the results of KGAT on Dianping-
Food is missing due to the scalability issue.

5.2 Results and Analysis

Based on our experimental results, we answer the two research questions as
follows. For Q1, as illustrated in Tables 2, 3 and 4, RGRec achieves the overall
best AUC, F1, Hits@k and NDCG@k (k ∈ {5, 10}) on all the three datasets,
except for NDCG@5 and NDCG@10 on Last.FM.

Specifically, we find that (1) for the aggregation-based methods, KGAT
achieves competitive AUC and F1 on MovieLens-1M, and KGCN is stable and
can be seen as the second best competitor. Compared with them, RGRec shows
that rules indeed have the power to guide the aggregation of entity representa-
tions. (2) For other methods, PER obtains the worst AUC and F1 on all the
three datasets, because it heavily relies on the quality of metapaths manually
created. This also demonstrates the advantage of RGRec in learning rules auto-
matically. (3) RKGE has poor Hits@k and NDCG@k (k ∈ {5, 10}) due to the
fact that, although RKGE uses rules during training, it does not use rules during
testing. In fact, it only computes the inner product of user embeddings and item
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embeddings during testing to resolve the complexity of rule searching. RGRec
does not have this problem because rules are searched in advance and the search
process is only executed once.

Furthermore, we use 20%, 40% and 60% of the data for training to see the
performance of RGRec in the cold start scenario. Limited by the space, we only
report the results on the largest Dianping-Food dataset, using AUC and F1 as
the metrics. The results on the other two datasets using Hits@k and NDCG@k
exhibit a similar phenomenon. As depicted in Table 5, RGRec obtains the best
and stable results when 20%, 40% and 60% (i.e. the default setting) of the data
for training are used. We can also see that the performance of several competi-
tors (e.g., KGCN) significantly drops with fewer training data. This verifies the
capability of RGRec to address the cold start problem.

Table 3. Hits@k (k ∈ {5, 10}) in the top-k recommendation scenario

Last.FM MovieLens-1M Dianping-Food

Hits@5 Hits@10 Hits@5 Hits@10 Hits@5 Hits@10

SVD 0.357 0.501 0.306 0.511 0.384 0.557

LibFM 0.396 0.539 0.304 0.513 0.380 0.582

LibFM+TransE 0.344 0.453 0.234 0.438 0.355 0.542

CKE 0.188 0.294 0.070 0.134 0.351 0.526

RKGE 0.058 0.122 0.152 0.251 0.090 0.167

KGCN 0.417 0.551 0.333 0.537 0.295 0.479

KGAT 0.284 0.394 0.235 0.340 - -

RGRec 0.450 0.571 0.394 0.562 0.43 0.606

Table 4. NDCG@k (k ∈ {5, 10}) in the top-k recommendation scenario

Last.FM MovieLens-1M Dianping-Food

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

SVD 0.240 0.287 0.186 0.252 0.249 0.305

LibFM 0.267 0.313 0.183 0.250 0.238 0.303

LibFM+TransE 0.244 0.279 0.137 0.203 0.233 0.293

CKE 0.122 0.156 0.042 0.063 0.231 0.288

RKGE 0.033 0.053 0.095 0.126 0.054 0.079

KGCN 0.325 0.373 0.236 0.306 0.216 0.279

KGAT 0.198 0.233 0.154 0.188 - -

RGRec 0.324 0.363 0.271 0.325 0.298 0.354

For Q2, the maximum length of rules is a sensitive parameter. The length of
rules indicates the number of iterations for aggregation, which is also called the
depth of GNNs in some methods. Deep GNNs can help central entities get infor-
mation from farther entities but also lead to the over-smoothing problem [12],
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Table 5. AUC and F1 on Dianping-Food in the cold start scenario

AUC F1

20% 40% 60% 20% 40% 60%

SVD 0.709 0.762 0.787 0.648 0.704 0.729

LibFM 0.812 0.814 0.809 0.761 0.766 0.766

LibFM+TransE 0.798 0.819 0.820 0.747 0.760 0.761

CKE 0.710 0.743 0.773 0.614 0.671 0.703

RKGE 0.703 0.811 0.847 0.628 0.719 0.766

KGCN 0.774 0.807 0.842 0.719 0.742 0.774

RGRec 0.882 0.884 0.884 0.808 0.809 0.809

Table 6. Number of rules w.r.t. different lengths

Lengths Last.FM MovieLens-1M Dianping-Food

2 6 0 1

3 51 54 8

4 335 0 12

Fig. 4. AUC and F1 varying with the maximum lengths of rules

i.e. the representations of different entities would become indistinguishable. Also,
in some aggregation-based methods [20,24,26], the maximum distance between
a central entity and its neighbors is four, which corresponds to rules of length
four. Thus, we search the rules of maximum length two, three and four on the
three datasets and show the statistics in Table 6. Note that, we cannot find the
rules of length two and four on MovieLens-1M, so Fig. 4 only shows how the
performance of RGRec varies on Last.FM and Dianping-Food. RGRec achieves
the best results on Last.FM when the maximum length is four and on Dianping-
Food when the maximum length is three. However, the performance difference
is pretty subtle. In practice, we prefer to use three. We believe that this length
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usually makes sense in recommender systems, like r1 (Eq. (1)), r2 (Eq. (2)) and
r3 (Eq. (3)).

To explore the effect of rule filtering strategies, RGRec is assessed with differ-
ent numbers of rules preserved in Last.FM when the maximum lengths of rules
are 3 and 4. MovieLens-1M and Dianping-Food have much less number of rules
than Last.FM, so they are less suitable than Last.FM for this experiment. The
results are shown in Fig. 5. RGRec does not perform the best when using all
rules, which demonstrates that some low-quality rules are harmful and must be
eliminated. The strategy of rule filtering succeeds in controlling the quality.

Additionally, we assess four strategies for rule filtering: CWA (closed world
assumption), RLvLR [14], TransE [2] and RotatE [17], which are denoted by
RGRecCWA, RGRecRLvLR, RGRecTransE and RGRecRotatE, respectively. We
compare them on Last.FM when the maximum length of rules is 3. We show
AUC and F1 with top-L reserved rules in Table 7. Considering the best results,
the highest AUC and F1 of these four methods are not achieved when all rules
are used, which verifies the effectiveness of rule filtering. RGRecRotatE performs
slightly better than the other three, showing that it is more capable of modeling

Fig. 5. AUC and F1 with top-L ranked rules preserved in Last.FM when the maximum
lengths of rules are 3 and 4

Table 7. AUC and F1 of different filtering strategies on Last.FM

Top-L RGRecCWA RGRecRLvLR RGRecTransE RGRecRotatE

AUC 10 0.8146 0.8204 0.8127 0.8209

30 0.8179 0.8244 0.8202 0.8251

50 0.8195 0.8163 0.8141 0.8215

All (57) 0.8191

F1 10 0.7408 0.7451 0.7397 0.7484

30 0.7466 0.7479 0.7476 0.7474

50 0.7470 0.7419 0.7381 0.7462

All (57) 0.7442
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Table 8. AUC and F1 of RGRec, RGRecwo W and the best competitor

Last.FM MovieLens-1M Dianping-Food

AUC F1 AUC F1 AUC F1

Best competitor 0.797 0.719 0.906 0.838 0.847 0.774

RGRecwo W 0.787 0.703 0.910 0.836 0.879 0.806

RGRec 0.825 0.747 0.913 0.838 0.884 0.809

the composition pattern of predicates. Also, embeddings overcome the incom-
pleteness of KGs to some extent.

To explore the effect of rule weights pre-training, we disable the pre-training
procedure and build RGRecwo W . As depicted in Table 8, RGRecwo W under-
performs RGRec on all the three datasets. However, compared with the best
competitor, RGRecwo W is still competitive on MovieLens-1M and Dianping-
Food. We conclude that the pre-training procedure can improve the predictive
capability of RGRec.

6 Conclusion

In this paper, we propose RGRec, which combines rule learning and GNNs for
recommendation. Rules capture the explicit long-range semantics between enti-
ties, and GNNs aggregate the information of captured entities along the rules
to learn precise representations of users. RGRec achieves superior performance
on three real-world datasets. Furthermore, the combination of rule learning and
GNNs is better than only using either of them. In future work, we will leverage
multi-modal learning to build a more powerful recommender system.
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Abstract. Knowledge base question answering systems are heavily
dependent on relation extraction and linking modules. However, the task
of extracting and linking relations from text to knowledge bases faces two
primary challenges; the ambiguity of natural language and lack of train-
ing data. To overcome these challenges, we present SLING, a relation link-
ing framework which leverages semantic parsing using Abstract Meaning
Representation (AMR) and distant supervision. SLING integrates multi-
ple approaches that capture complementary signals such as linguistic
cues, rich semantic representation, and information from the knowledge
base. The experiments on relation linking using three KBQA datasets,
QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed
approach achieves state-of-the-art performance on all benchmarks.

Keywords: Relation linking · Semantic parsing · Knowledge bases ·
Question answering

1 Introduction

Relationship Extraction and Linking (REL) is a necessary task for Knowledge
Base Question Answering (KBQA) [20–22]. The goal of REL in KBQA is to
identify the relations in input natural language questions and link them to their
equivalent relations in a knowledge base, which are then used to construct the
corresponding SPARQL query to retrieve answers. For example, we show below
the corresponding DBpedia [9] SPARQL query for the question “Who is starring
in Spanish movies produced by Benicio del Toro?”:

SELECT DISTINCT ?result WHERE {

?film dbo:starring ?result .

?film dbo:country dbr:Spain .

?film dbo:producer dbr:Benicio_del_Toro .

}
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Identifying the relevant relations in the question and linking them to their equiv-
alent DBpedia relationships dbo:starring, dbo:country, and dbo:producer is
the primary goal of REL in the context of KBQA.

REL for KBQA faces the following challenges: (1) Knowledge bases such as
DBpedia, Wikidata, and Freebase have a large number of relationships which
makes it challenging to acquire training data to build data-intensive deep learn-
ing models. For instance, DBpedia has thousands of relationships (some of which
are generated automatically from Wikipedia infobox keys). (2) There is an exten-
sive lexical gap between the surface form of relations in text and how they are
represented in the KB, which makes the linking between them challenging. For
example, the question above does not explicitly mention any reference to the
relationship dbo:country which is a required relation to form the SPARQL
query that can retrieve the answer. (3) Determining multiple relationships and
their source and target concepts in a sentence. The example question above
requires three relationships to be linked with their corresponding source and
target entities/unbound variables.

In order to address the aforementioned challenges, in this work, we propose
our Semantic LINkinG system: SLING; a distant supervision based approach that
leverages semantic parsing such as Abstract Meaning Representation (AMR) for
relation extraction and linking. Distant supervision techniques address the chal-
lenge of lack of training data, particularly for thousands of relations in KBs such
as DBpedia. Transforming the text to a semantic parse such as AMR, provides
advantages that include (1) normalising relations to a set of standard PropBank
predicates, (2) identification of named entities, and (3) entity typing with a pre-
defined type system. These characteristics of AMR help to alleviate the lexical
gap by reducing different phrasings of relations to its predicate set. Furthermore,
they also help to automatically determine the relationship structure of an input
question and extract all relationships useful for forming a SPARQL query, hence
addressing the challenge of extracting multiple relationships from questions text.

In summary, the main contributions of this paper are as follows:

– A generic framework integrating different approaches for REL based on sta-
tistical predicate alignment, word embedding and neural networks. Further-
more, the framework is modular to allow for integrating more techniques to
the pipeline.

– A novel approach that harnesses AMR semantic parses of texts for REL in
KBQA. Our novel usage of AMR successfully addresses the lexical gap and
multiple relationship problems in REL, and achieves the new state-of-the-art
on multiple benchmarks (QALD [21,22] and LC-QuAD 1.0 [20]).

– A distant supervised technique that can generate mappings between text,
AMR, and KB relations leveraged for training relation classification models
in the absence of task-specific training data.

The rest of the paper is organised as follows: In Sect. 2, we position our work
compared to related work in REL, and Sect. 3 provides an overview of the pro-
posed approach including a summary of each sub-module. In Sect. 4 we describe
the metadata generated from the question to be used by the relation linking
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modules. Section 5 describes how the distant supervision data is generated and
the two relation linking modules that leverage these data to generate relation
linking candidates. Section 6 describes how SLING aggregates the scores from
the different relation linking modules and identify the top-k relations. Next, we
evaluate our system in comparison with state-of-the-art relation extraction link-
ing approaches in Sect. 7. Finally, we conclude and present our future work in
Sect. 8.

2 Related Work

Several KBQA systems have been proposed in the literature which differ accord-
ing to the traits of the datasets used, such as the amount of training data avail-
able, the complexity of the questions, or if the formal queries are provided as
ground truth [2,5]. In most KBQA systems, extracting relations from the ques-
tions and linking them to the KB is an essential step to generate the structure
of the formal queries.

REL has been addressed using deep learning models for KBQA datasets with
large number of training examples. These deep learning approaches fall into two
main categories: classification-based models [10] and ranking-based models [24].
However, there are drawbacks using end to end neural approaches for REL link-
ing: (1) they are limited only to the questions expressing one single relation in
the KB. (2) they cannot be applied in the case of a lack of training data.

QALD [21,22] and LC-QuAD [20], are well-known datasets derived from
DBpedia [1], represent a real-world evaluation benchmark in evaluating KBQA
systems. The limited amount of training examples of these datasets along with
the complex questions involving an arbitrary number of relation types make the
task of identifying and linking relations significantly challenging. For KBQA,
this is addressed either as a part of an end-to-end question answering system
such as GAnswer [6] or by training a model to select the best off the shelf REL
system Frankenstein [17]. Our work focuses on building such off the shelf
tools, particularly for KBQA.

There are four primary REL works that are geared towards the above men-
tioned KBQA datasets [4,12,16,18]. ReMatch [12] models every KB relation
into a data structure that encapsulates the relation and some enhanced attributes
from dependency parsers and WordNet taxonomy. It then applies a number of
similarity measures between the question and the KB relations to output a list
of candidate relations. EARL [4] jointly links relation and entities from nat-
ural language to KGs. It extracts the keywords from the question, identifies
them as entity or relation, then gets a list of candidates from the KG. Similarly,
Falcon [16] is an approach that jointly links entities and relations in question-
like sentences to DBpedia. For a given question, it applies a number of steps
to extract candidate entities and relations including POS tagging, tokenization,
compounding and n-gram tiling. Falcon is the state-of-the-art approach for REL
on the QALD-7 and LC-QuAD 1.0 datasets. Entity Enabled Relation Linking
(EERL) [14] introduces entity-based relation expansion to the existing commonly
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used keyword based relation extraction with the hypothesis that relations that
occur in the question should be either properties of the entities in question or of
their types.

However, none of the above mentioned REL methods for KBQA have
explored the use of semantic parsers, whilst our work is the first to leverage the
AMR of the question text as one of the inputs in an effort to reduce the ambi-
guity of natural language. Furthermore, we train a distantly supervised neural
model in order to address the lexical gap issue between the relations expressed
in the questions and the relation labels in the KB. This is inspired by the use of
distant supervision for standard relation extraction tasks when there is limited
or no training data for the target relations [15].

3 System Overview

Fig. 1. (a) Overview of SLING. (b) Example driven flow of the approach.

Figure 1 shows an overview of SLING with 1-(a) showing a process-oriented view
while 1-(b) illustrating with an example. The input to SLING is a question in
natural language along with its corresponding AMR representation. The required
output is a ranked list of relations corresponding to every subject-object pair in
the sentence. The input is processed by the components in Question Metadata
Generation (Sect. 4) to extract AMR triples (subject-object pair and their AMR
predicate) and generate metadata corresponding to each of them. Each module
in Relationship Linking produces a ranked list of KB relations with scores for
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a metadata-enriched AMR triple. These are aggregated to produce the required
output. The source code is available at GitHub1 under Apache 2.0 license.

SLING’s design is modular to allow different relation linking modules to be
plugged in and used as needed. The motivation for using multiple modules is to
capture different signals such as linguistic cues from the question, richer semantic
information from the AMR predicates and roles, semantic similarities of terms,
and heuristics from the KB itself.

We have implemented four different relation linking modules. The first two
are novel relation linking approaches; both rely on distantly supervised data
which we create automatically using the DBpedia and Wikipedia documents (see
Sect. 5). The other two relation linking modules are unsupervised (see Sect. 6).
Each of the four modules provides relations with corresponding scores. We aggre-
gate these scores to output a final ranked list of relations.

An example of the metadata and the output is shown in Fig. 1 (b). The input
data includes the question text and its AMR graph. The modules in Question
Metadata Generation convert the AMR graph into a set of intermediate AMR
triples. Subjects and objects can be either named entities such as “Benicio del
Toro” or nominal entities such as “movie” (referring a set of unknown movies).
Named entities are linked to KB entities and nominal entities to KB classes. This
information is passed to individual relation linking modules. Finally, the system
generates a set of output triples with a scored ranked list of KB relations.

4 Question Metadata Generation

The components in Question Metadata Generation, process the question text
and its AMR to produce the necessary metadata for relation linking components.
The metadata include: (a) AMR triples, (b) KB entities and their types, and (c)
answer type prediction.

AMR Graphs. As an input, SLING expects a richer semantic representa-
tion of the question generated by an AMR parser [13]. An AMR parse is a
rooted, directed, acyclic graph expressing "who is doing what to whom" in
a sentence or a question. Figure 1(b) shows a simplified version of an AMR
graph for the question Who is starring in Spanish movies produced by
Benicio del Toro?. Each node in the graph represents a concept, whereas
edges represent relations between concepts that include ProbBank frames, nomi-
nal entities (types) and named entities. In this work, we rely on AMR graphs for
the following reasons: (1) AMR detects named entities and maps them to prede-
fined entity types (normalized) which forms the arguments of relations that have
to be mapped to a KB, (2) AMR not only identifies relations in text but also
normalises them using PropBank frames; (3) It reduces the ambiguity of natu-
ral language by converting relation phrases to their corresponding sense and (4)
for questions, a special node, amr-unknown, is used to represent a placeholder
for the answer to the question. Furthermore, the root node of the AMR graph,
1 https://github.com/IBM/kbqa-relation-linking.

https://github.com/IBM/kbqa-relation-linking
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a.k.a the focus node, identifies the main focus of the question. Therefore, by
using semantic parsing, we abstract out the syntactic variations and capture the
meaning of the question in a more normalised manner.

AMR Graph to AMR Triples. DBpedia has only binary relations (two argu-
ments). However, frames in AMR can have more than two arguments. For exam-
ple, the produce-012 frame can have four core roles; creator (arg0), creation
(arg1), created from (arg2), and benefactive (arg3) and other non-core roles
such as time or location whereas on DBpedia there are only binary relations
such as dbo:producer, dbp:productionDate, dbo:basedOn, or dbo:location.
Despite the richer representation, this inherent mismatch between n-ary argu-
ments of PropBank [7] frames and binary predicates in the KB poses a challenge.
Therefore, it is necessary to generate AMR triples with a similar structure to KB
triples (subject, predicate, and object) to facilitate their alignment. To resolve
this issue, we use an approach that performs combinatorial expansion of all
arguments of a frame to create binary relations and then prunes less probable
combinations. More details of this process are presented in Sect. 5.2.

Entity/Type Linking and Answer Type Prediction. Once the AMR triples
are derived, the next step is to link its subject and object to the KB. Sub-
jects and objects from AMR can either be entities (Fig. 1: Bencio del Toro →
dbr:Bencio del Toro) or classes (Fig. 1: movie → dbo:Film) in the KB. Enti-
ties are first linked to the KB using a regular entity linking tool that is based
on BLINK [8] and DBpedia Lookup.

For classes, the mapping between AMR type system and DBpedia type sys-
tem are generated semi-automatically. First, for each of 126 types from AMR
type system (from AMR spec3), their instances are collected from AMR graphs
and linked to KB entities. Then KB entity types are collected and they are
ranked by frequency. Top 5 types are checked manually to map a KB type to
each AMR type. This is a one time process that takes ∼2 h. This mapping can
be performed against any type system (e.g., DBpedia, Wikidata) given a tool
for entity linking is available. For the special node, amr-unknown, we map it to a
KB-type by using an LSTM-based answer type prediction model. For instance,
given a question such as “Who is starring in Spanish movies produced by
Benicio del Toro?”, it predicts dbo:Actor as the answer type.

5 Distantly Supervised Relation Linking

The question metadata such as AMR parse, AMR triples with entity and type
information (from Sect. 4) are used as input to the four REL modules. Two of
the modules that rely on distant supervision data are described below and the
other two in the next Sect. 6.

Distantly supervised data is generally used in tasks where there is a lack
of training data [11]. The lack of training data is also a significant challenge
2 http://verbs.colorado.edu/propbank/framesets-english-aliases/produce.html.
3 https://amr.isi.edu/doc/ne-types.html.

http://verbs.colorado.edu/propbank/framesets-english-aliases/produce.html
https://amr.isi.edu/doc/ne-types.html


408 N. Mihindukulasooriya et al.

for REL tasks on KBQA datasets. Particularly, if we want to perform REL to
DBpedia, we need training data for thousands of DBpedia relations. On the
other hand, the KBQA datasets such as QALD and LC-QuAD 1.0 have 408 and
5000 questions covering a small subset of DBpedia relations. In order to address
this issue, we collect training data using distant supervision, which eliminates
the need for task-specific supervision for relation linking.

5.1 Distant Supervision Dataset

To train our REL models, for each relation, we require training examples (sen-
tence, subject, object) mapped to its corresponding KB relation. For instance,
as shown in Fig. 2 (Sentence: Barack Obama was born in Honolulu, Hawaii,
subject: Barack Obama, object: Honolulu, Hawaii) mapped to (KB relation:
dbo:birthPlace).

Corpus Pre-processing and Indexing: As shown in Fig. 2, we begin with
the Wikipedia corpus, and perform co-reference resolution on each document.
The corpus is then tokenized into sentences, and named entities are identified
in each sentence to serve as ElasticSearch indices. We also store meta-data
such as the document the sentence was extracted from and its position in the
document. This meta-data is later used for selecting sentences.

Fig. 2. Distant supervision data generation pipeline

Relation Selection: To address the issue of the large number of relations in
KB, we select a manageable subset. DBpedia has a long tail of relations mainly
due to uncommon Wikipedia infobox keys that are not widely used in queries.
The number of examples that are generated by the distant supervision pro-
cess depends on the number of triples containing the relation in the KB. While
unsupervised modules use all relations in DBpedia, distantly supervised mod-
ules require some amount of examples to train the modules; thus the number of
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relations used by them depends of their frequency of occurrence. The distance
supervision process can generate more than 10 examples for ∼ 1.3K relations.

Selection of Examples: For each relation, we pick up to 1000 KB triples by
ordering them by the sum of subject and object in-degrees. The assumption
is that these entities are central and generally their corresponding Wikipedia
articles contain more information. Then for each KB triple, we select a single
example sentence, which is the first cooccurrence in entity’s Wikipedia article.
We choose sentences that satisfy the following: 1) subject and object co-occur, 2)
have at least 4 tokens, 3) have at least 1 verb and 4) the entity surface forms do
not overlap in the text (when one is a multi-word containing other). We observed
that these basic heuristics increased the probability that the sentence contains
a relation and filtered out accidental co-occurrences in titles, lists, etc.

5.2 Statistical AMR Predicate Alignment

This section presents a relation linking module that leverages the information
present in the AMR semantic parses to generates alignments between PropBank
predicates in AMR graphs and KB ontology relations. We describe below how
these alignments are generated and then used to produce candidate relations.

Building PropBank Alignments. One challenge for creating these align-
ments is the inherent mismatch between frame-based representation and triple-
based representation. In AMR graphs, a single frame captures a rich set of infor-
mation using n-ary relations (e.g., who is doing what to whom, when, etc.) while
triples in KBs capture simpler atomic facts using binary relations. For example,
the frame bear-024, which is used to capture the event of giving birth to a
child, has two core roles: arg0 (mother), arg1 (child) and several non-core roles
including location (place of birth), time (time of birth) as shown in Fig. 3-A.

To address this mismatch in the number of arguments, we first decompose the
AMR graph into a set of AMR triples. This is performed by creating binary rela-
tions between all entities participating in different roles of the frame using com-
binatorial expansion, as shown in Fig. 3-B. The generated binary relations are
paths between the two nodes in the graph and follow the structure, <propbank-
frame>.<subject-role>.<object-role>. Given a combination of two entities, for
example, Duka Tesla (with the arg0 role) and Nikola Tesla (with the arg1 role),
two AMR triples are generated, one with Dula Tesla as subject and Nikola Tesla
as object and the other vice-versa as shown below:

Duka Tesla bear02.arg0.arg1 Nikola Tesla

Nikola Tesla bear02.arg1.arg0 Duka Tesla

Nevertheless, this process generates a large number of AMR triples that
will not necessarily have their mapping relation in the KB. For example,
in DBpedia, the place or the date that a mother gave a birth to a child
4 http://verbs.colorado.edu/propbank/framesets-english-aliases/bear.html.

http://verbs.colorado.edu/propbank/framesets-english-aliases/bear.html
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Fig. 3. converting AMR graphs to binary relations using combinatorial expansion

(bear02.arg0.location/time) is not represented as an attribute of the mother
but only as attributes of the child and consequently there is no equivalent rela-
tion for those in the KB. This can be addressed by analysing how often we can
align a given AMR triple to a KB triple. For example, out of 12 AMR triples
generated (Fig. 3-B), only the four highlighted can be aligned with the existing
KB triples in DBpedia.

Because KBs are generally multi-graphs and there are cases where two enti-
ties are connected with multiple relations in the KB. For example, if we assume
Nikola Tesla was born and died in the same place, two entities (Nicola Tesla
and Smijan) will be related both by birthPlace and deathPlace relations. In
such cases with multiple candidates, we use lexical similarity between frame def-
inition/aliases from PropBank (e.g., bear, bear children, birth, give birth)
and DBpedia relation labels to disambiguate and select the most similar one.

Finally, to accommodate error propagation from both distant supervision
dataset and AMR parsing, which could lead to noise in the alignments, we also
use type constraints to further refine the alignments. The goal of this step is
to induce type constraints for each role in a given frame. This is performed by
collecting all entities participating in a given role in a frame (e.g., bear-02.ARG0)
and analyzing their types (including data types such as numerics and dates).
Using this information, proxy domain and range constraints for AMR binary
relations can be generated as in Fig. 4. These constraints are used to filter out
any aligned DBpedia relation that does not match with the type constraints.

To summarize, for generating these alignments efficiently, we used the distant
supervision dataset, defined as D = {(si, ri, oi, ti), . . . } where {si, ri, oi} are the
subject, relation, object of the KB triple and ti is the corresponding sentence
(see Fig. 2). We parse each ti and generate an AMR graph ai. Each ai is then
converted into a set of AMR triples xj = {s̀j , pj , òj} where xj ∈ ai and pj is
the AMR binary predicate, s̀j and òj are the subject and object from the AMR
graph. Finally, we check for an AMR triple xj where s̀j = si and òj = oi and if
found, one alignment between ri and pj is created.
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Fig. 4. Type constraints for frame roles

Finding Relation Candidates. Once the complete dataset is processed and
alignments are filtered using type constraints, for each AMR binary predi-
cate pj we get a set of cumulative alignments A(pj) = {(r0, c0), . . . , (rn, cn)}
where each r is a KB relation and c is a alignment count. Using that, for
each AMR binary predicate pj , relation candidate scores are calculated using
relation score(pj , rn) = [cn/max(c)] ∗ [1/1 + log(inv pred count(rn)] where
max(c) is highest count in A(pj) and inv pred count(rn) is the inverse pred-
icate count, i.e., number of distinct AMR predicates which rn is aligned at least
once.

5.3 Neural Model for Relation Linking

Statistical AMR mapping has the following drawbacks that can be addressed
using a neural approach: (1) mapping generic frames such as have-01 can be
ambiguous. For example for: ‘‘Did Che Guevara have children?" has the
frame have that needs to be mapped to dbo:child (2) lexical gap where the
same relation type can be expressed as different linguistic patterns. Therefore,
we train a neural model for relation linking by exploiting the distant supervi-
sion dataset (Sect. 5.1). The neural model produces dense embedding vectors for
input questions, which can learn to project the same relation type’s different
surface forms close in the latent space. In this section, we describe how to train
the neural model on the distant supervision data (training) and how to make
use of the model for question REL (inference).

Training Phase. Leveraging our distant supervision dataset, our training data
is defined as D = {(x0, r0), . . . , (xN , rN )}. Here ri ∈ R are the relation types,
and xi = (ti, si, oi) are the relation instances consisting of a textual sentence
ti and the spans of the subject si and the object oi. The set R represents the
vocabulary of K = |R| distinct relation types. We train a neural network M on D
with the purpose to predict the correct relation type rk given the instance xk by
minimize the cross-entropy loss regarding the conditional probability pM (·|xk)
modeled by M , with respect to the true relation rk.

In order to generate a vector representation of the relation instance x,
we adopt the relation encoder inspired by [19]. This encoder is an adapta-
tion of the original Transformer [23] architecture that encodes the given sen-
tence while being aware of the subject and object. To achieve this entity-aware



412 N. Mihindukulasooriya et al.

encoding, we introduce four special tokens to mark the start and end positions
of both entities in the sentence, [SUBJ], [\SUBJ], [OBJ] and [\OBJ] respec-
tively. For instance, the second relation instance of birthPlace in Fig 2 is rep-
resented as “[SUBJ] Akira Murayama [\SUBJ] is a Japanese voice actor
from [OBJ] Tokyo [\OBJ]”. These new special tokens are randomly initialized
and fine-tuned during training, whereas all the other tokens are initialized using
the pre-trained BERT-base embeddings [3]. We concatenate the vectors of the
final-layer hidden states of the start entity markers of subject and object entities,
feed them into a fully connected layer to get the finally embedding vector for
the relation instance x.

Finally, to estimate pM (rk|xk), we add a further classification layer with the
output size K followed by a softmax function.

Inference Phase. There are several challenges to address when applying the
trained neural relation linking model M to deal with question relationship link-
ing. In particular, how to mark the missing entities from the question, which
consists of two cases: (1) the missing entity is the answer; (2) the missing entity
is an intermediate entity when the question requires multiple hops to reach the
answer. We exploit the AMR graph to AMR triples feature described in Sect. 4
to handle these challenges.

• Intermediate entities: Consider the question in Fig. 1 and its generated
metadata. The question requires to first find some Spanish movie entities
having the dbo:producer relation with Benicio del Toro, e.g.., 7 dı́as
en La Habana, then identifies another relation dbo:star from the movie
entity. Since the movie name is missing in the question text, when pre-
dicting its relationship to Benicio del Toro, we take the surface form of
arg2 for star-01.arg2.arg1, i.e., the word “movies” as the object. In
this way, we generate the following input relation instance to the neural
model M , Who is starring in Spanish [OBJ] movies [\OBJ] produced
by [SUBJ] Benicio del Toro [\SUBJ] ?.

• Unknown (answer) entities: Consider the same question as above. The predi-
cate star-01.arg2.arg1 has no explicit text for the arg1 since the amr-type
is unknown, which refers to the answer. In this case, we mark the question word
“Who” for the arg2. Therefore the following format for the relation instance
is generated for our neural model: “[OBJ] Who [\OBJ] is starring in
Spanish [SUBJ] movies [\SUBJ] produced by Benicio del Toro?”.

Finally, with the aforementioned treatments, for each relation instance a ranked
list of relation types in DBpedia is generated and sorted by their probability
scores produced by our neural model.

6 Unsupervised Relation Linking and Score Aggregation

In the previous section, we have described the 2 distantly supervised modules.
In this section, we describe the remaining 2 modules and aggregation of scores
to get the final ranked list of KB relations.
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6.1 Unsupervised Modules

Lexical Similarity. To derive the score of a relation with respect to an AMR
triple, we compute its lexical similarity to the question text and AMR predicate.
For each relation candidate, like dbo:deathPlace, we consider its label as a word
sequence death place. We concatenate each question, e.g., Who was married
to Lincoln, with the AMR predicate of the triple (e.g. marry from marry-01)
to get the other word sequence. We compute the lexical similarity between the
two word sequences by first calculating a word-by-word cosine similarity based
on word2vec embeddings. If there are m words in one word sequence, and n
words in the other, this produces m×n similarity scores. This is max-pooled to
produce a single score as output.

Knowledge Base Connections. In KBQA, the entities from the questions
are identified and linked to KB first. Therefore, the task of relation linking also
assumes the existence of such linked KB entities and entity types as described
in the Question Metadata Generation step. Hence, candidate relations that
also connect these detected entities can be scored higher, following previous
works [16]. For example, given the question “Who created Family Guy?”, to
predict the relation in this question, we score all relations connected to the KB
entity (dbr:Family Guy) as the object and a subject of KB type dbo:Person or
any subclass of it (which is predicted by answer type prediction). We then apply
a soft constraint to focus more on the relations that are within this set.5.

6.2 Score Aggregation

The scores from each module are normalized using min-max normalization. The
final score of a relation is the arithmetic sum of its normalized score from each
module, and a ranked list of relations is obtained for the AMR triple. This
process is repeated for every AMR triple extracted from the question.

7 Evaluation

In this section, we detail our experimental setup and evaluate our approach
against the state-of-the-art relation linking approaches for KBQA. We replicate
the experimental setup proposed in Falcon [16] in terms of the same datasets
and metrics used for a fair comparison, as described below.

5 Ideally, we can do the hard filtering with the relation connections. However as REL
is a component of a whole KBQA pipeline. To mitigate potential error propagation
from entity linking, most works adopt a soft approach [6,16].
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Table 1. KBQA datasets statistics

Dataset Questions Avg constraints

QALD-7 215 1.5

QALD-9 408 1.5

LC-QuAD 1.0 5000 1.7

Table 2. Relation Linking systems comparison

QALD-7 LC-QuAD 1.0 QALD-9

System P R F1 P R F1 P R F1

SIBKB 0.29 0.31 0.30 0.13 0.15 0.14 – – –

ReMatch 0.31 0.34 0.33 0.15 0.17 0.16 – – –

EARL 0.27 0.28 0.27 0.17 0.21 0.18 – – –

Falcon 0.58 0.61 0.59 0.42 0.44 0.43 0.31 0.34 0.32

SLING 0.57 0.76 0.65 0.41 0.58 0.48 0.50 0.64 0.56

7.1 Experimental Setup

We used three KBQA datasets; QALD-7 [22], QALD-9 [21] and LC-QuAD
1.0 [20]. All the datasets comprise of question text, their corresponding SPARQL
queries, and answers from DBpedia. Similar to [16], we use the question text and
the relations in the SPARQL queries for evaluation6. Table 1 shows the number
of questions and the average triple constraints in SPARQL queries for each of
the datasets. QALD-9 is an evolved version of QALD-7 extending the number
of questions from 215 to 408.

We compare SLING against four existing REL approaches for KBQA: (1)
SIBKB [18], (2) ReMatch [12], (3) EARL [4], and (4) Falcon [16]. Falcon [16] is
the state-of-the-art approach evaluated on QALD-7 and LC-QuAD 1.0 datasets.
We use standard metrics such as precision, recall, and F-measure for evaluation
and comparisons. The precision measures the capability of a REL system to
predict the exact number of expected relations in a given question and the recall
measures the capability of a system to cover all the expected relations.

7.2 Results

Table 2 shows the precision, recall, and F-measure of SLING in comparison to
state-of-the-art approaches. The results show that our approach consistently
achieves a better F1 score than the existing approaches and is robust across
datasets, i.e. the results on QALD-7 and QALD-9 are respectively similar com-
pared to those obtained by Falcon7. Moreover, SLING provides a remarkably
higher recall than the other competing systems.
6 We exclude rdf:type, and rdfs:label to follow same setting in [16].
7 Falcon numbers on QALD-7 and LC-QuAD 1.0 are taken from their paper.
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Ablation Study: In order to understand the contribution of each module in
the SLING framework, we perform an ablation study by removing the corre-
sponding module from the overall system and comparing its performance. These
results reported in Table 3 indicates that every module contributes to the overall
performance of the system results. Particularly, removing the statistical AMR
mapping approach from the system has the biggest drop in performance. The
AMR mapping component provides the strongest contribution of the modules,
with the system performance dropping considerably without its usage. AMR
provides predicates that are already a strong signal for identifying the relations
in a sentence. Moreover, AMR parsers normalize syntactic variations across sen-
tences which have the same meaning. Finally, AMR provides type information
about the subject and object of a relation, even when they are unknown. This
enables domain and range-derived features to constrain the predicted relation
candidates.

Table 3. Ablation study on QALD-7 dataset

P R F1

SLING 0.57 0.76 0.65

w/o AMR Mapping 0.45 0.57 0.51

w/o Neural Relation Linking 0.52 0.66 0.58

w/o Word Embeddings 0.53 0.68 0.59

w/o KB Analysis 0.46 0.61 0.53

Table 4. Relation linking performance with machine generated vs human annotated
AMR on a subset of QALD-9 dataset

P R F1

w/ machine generated AMR 0.53 0.76 0.62

w/ human annotated AMR 0.57 0.77 0.66

For relations that are implicit in text, the Neural Relation Linking bridges
the lexical gap to map them. For instance, considering the first example in Table
6, the relation type dbo:country is implicit in the question, but the neural model
is able to identify it nevertheless. Furthermore, the Neural Relation Linking is
able to handle questions having more than one relation, where different relations
can be predicted given the same question text, but different spans of entities, as
described in Sect. 5.3. This insight confirms that the distant supervision tech-
nique can be helpful in covering different language phrases to identify and link
relations to a KB, especially in setting such as QALD, where only a small train-
ing set is provided.
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Table 5. Relation linking performance with our entity linking implementation vs anno-
tations from [14] on LC-QuAD dataset.

P R F1

w/ our entity linker implementation 0.41 0.58 0.48

w/ entity annotations from [14] 0.46 0.62 0.53

Based on our analysis we find that the Word Embeddings module is par-
ticularly useful when the relation is explicitly mentioned in the question, like
‘Who is the mayor of Paris?’, with the relation being dbo:mayor. It pro-
vides high-precision estimates about the relations in the question.

Automatic extraction of DBpedia triples from Wikipedia Infoboxes (when
mappings are not available) introduces redundant and noisy (dbp:) relations.
For instance, there are relations such as dbo:birthPlace, dbp:birthPlace,
dbp:birthLocation and dbp:placeOfBirth that are semantically equivalent
and cannot be lexically distinguished based on their labels. In such scenar-
ios KB analysis allows the system to choose the correct relation by consider-
ing only the ones connected to the entities of interest. For the question ‘What
is the birth place of Frank Sinatra?’, without the KB analysis we find
dbo:birthPlace and dbp:placeOfBirth as the top ranked relations. KB anal-
ysis scores dbp:placeOfBirth higher because of its association with the entity
dbr:Frank Sinatra (Table 5).

Impact of AMR Parser: To understand how the quality of AMR affects the
results, we have manually annotated a subset of QALD-9 questions (ids 250 to
408) and the results are presented in Table 4. It shows that human annotated
AMRs provide an improvement of 4 points in F1. The state-of-the-art AMR
parser [13] has a smatch score of 90% when tested on a subset of QALD-9
dataset.

Impact of Entity Linking: To understand the effect of entity linking, we have
performed a similar experiment using entity annotations provided by [14] for
LC-QuAD 1.0. We have tested the entity linker implementation we used with
QALD-9; it has an F1 of 0.75.

7.3 Qualitative Analysis and Discussion

Table 6 shows five example questions with their gold standard relations com-
pared to what SLING predicts for each question. SLING was able to find the
correct set of relations for the first three questions and partially solves the rest.
In the first question, the main challenge is to decompose the question into three
triples with correct subject/object combinations. Leveraging AMR allows SLING
accurately determine the correct triple decomposition including directionality
and the number of triples. Once decomposed, all relation linking modules pro-
vide strong signals in this example. The second and third questions are lexically
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Table 6. Example queries with gold and predicted relations.

ID Question Gold standard triple patterns Predicted
relations

1 Who is starring in
Spanish movies
produced by
Benicio del Toro?

?film dbo:starring ?actor .
?film dbo:country res:Spain .
?film dbo:producer res:Benicio del Toro

dbo:starring
dbo:country
dbo:producer

2 Who developed
Skype?

res:Skype dbo:developer ?company dbo:developer

3 Who developed
Slack?

?company dbo:product res:Slack dbo:product

4 Give me the
grandchildren of
Bruce Lee.

res:Bruce Lee dbo:child ?child
?child ?dbp:child ?granchild

dbo:child

5 Which
organizations were
founded in 1950?

{ ?org dbo:formationYear ?date } UNION
{ ?org dbo:foundingYear ?date } UNION
{ ?org dbp:foundation ?date } UNION
{ ?org dbp:formation ?date }

dbo:foundingYear

very similar but their representations in KB are different. The fact that SLING
creates triples with directionality into account and perform KB analysis allowing
it to pick correct relation in each case. The fourth question is challenging because
it requires to reason that grand children are children of children. AMR repre-
sent this using a single triple. Furthermore, the relation used in each constraint
is different (dbo:child vs dbp:child). SLING gets a set of candidates such as
dbo:child, dbp:children, dbp:grandChilden and picks dbo:child as it is con-
nected to res:Bruce Lee. Nevertheless, it does not decompose this question into
two triples. Similarly, some gold standard questions have the UNION construct
with logically equivalent relations in KB. However, as the relation appears only
once in the text, SLING only aims to predict one relation.

8 Conclusions and Future Work

In this paper, we presented SLING, a framework for relation linking that leverages
semantic parsing with AMR and distant supervision. SLING is a combination
of multiple modules that capture complementary signals both from the AMR
representation as well as natural language text. Experimental results show that
SLING outperforms state-of-the-art approaches on three KBQA datasets; QALD-
7, QALD-9, and LC-QuAD 1.0. Furthermore, our ablation study shows that
leveraging AMR and the use of distant supervision contributes to outperform
the state-of-the-art techniques. As a part of our future work, we are planning
to convert all the components as feature generators for an end to end neural
approach. Furthermore, we intend to investigate the use of transformer-based
architectures for encoding both AMR graphs and the question text for relation
linking.
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Abstract. The RDF-to-text task has recently gained substantial atten-
tion due to continuous growth of Linked Data. In contrast to traditional
pipeline models, recent studies have focused on neural models, which are
now able to convert a set of RDF triples into text in an end-to-end style
with promising results. However, English is the only language widely tar-
geted. We address this research gap by presenting NABU, a multilingual
graph-based neural model that verbalizes RDF data to German, Russian,
and English. NABU is based on an encoder-decoder architecture, uses
an encoder inspired by Graph Attention Networks and a Transformer
as decoder. Our approach relies on the fact that knowledge graphs are
language-agnostic and they hence can be used to generate multilingual
text. We evaluate NABU in monolingual and multilingual settings on
standard benchmarking WebNLG datasets. Our results show that NABU
outperforms state-of-the-art approaches on English with 66.21 BLEU,
and achieves consistent results across all languages on the multilingual
scenario with 56.04 BLEU.

Keywords: Knowledge Graphs · Natural Language Generation ·
Semantic Web

1 Introduction

Natural Language Generation (NLG) is the process of generating coherent natu-
ral language text from non-linguistic data [38]. Despite community agreement on
the text and speech output of these systems, there is far less consensus on what
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the input should be [20]. A large number of inputs have hence been employed
for NLG systems, including images [48], numeric data [22], and Semantic Web
(SW) data [34]. Practical applications can be found in domains such as weather
forecasts [30], feedback for car drivers [8], diet management [1].

Presently, the generation of natural language from Resource Description
Framework (RDF) data has gained substantial attention [7]. The RDF-to-text
task has hence been proposed to investigate the quality of automatically gen-
erated texts from RDF Knowledge Graphs (KGs) [11]. With the emergence of
neural methods, end-to-end data-to-text models have been introduced to learn
input-output mappings directly. These approaches rely much less on explicit
intermediate representations compared to rule-based approaches [21].

Although Neural NLG models have been achieving very good results [19],
English is the only language that has been widely targeted. In this work, we
alleviate this language limitation by proposing a multilingual approach, named
NABU. The motivation behind multilingual models lies in several directions,
mainly in (1) transfer learning; when low-resource language pairs are trained
together with high-resource languages, the translation quality improves; (2) zero-
shot translation, where multilingual models are able to translate between lan-
guage pairs from similar families that were never seen during training; (3) Easy
deploy, a multilingual model achieving same performance on many languages in
comparison to several separate language-specific models are much more desirable
for companies in terms of deployment [24].

Our approach, NABU, is based on the fact that knowledge graphs are
language-agnostic and hence can be used on the encoder side to generate multilin-
gual text. NABU consists of an encoder-decoder architecture which incorporates
structural information of RDF triples using an encoding mechanism inspired by
Graph Attention Network (GAT) [47]. In contrast to recent related work [39],
NABU relies on the use of a reification strategy for modeling the graph structure
of RDF input. The decoder part is based on the vanilla Transformer model [46]
along with an unsupervised tokenization model.

We evaluate NABU on the standard benchmarking WebNLG datasets [18]
in three settings: monolingual, bilingual and multilingual. For the monolingual
setting, we compare NABU with state-of-the-art English approaches and also
perform experiments on Russian and German. The goal of the bilingual setting is
to analyze the performance of NABU for language families. To achieve this goal,
we train and evaluate bilingual models using NABU on English-German and on
English-Russian. In the multilingual setting, we compare NABU with a multilin-
gual Transformer model on English, German and Russian. Our results show that
NABU outperforms state-of-the-art approaches on English and achieves 66.21
BLEU. NABU also achieves consistent results across all languages on multilin-
gual settings with 56.04 BLEU. In addition, NABU presents promising results on
the bilingual models with 61.99 BLEU. Our findings suggest that NABU is able
to generate multilingual text with similar quality to that generated by humans.
The main contributions of this paper can be summarized as follows:
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– We present a novel approach dubbed NABU based on a GAT-Transformer
architecture for generating multilingual text from RDF KGs.

– NABU outperforms English state-of-the-art approaches with consistent aver-
age improvements of +10 BLEU, METEOR and chrF3 on the WebNLG
datasets.

– NABU exploits the benefits of modeling of language families in the generation
task.

The version of NABU used in this paper and also all experimental data are
publicly available.1

2 Related Work

A significant body of research has investigated the generation of Natural Lan-
guage (NL) texts from RDF data. A plenty of research is based on template- and
rule-based approaches such as [10,14,15,34]. Recently, the WebNLG [11] chal-
lenge made this research area more prominent by providing a benchmark corpus
of English texts verbalizing RDF triples in 15 different semantic domains. Among
the participating models, the works based on sequence-to-sequence Neural Net-
works (NNs) achieved some of the best results [32,43]. Moreover, RDF has also
been showing promising benefits to the generation of benchmarks for evaluating
NLG systems [33].

The choice of neural architectures for RDF-to-text has evolved constantly
along the last couple of years. All end-to-end models submitted to the WebNLG
challenge [19] received the set of triples in a linearized form as input. How-
ever, researchers have recently been experimenting with graph-based approaches,
which take the RDF input formatted as a graph, with promising results.
Marcheggiane and Perez [29] proposed a structured data encoder based on
Graph Convolutional Network (GCN) that directly exploits the graph structure
and presented better results than Long Short-Term Memories (LSTM) mod-
els. Distiawan et al. [13] presented a GTR-LSTM architecture which captures
the global information of a KG by encoding the relationships both within a triple
and between the triples. Ferreira et al. [17] introduced a systematic comparison
between neural pipeline and end-to-end data-to-text approaches for the gener-
ation of text from RDF triples. Although Marcheggiane and Perez [29] showed
that the linearisation of the input graph has several drawbacks, the authors
implemented Gated recurrent unit (GRU) and Transformer architectures which
showed results superior to those of the former architecture. Recently, Ribeiro
et.al [39] devised an unified graph attention network structure which investigates
graph-to-text architectures that combined global and local graph representations
to improve fluency in text generation. Their experiments demonstrated signifi-
cant improvements on seen categories in the WebNLG dataset.

Despite the plethora of graph-based neural approaches on handling RDF
data, English is the only language which has been widely targeted. Recent efforts
1 https://github.com/dice-group/NABU.

https://github.com/dice-group/NABU
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were made to create German and Russian language versions of WebNLG [16,42].
However, no work that investigates these languages has been published at the
time of writing. To the best of our knowledge, NABU is hence the first approach
which tackles multilinguality in the RDF-to-text task.

3 The NABU Approach

NABU tackles RDF-to-text based on the formal description of a translation
problem. The RDF-to-text task takes an RDF graph as input and generates an
output text which reflects its meaning. Figure 1 depicts an example of a set
of 3 RDF triples and the corresponding text. Therefore, the underlying idea
behind our approach is as follows: Given that KGs are language-agnostic and
represent facts often extracted from text, we can regard the facts (i.e., RDF
triples) as sentences and train a model to translate the facts from a language-
agnostic graph representation to several languages. In the following, we give an
overview of GAT architecture and Transformer. Thereafter, we present NABU
in detail. Throughout the description of our methodology and our experiments,
we use DBpedia [2] as reference Knowledge Base (KB) since the benchmarking
datasets are based on this KB.

Albert Einstein was a scientist who worked in physics. 
He was born in Ulm and 

graduated from the University of Zurich.
Also, he died in Princeton and

 had under his guidance Ernst Gabor Straus.

Scientistrdf:type

dbo:almaMaterdbo:doctoralStudent

dbo:field
Physics

dbo:birthPlace

dbo:deathPlace

Fig. 1. Example of a set of triples (left) and the corresponding verbalization (right).

3.1 Background

Transformer. Transformer-based models consist of an encoder and a decoder,
i.e., a two-tier architecture where the encoder reads an input sequence x =
(x1, ..., xn) and the decoder predicts a target sequence y = (y1, ..., yn). The
encoder and decoder interact via a soft-attention mechanism [3,28], which com-
prises one or multiple attention layers. We follow the notations from Tang
et al. [45] in the subsequent sections: Let m stand for the word embedding
size and n for the number of hidden units. Further, let K be the vocabulary
size of the source language. Then, hl

i corresponds to the hidden state at step i
of layer l. hl

i−1 represents the hidden state at the previous step of layer l while
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hl−1
i means the hidden state at i of layer l − 1. E ∈ R

m×K is a word embedding
matrix, W ∈ R

n×m, U ∈ R
n×n are weight matrices, Exi

refers to the embedding
of xi, and epos,i indicates a positional embedding at position i.

Transformer models rely deeply on self-attention networks. Each token is
connected to every other token in the same sentence directly via self-attention.
Thus, the path length between any two tokens is 1. Due to lack of recurrence
found in Recurrent Neural Network (RNN), Transformers implement positional
encoding to input and output. Additionally, these models rely on multi-head
attention to feature attention networks, which are more complex in comparison
to the 1-head attention mechanism used in RNNs. In contrast to RNN, the
positional information is also preserved in positional embeddings. Equation 1
describes the hidden state hl

i, which is calculated from all hidden states of the
previous layer. f represents a feed-forward network with the rectified linear unit
(ReLU) as the activation function and layer normalization. The first layer is
implemented as h0

i = WExi
+ epos,i. Moreover, the decoder has a multi-head

attention over the encoder’s hidden states:

hl
i = hl−1

i + f(self-attention(hl−1
i )). (1)

Graph Attention Networks. Deep Learning on non-euclidean data has
recently gained substantial research interest due to the abundance of its avail-
ability. A plethora of problems can be solved efficiently by representing data
in a data structure that can utilize the inherent structure and inter-entity rela-
tionships. Kipf and Welling [26] introduced GCN, through which they generalize
the convolution operation of Convolutional Neural Network (CNN) to graph
structures. Every layer in a GCN has a weight matrix W that transforms nodes
feature vectors from a low-dimensional representation space to high-dimensional
representation space, which aims to preserve the structure of the graph.

Consider a graph of z nodes and a set of node features (h1,h2, ..,hz ). A
GCN layer computes a net set of features (h

′
1,h

′
2, ..,h

′
z ). First the feature matrix

is multiplied with W g = Wh. Then, the aggregated sum of node features are
normalized using normalization constant 1

cij
to stabilize the update rule. Finally,

h
′
i = σ

⎛
⎝∑

jεNi

1
cij

gj

⎞
⎠

However, the convolution operation in GCN does not take into account the
fact that some nodes are more important than others to generate a particular
segment of the target sentence. To alleviate this problem, Velickovic et al. [47]
devised GAT, which converts the normalization constant into dynamic attention
coefficients. The attention coefficients are calculated by applying self-attention
over node features. In one forward pass, a GAT layer calculate a score of a given
node that quantifies the importance of neighbors to its representation:

eij = a (hi ,hj ) .
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The attention scores are then normalized using softmax:

αij =
exp(eij)∑

kεNi
exp(eik)

.

3.2 Approach

Graph-based NNs have been used successfully to parse and support the genera-
tion of natural-language sentences from RDF KG. Although GAT models have
shown to alleviate the loss of node information, the network still suffers from
parameter explosion depending on the size of the graph structure [5]. To alle-
viate the parameters explosion problem, we follow the same strategy used in
[29], named reification,2 to slightly modify how the RDF graph is encoded. We
describe below how reification is applied. Afterward, we explain the encoder and
decoder parts of NABU. An overview of NABU architecture after reification can
be found in Fig. 2.

layer

layer

layer

layer

layer

layer
Albert Einstein was a scientist born in 1879 in

Germany.

Albert Einstein war ein 1879 in Deutschland
geborener Wissenschaftler.

Альберт Эйнштейн - ученый, родился в 1879
году в Германии.

type

Albert
Einstein

A0
birthPlace

birthDate

A0

A0

Germany

A1

1879

A1

Scientist
A1

Encoder
GAT

Decoder
Transformer English

German

Russian

RDF Graph 

OUTPUTINPUT

Fig. 2. NABU architecture

Reification. RDF triples are represented as a graph in which (i) the sub-
jects and objects are nodes and (ii) predicates (relationships) between them
are labeled edges. For example, <Albert_Einstein, birthPlace, Germany>
can be seen as a sub-KG in DBpedia where Albert_ Einstein and Germany
are the nodes and birthPlace is the edge. However, the edges are encoded as
parameters by the GAT, and the parameters explosion problem stated by Beck
et al. [5] often occurs.

Therefore, we follow the reification strategy, which maps the relations to
nodes in the KG and creates new binary relations for each relation in the RDF
triples. We rely on two binary relations, which model the relationship between
the subject and predicate (A0) and predicate and object (A1) only. For exam-
ple, 〈Albert_Einstein, birthPlace, Germany〉 becomes 〈Albert_Einstein, A0,

2 Not to be confused with RDFS reification.
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birthPlace〉 and 〈birthPlace, A1, Germany〉. Apart from handling the parame-
ter explosion problem, reification is useful in two ways. First, the encoder gener-
ates a hidden state for each relation in the input. Second, it allows for modeling
an arbitrary number of edges (predicates) efficiently. Figure 3 illustrates the
reification strategy for our example.

Encoder. Here, the reified graph is sent as input to the GAT that applies a self-
attention mechanism to compute the importance of each node in the graph. The
GAT encoder represents nodes in a high-dimensional vector space whilst taking
into account the representations of their neighbors. Note that NABU follows the
same strategy of recent literature on multilingual Neural Machine Translation
(NMT) models in which a special token is used in the encoder to determine
to what target language to translate [44]. Figure 4 shows how a single forward
step/pass works in NABU approach.

Albert
Einstein

type

1879

birthDate

Germany

Scientist

type

Albert
Einstein

A0
birthPlace

birthDate

A0

A0

Germany

A1

1879

A1

Scientist
A1

birthPlace

reification

Fig. 3. Reification used on our example.

Source
Vector

Destination
Vector

Node 
Vector

Label
Vector

Node Role
layer

Input
vector

Encoder Decoder

Fig. 4. An overview of a single forward pass in NABU.
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In one forward pass of our model, we have four dense vectors as inputs,
namely (i) the node vector H = (h1,h2, ..,hz ) with embeddings of all nodes in
the graphs, (ii) the source vector, S = (s1, s2, .., sz ) with embeddings of source
nodes in edges of the graph, (iii) the destination vector, D = (d1,d2, ..,dz )
with embeddings of target nodes in edges of the graphs and (iv) the label vector,
L = (l1, l2, .., lz ) with embedding labels. The source S and destination D vectors
are concatenated and are passed through dense layer which encodes them into
a vector of the same shape as the label vector. We call this new vector the edge
vector, E. We then add the edge vector (E), node vector (H) and label vector
(L) to form the input vector to our encoder:

E = f(S,D), and

H
′
=‖hεη G(H +L+E),

where η is the number of heads in the multi-head attention layer.

Decoder. Our decoder follows the standard architecture of the Transformer
decoder, which takes into account the intermediate representation generated by
the encoder. The decoder gives a probability distribution over the target lan-
guage’s vocabulary. We also rely on an unsupervised tokenizer, which implements
yte Pair Encoding (BPE) [41] and unigram language model [27] for handling mul-
tilinguality and out-of-vocabulary words. Afterward, we apply a beam search for
selecting the most likely word in the output sentence.

4 Evaluation

4.1 Goals

In our evaluation, we address the following research questions:

Q1: How does our multilingual approach compare with state-of-the-art results
in English?

Q2: Is NABU able to generate bilingual text while modelling two languages from
distinct families?

Q3: How accurate are the multilingual texts generated by NABU?

We designed our evaluation as follows: First, we measured the performance
of NABU on English by using the WebNLG dataset and compared it with
state-of-the-art approaches. Additionally, we evaluated NABU on two other
languages—German and Russian. Second, we evaluated NABU on bilingual
models—English-German and English-Russian. Third, we combined all three
languages in a multilingual setting and compared it with a multilingual Trans-
former baseline model. For measuring the quality of our approach, we used the
automatic evaluation metrics BLEU, METEOR, and chrF++.
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4.2 Data

The experiments presented in this work were conducted on the WebNLG corpus
[18,19], which consists of sets of RDF triples mapped to target texts. In compari-
son with other popular NLG benchmarks [6,31,35], WebNLG is the most seman-
tically varied corpus. Its English version contains 25,298 texts which describe
9,674 sets of up to 7 RDF triples in 15 domains: Astronaut, University, Monu-
ment, Building, Comics Character, Food, Airport, Sports Team, Written Work,
City, Athlete, Artist, Means of Transportation, Celestial Body and Politician.
Out of these domains, five (Athlete, Artist, MeanOfTransportation, Celestial-
Body, Politician) are exclusively present in the test set, being unseen during the
training and validation processes.

For German and Russian, we relied on the translated versions of WebNLG
corpus [9,42]. The German version comprises 20,370 texts describing 7,812 sets of
up to 7 RDF triples in 15 domains. Additionally, the German datasets provide
gold-standard representations for traditional pipeline steps, such as discourse
ordering (i.e., the order in which the source triples are verbalized in the tar-
get text), text structuring (i.e., the organization of the triples into paragraph
and sentences), lexicalization (i.e., verbalization of the predicates) and referring
expression generation (i.e., verbalization of the entities). The Russian datasets
contain 20,800 texts describing 5,185 sets of up to 7 RDF triples in 9 domains.
Both were automatically created and manually analyzed. The English and Rus-
sian datasets abide by the criteria to gold standards as they were manually
assessed by several native speakers. The German version can be regarded as a
silver standard given that it did not go through the same process and contains
some known errors. For the monolingual experiments, we relied on the standard
WebNLG parts of train, dev, and test sets across all languages. Note that the
German version does not contain a test set originally. Therefore we relied on a
k-Fold Cross-Validation technique to create the test set. For the multilingual set
of experiments, we concatenated all English, German and Russian datasets and
shuffled their training sets randomly to facilitate an end-to-end training of the
model.

4.3 Tasks

We designed three tasks for carrying out our evaluation, (1) Monolingual, (2)
Bilingual, (3) Multilingual. (1) In the monolingual task, we train our models
to work in each language separately. Hence, we generate three models, one for
English, one for German, and another for Russian. Each model receives RDF
triples from its given DBPedia language version. For example, the German model
receives triples from the German DBpedia. Afterward, we evaluate the models on
each WebNLG language-specific dataset. (2) The bilingual task was divided into
two sets; the first set, we train one English-German model. This model receives
RDF triples from the English and German DBpedia versions as input and has to
generate text in English and German, as output. For the second set, we trained
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one English-Russian model that receives RDF triples from the English and Rus-
sian DBpedia versions and generates text in English and Russian, respectively.
(3) In the third task, we train one multilingual model which receives as input the
triples from the English, German, and Russian DBpedia versions. This model has
to output text in three languages, English, German, and Russian, respectively.
The input relies on WebNLG triples containing resources from the English, Ger-
man, and Russian DBpedia KGs, all entities are found across the three KGs via
sameAs relations for the sake of completeness.

4.4 Model Settings

In this section, we describe the parameters and hyper-parameters used to train
NABU models. We experimented with two encoder-decoder architectures for
RDF verbalization. First, Transformerbaseline which is an encoder-decoder model
with a pure transformer architecture used to both encode triples into intermedi-
ate representation and decode it into tokens. Second, NABUGAT−Trans, which
comprises a GAT encoder and Transformer as the decoder.

For both models, we relied on the same settings. We used a Transformer
6-layer encoder-decoder model with an 8-headed multi-head attention mecha-
nism [46]. The training used a batch size of 32 and Adam optimizer with an
initial maximum learning rate of 0.001. We set a source and target word embed-
ding’s size of 256, and hidden layers to size 256, dropout = 0.3 (naive). We used
a vocabulary of 32000 words for the word based models and a beam size of 5.
All our vocabularies were trained using the sentencepiece library.3 In addition,
we used a copy mechanism for investigating the out-of-vocabulary (OOV) words
issue. This mechanism first tries to substitute the OOV words with target words
that have the highest attention weight according to their source words [28]. If the
words are not found, it copies the source words to the position of the not-found
target word [23]. Note that we added an extra language token at the begin-
ning of our input sentences for the Transformer model, and a language node to
the input graph in our GAT model for performing the bilingual and multilin-
gual experiments. This technique of adding a special language token is in line
with [44].

4.5 Evaluation Metrics

We used three automatic Machine Translation (MT) standard metrics to ensure
consistent and clear evaluation of the common evaluation datasets of the
WebNLG challenge. BLEU [36] uses a modified precision metric for comparing
the MT output with the reference (human) translation. The precision is calcu-
lated by measuring the n-gram similarity (n = 1,..4) at the word level. BLEU
also applies a brevity penalty by comparing the length of the MT output with
the reference translation. METEOR [4] was mainly introduced to overcome the
semantic weakness of BLEU. To this end, METEOR considers stemming and
3 https://github.com/google/sentencepiece.

https://github.com/google/sentencepiece
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paraphrasing along with exact standard word (or phrase) matching. The syn-
onymy overlap through a shared WordNet synset of the words. Along with exact
standard word (or phrase) matching, it has additional features, i.e., stemming
and paraphrasing. chrF++ [37] exploits the use of character n-gram preci-
sion and recall (F-score) for automatic evaluation of MT outputs. chrF++ has
shown a good correlation with human rankings of different MT outputs and is
simple and does not require any additional information. Additionally, chrF++
is language- and tokenization-independent.

4.6 Results

Monolingual. Our experiments report that NABU consistently outperforms
state-of-the-art models on English data. Table 1 shows that NABU achieved a
BLEU score of 66.21, which is 28.15% higher than the previous state-of-the-
art Transformer model [17]. We decided to run our experiments on all WebNLG
categories to elucidate the strengths and limitations of NABU. According to [17],
the main drawback in current NN models is the incapability of generating text for
unseen entities and that the experiments should be on all categories. NABU, in
turn, shows that it is capable of predicting correctly both seen and unseen entities
and their relations. In addition, NABU shows an improvement in METEOR
up to +2 points. We report NABU’s chrF++ as our intention is to follow recent
literature which has adopted this metric due to its good correlation with human
results. We can now answer [Q1] as follows: NABU surpasses state-of-the-art
results on WebNLG in English.

Table 2 shows that NABU outperforms the transformer baseline on Ger-
man and Russian. It is important to note that our Transformer base-
line, Transformerbaseline, already outperforms the previous state-of-the-art
approaches on English. The difference between our Transformerbaseline and the
Transformer presented by [17] is that we rely on BPE and character-level tok-
enizer on the decoder side. Our results suggest that we can refrain from running
the related work (see Table 1) on the German and Russian datasets, especially
as they were designed and tested to work on English, thus there is currently no
baseline for German and Russian. With these results, NABU demonstrates its

Table 1. Results on WebNLG English test set with all categories (seen and unseen),
comparison with the state-of-the-art approaches

Model BLEU METEOR chrF++

UPF-FORGe 38.65 39.00 –
Melbourne 45.13 37.00 –
Moryossef et al., (2019) 47.40 39.00 –
Castro et al. (2019) 51.68 32.00 –
NABUGAT−Trans 66.21 41.11 71.98
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language agnosticism and presents improvements in German and Russian over
the baseline.

Table 2. Monolingual results on WebNLG language testsets

Models Language BLEU METEOR chrF++

Monolingual
Transformerbaseline ENG 54.96 38.43 69.11

GER 50.07 34.51 63.48
RUS 46.42 27.74 56.80

NABUGAT−Trans ENG 66.21 41.47 71.98
GER 53.08 37.42 64.57
RUS 46.86 28.84 58.37

Bilingual. Table 3 presents the results of NABUGAT−Trans on two bilingual
models. The results show that NABU on English-German outperformed the
Transformerbaseline on all metrics. On English-Russian, NABUGAT−Trans pre-
sented worse results on BLEU and METEOR than Transformerbaseline. However,
NABUGAT−Trans showed superior results on chrF++ which is the metric that
best correlates with human results. On the one hand, we analyzed that the
English-German model leveraged both languages properly due to their vocabu-
lary overlap. German and English share a word vocabulary of 33%, thus training
both languages with NABUGAT−Trans, which employs a graph representation
on the encoder side and a character level on decoder could actually model both
languages correctly and generate coherent text. On the other hand, English-
Russian presented inconsistent results because both languages are significantly
different, and they do not share any vocabulary. We reckoned these conflicting
scores are due to the language family of both languages. Looking manually at
the results, we concluded that encoding distinct language families requires addi-
tional features, and we, therefore, plan to investigate this phenomenon in the
future. The results presented herein answer our second research question, [Q2],
by showing that NABU is capable of modeling languages from distinct families
in a bilingual approach, but a deeper investigation is required.

Table 3. Bilingual results on WebNLG language test sets

Models Language BLEU METEOR chrF++

Bilingual
Transformerbaseline ENG-GER 58.30 36.46 66.72
NABUGAT−Trans ENG-GER 61.99 39.51 69.68
Transformerbaseline ENG-RUS 55.30 37.90 61.63
NABUGAT−Trans ENG-RUS 49.15 33.41 64.00
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Multilingual. Table 4 shows that NABUGAT−Trans performed better than
Transformerbaseline by presenting consistent improvement of +2 BLEU,
METEOR, and chrF++. This result exhibits that NABU can effectively generate
multilingual text, thus answering our third research question, [Q3]. Comparing
the multilingual results of NABU with its bilingual results on English-Russian,
we concluded that the characteristics of the German language, namely its three
gender types, contributed to the better alignment of the languages in the decoder
side of multilingual NABU model. Russian also contains three genders as Ger-
man; therefore, NABU made use of it as features for generating coherent texts.
We also noticed that the English texts generated by the multilingual NABU
model are comparable to those of the English state-of-the-art models. NABU’s
multilingual model is also better than the previous English state-of-the-art by
4 BLEU and presents comparable results on METEOR. This result also reaf-
firms the capability of NABU for achieving English state-of-the-art results and
contributes to our first research question, [Q1].

Table 4. Multilingual Results on WebNLG language testsets

Models Language BLEU METEOR chrF++

Multilingual
Transformerbaseline ENG-GER-RUS 53.39 36.86 60.72
NABUGAT−Trans ENG-GER-RUS 56.04 38.34 62.04

Time-Performance. All models were trained on NVIDIA Tesla P100. Both
NABUGAT−Trans and Transformerbaseline models took the same amount of time
since they contain the same number of weights. Therefore, the monolingual mod-
els took 6 h to be trained, while the multilingual models took 8 h on average. This
difference of 2 h lies in the size of the multilingual training dataset, which con-
tains all English, German, and Russian training sets.

4.7 Error Analysis and Discussion

In this section, we report some of the errors found in NABU’s output while
carrying out a human evaluation. First, we analyzed the discrepancy between
BLEU, METEOR, and chrF++: NABU outperformed the previous state-of-the-
art approach for English by roughly 15 BLEU, while the difference in METEOR
is considerable smaller. Our analysis shows that some entities contained typos
and were not generated correctly by NABU. In addition, we found a low vari-
ance in the generated synonyms. BLEU ignores these aspects while METEOR
penalizes based on them, thus explaining the discrepancy between the scores.

Additionally, we noticed some wrong verbalization of similar predicates
(edges) that were responsible for decreasing NABU scores across all languages.
For example, NABU was sometimes not able to generate text correctly in the
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Artist domain. The problem lies in the triples which contain both dbo:artist
or dbo:producer relations as predicates. Both predicates are often verbalized to
“artist”. This happens because the predicates share the same domain and range
and therefore have a similar vector representation in the embeddings. We plan to
address this issue in future work by using a more appropriate embedding model.

We also analyzed the multilingual texts generated by NABUGAT−Trans

and Transformerbaseline. We noticed that the NABUGAT−Trans performed
better at structuring the RDF graph as input and verbalizing a structured
set of RDF triples, whereas Transformerbaseline presented better results than
NABUGAT−Trans at ordering (also known as Discourse Ordering step) the
triples for a better verbalization. The advantage of Transformerbaseline over
NABUGAT−Trans in Discourse Ordering seems to be related to the linearized
form of its input, which explicitly represents in what order the triples have to be
verbalized. Additionally, our reification strategy affected the Discourse Ordering,
we noticed it by analyzing the generated text from an input with two equal pred-
icates for different subjects. For example, “Albert_Einstein dbo:birthPlace Ger-
many” and “Michael_Jackson dbo:birthPlace USA”. NABUGAT−Trans verbal-
ized this two triples as “Albert Einstein was born in the United States of Amer-
ica and Michael Jackson was born in Germany”. This problem occurs because
NABU can not identify the subjects of each predicate correctly as they are iden-
tical in the encoder side. We plan to address this drawback by investigating new
approaches for the structuring and ordering steps.

Another interesting insight is related to the inflections of words in German,
similar to [9]. The possessive was often a source of errors when verbalizing into
German. The translation “Elliot See’s Besatzung war ein Testpilot.” is not perfect
as the apostrophe (’s) is placed wrongly. However, this problem did not happen
when generating the sentence, “Bill Oddies Tochter ist Kate Hardie”, where the
possessive of “Oddie” is built correctly. Similar insights can be derived pertaining
to the preposition “von” (en: of). For example, the entity Texas_University
was wrongly verbalized as “Universität von Texas” instead of the correct form
“Universität Texas”. The possessive and related constructions are well-known
challenges in MT from English to German. Therefore, we plan to explore this
phenomenon in future research deeply.

On the Russian results, we observed that the main challenge was related
to the verbalization of unseen entities. In NABUGAT−Trans, some entities were
copied from their source sentences due to the use of the copy mechanism in
NABU. For example, the entity “Visvesvaraya_Technological_University” was
generated as “Visvesvaraya Technical University” in the English form instead
of being verbalized in the Russian language. Additionally, we perceived that
NABUGAT−Trans displayed problems similar to those reported in [42] for gen-
erating Entities. However, these problems were mostly detected in the unseen
category. Our current hypothesis is that the generation of unseen entities in Rus-
sian is more challenging than German and English due to the Cyrillic alphabet.
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5 Conclusion

We presented a multilingual RDF verbalizer which relies on graph attention NN
along with a reification strategy. Our experiments suggest that our approach,
named NABU, outperforms state-of-the-art approaches in English. Additionally,
NABU presented consistent results across the languages used in our evaluation.
NABU is language-agnostic, which means it can be ported easily to languages
other than those considered in this paper. To the best of our knowledge, we
are the first approach to exploit and achieve the multilinguality successfully
in the RDF-to-text task. As future work, we aim to exploit other graph-based
neural architecture and other reification approaches for improving NABU’s per-
formance. Additionally, we plan to investigate how to deal with the similarity of
relations by combining language models and new evaluation metrics [40]. More-
over, we plan to investigate our methodology in the context of low-resource
scenarios as well as on different KGs [12,25].
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Abstract. During the last few years, several knowledge graph embed-
ding models have been devised in order to handle machine learning prob-
lems for knowledge graphs. Some of the models which were proven to be
capable of inferring relational patterns, such as symmetry or transitiv-
ity, show lower performance in practice than those not allowing to infer
those patterns. It is often unknown what factors contribute to such per-
formance differences among KGE models in the inference of particular
patterns. We develop the concept of a solution space as a factor that
has a direct influence on the practical performance of knowledge graph
embedding models as well as their capability to infer relational patterns.
We showcase the effect of solution space on a newly proposed model
dubbed SpacEss. We describe the theoretical considerations behind the
solution space and evaluate our model against state-of-the-art models on
a set of standard benchmarks namely WordNet and FreeBase.

Keywords: Link prediction · Knowledge graph embedding · Relation
pattern · Solution space · Knowledge completion

1 Introduction

Knowledge Graphs (KGs) have recently become a crucial part of different AI
applications. In its simplest definition, a KG is a set of triples of the form (h, r, t),
where h and t refer to entities and r refers to the relation between these enti-
ties. Following this structure, a lot of KGs have been published in recent years,
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such as Freebase [2], WordNet [14], WikiData [23], and DBpedia [11]. Although
quantitatively KGs often consist of several thousand entities and relations and
millions of triples, this is nowhere near enough to cover the knowledge that exists
in the real world – even when restricted to a particular domain. Therefore, KGs
often suffer from incompleteness.

One of the common approaches for knowledge graph completion is the Knowl-
edge Graph embeddings (KGEs). KGEs assign a latent feature vector to each
entity and relation in a KG. Furthermore, a scoring function is used to define the
degree to which a relation between two entities is plausible. Relations between
entities of a graph often follow particular relational patterns, e.g. symmetric,
transitive, inverse patterns. Such patterns are generally given by logical formu-
las [8,18] and the ability to infer them is broadly considered as expressiveness
of a KGE model [25]. However, not every KGE model is designed to infer all
kinds of patterns, meaning that characteristics of the patterns are not taken
into consideration by the model in the inference of implicit knowledge. Given a
logical formula of the form premise =⇒ conclusion, a constraint is enforced
for the plausibility of the grounding atoms involved in the conclusion when the
grounding of atoms in the premise holds. For example, given a symmetric rule,
(el, r, er) ↔ (er, r, el), if a grounding (h, r, t) of (el, r, er) is true, then (t, r, h) is
constrained to be true as well. Such a constraint should be followed by KGE
models in the associated vector space measuring the correctness of triples.

Already existing models have been majorly designed and evaluated with-
out specifically considering relational patterns. This can lead to two problems:
the models are either 1.) not capable of encoding any pattern or 2.) they are
only partially capable of encoding patterns, both of which can lead to wrong
inferences. For example, when the relation vector is non-zero, one of the base-
line KGEs dubbed TransE [3] is not able to infer symmetric relational patterns
((h, r, t) =⇒ (t, r, h)). Instead, it only infers the explicit triple (h, r, t) from
such a relation and not its symmetrical triple (t, r, h) [13,26]. Yet, “the success
of such a task heavily relies on the ability of modeling and inferring the patterns
of (or between) the relations” [19]. The ability of encoding relational patterns
and expressiveness of KGE models is a property of their solution space (SS), i.e.,
the set of all possible vectors that can be assigned to the entities and relations
involved in a particular pattern. This heavily depends on multiple aspects such
as data complexity, model formulation, and embedding dimension. Data com-
plexity in KGs denotes the extent to which the relations between entities are
interconnected. A combination of relational patterns results in more constraints
which causes higher data complexity. This also enforces constraints in the asso-
ciated vector space for the KGE model. For example, a cycle (sequence of nodes
of a graph connected in a closed path) containing symmetric and anti-symmetric
relations causes wrong inference in the RotatE model [19] (see Sect. 3).

The model formulation defines the way entity and relation vectors are opti-
mized in the vector space to measure triple correctness. Constraints caused by
patterns in the vector space are dependent on model-formulation and directly
limit the solution space of any model. Given a triple (h, r, t) and its embedding
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vectors (h, r, t) where r is symmetric, TransE induces the correctness of the
triple as (h + r ≈ t) and its symmetrical counterpart as (t + r ≈ h). Therefore,
for symmetric relation r, the solution space for the relation is one i.e. r = 0.

Generally, using a higher embedding dimension (values of 1,000 [19] or
even 10,000 [6] have been used) is considered as one way of increasing the solu-
tion space of a KGE model by increasing the number of possible embeddings
satisfying the relational patterns. However, using a very big dimension is not
always practical in large scale KGs due to the prohibitive memory requirements.
In addition, there are also cases in which increasing the embedding dimension
does not necessarily improve the solution space. For example, in the TransE the
solution space for encoding symmetric patterns [19] is always only one indepen-
dent of the embedding dimension.

In this paper, we show a novel approach towards overcoming the problems of
KGE models to encode relational patterns. Our goal is to show how the model
formulation can extend the solution space and improve the ability for encoding
relational patterns. To do so, we introduce a new knowledge graph embedding
model SpacE ss1 and show that it is capable of expressing each pattern reflexive,
symmetric, and inverse patterns individually. SpacE ss covers both translation
and rotation transformations which enables it to inherit the expressive power
of TransE, RotatE, and TransComplEx for encoding composition, transitivity,
equivalence, and implication [3,16,19]. Compared to RotatE and TransComplEx,
SpacEss provides a bigger solution space when encoding different relation pat-
terns. Finally, we evaluate our model experimentally on several popular KGs to
demonstrate our model’s performance in practice.

2 Related Work

The aim of a KGE model is to optimize a loss function (denoted by L) in order
to embed entities and relations of a KG K into a d-dimensional vector space.
Each model also defines a score function f(h, r, t), or fr

h,t, that measures the
probability of correctness of a triple (h, r, t). There are several types of KGE
models [24] namely distance-based (TransE, RotatE, TransComplEx), semantic-
matching (HolE [17], Distmult [28], complEx [21] and TuckER [22]) and neural
network-based (ConvE [4]) models. This section provides a review of popular
and prominent score functions used by different embedding models that are
distace-based, as they are the main focus of this work.

TransE [3] is one of the early KGE models. The core idea here is to optimize
the embedding vectors in real space such that h + r ≈ t holds for every valid
triple (h, r, t). Intuitively, this means that a relation vector is a translation from
head to tail. This restrictive assumption enables TransE to properly infer some,
but not all of the relation patterns. For example, the relation vector becomes
a zero vector when the model encodes a reflexive relation (as for any h, we
have h + r ≈ h). Thus, if a relation is reflexive, it is enforced by the model to

1 https://github.com/mojtabanayyeri/KGE-Models/tree/master/SpacESS.

https://github.com/mojtabanayyeri/KGE-Models/tree/master/SpacESS
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be symmetric as well [10]. TransE is a starting point for a family of different
embedding models such as TransR [12], TransH [27] and TransD [9,29]. These
works attempted to improve expressiveness of TransE by modifying its score
function, which is fr

h,t = ‖h+r−t‖. However, neither of these models succeeded
in solving the aforementioned problem [10].

TransComplEx [16] is an extension of TransE from real space to complex
space (i.e. h, r, t ∈ Cd). Such a space consists of complex numbers shown as
x = Re(x) + i Im(x). Re(x) and Im(x) refer to the real and imaginary parts of
x respectively. TransComplEx represents relation vector r as a translation from
head h to the complex conjugate of the tail t̄. The score function then becomes
fr

h,t = ‖h + r − t̄‖, where ‖.‖ is the L2 norm of the vector whose elements are
the modulus of each complex element of the vector (h + r − t̄). TransComplEx
encodes reflexive and symmetric relational patterns as well as the ones neither
reflexive nor irreflexive. However, later we show the role of the limited space
considered by the model and its influences on the performance.

RotatE [19] is a very recent new model that has already garnered a lot of
attention as one of the state-of-the-art KGE models. RotatE takes advantage of
the Euler formula eiθ = cos(θ)+ i sin(θ) and requires that for every correct triple
(h, r, t) hjrj = tj holds ∀j ∈ {0, . . . , d} where |rj | =

√
Re(rj)2 + Im(rj)2 =

1. Setting |rj | to 1, combined with the Euler formula, means that the model
performs a rotation of the j-th element hj of the head vector h by the j-th
element rj = eiθrj of a relation vector r to get the j-th element tj of the tail
vector t, where θrj

is the phase of the relation r. The score function of RotatE is
then defined as fr

h,t = ‖h◦r−t‖, where ◦ is the Hadamard (element-wise) product
of two vectors. RotatE encodes symmetric, inverse, and composition relation
patterns. However, the constraints enforced by several patterns restrict the vector
space of the embeddings. This restriction indeed causes wrong inferences when
the model embeds entities and relations into a vector space (this is discussed
with a motivating example in Sect. 3).

To understand the core of the issue, the RotatE model takes a triple (h, r, t)
in the KG and returns three vectors (h, r, t) and arrange them based on its score
function. For symmetric relations, it was shown in [19, Lemma 1] that rj = ei0

or eiπ, which corresponds to rotation of 0 or π for the j-th element of the relation
vector. In this case, the solution space of RotatE has two values of 0 or π per
each considered dimension. Therefore, each element of a symmetric relation is
either 1 or −1 (e.g. r = [1,−1, . . . ,−1]). Given a vector h, there are only two
possible options for each element of the tail vector tj : either tj = hj or it is
the “mirror image” of hj (i.e. rotated by π). Later, we raise the attention on
an important factor behind this problem explaining the solution space in more
details. In the next section, we present this problem in an example.

3 Motivating Example

Consider a knowledge graph containing companies with four different relation
types between them: two symmetric relations in a business (br) relationship
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Fig. 1. Motivating Example. The RotatE embedding model infers wrong links (in
red) for subgraphs with symmetric and anti-symmetric patterns. (Color figure online)

and in joint projects (jp) relationship and two anti-symmetric relationships is
customer of (c) or is owner of (o) of another company. The triples of our concern
in the KG are as follow:

⎧
⎪⎨

⎪⎩

eBay ◦ rbr = Amazon,

Amazon ◦ rjp = Microsoft ,
eBay ◦ rc = Microsoft .

{
Google ◦ rjp = Looker ,
Google ◦ ro = Looker ,

(1)

In RotatE model, the symmetric relations rjp, rbr obtain embedding vectors
with elements of either −1 (rotation 0) or 1 (rotation π). The anti-symmetric
relations vectors c and o get arbitrary values (except 1 and −1) [19]. Considering
the left side of Eq. 1, we substitute Amazon by eBay ◦ rbr in the second row.
The right side of the equation remains the same. Therefore, we have:

{
eBay ◦ rbr ◦ rjp = Microsoft ,
eBay ◦ rc = Microsoft .

{
Google ◦ rjp = Looker ,
Google ◦ ro = Looker .

(2)

These lead to creation of extra constraints rbr◦rjp = rc and rjp = ro. We already
know rjp, rbr are symmetric and are represented in vectors with elements of −1
and 1. From the extra constraints created above, rc is enforced to be symmetric
(with elements of −1 and 1). Moreover, ro will be equivalent with rjp. Thus a
set of wrong inferences (shown in Fig. 1 in red) are made by the model, such
as Amazon ◦ ro = Microsoft , Microsoft ◦ ro = Amazon, Microsoft ◦ rc = eBay ,
and Looker ◦ ro = Google. This is especially problematic in large scale KGs,
where there are many different symmetric relations and millions of entities. In
our example, consider just adding the roughly 100 million ownership relations in
the EU between companies. As the overwhelming majority are non-symmetric,
over 90 million wrong inferences occur.

4 Our Approach

The inference of relational patterns by KGE models heavily depends on the
model formulation and causes contradictions between (theoretically proven)
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Fig. 2. Solution Space of RotatE for Symmetric. The possible vectors as solutions
in SS are shown for symmetric relation of joint project (jp) in RotatE.

expressive power and (practical) performance by the models. When compar-
ing different models, it is often unclear which factors are responsible for this
difference and the expressiveness power of such models. Most work focuses on
determining whether a model is capable of expressing a relational pattern or
not, the most course-grained criterion possible. This course-grained analysis is
a good start, but hides a lot of theoretical and practical limitations of models.
A more fine-grained understanding of the capability of models is missing so far.
Our focused study led us to discover a hidden factor as a cause of this issue
namely solution space. In this section, we first describe the meaning and formu-
lation of SS and introduce our novel KGE model namely SpacE ss empowered
by the SS concept.

4.1 Solution Space - a Cause of Expressiveness in KGEs

Initially, using formulation of RotatE model without enforcing any constraints
(patterns) in the KG, the possible solutions for representing embedding vec-
tors of each relation r is an ∞ space. However, by enforcing relational patterns
for example symmetric constraint, the SS of r reduces to 2 (i.e., {−1, 1}) per
each dimension (or 2d for all dimension). This reduction in solution space causes
issues (e.g. wrong inference) when additional constraints are added as shown in
Eq. 1 and Fig. 2. Generally, such constraints enforced by the definition of the
corresponding relation pattern over the score function formula of a KGE builds
the solution space (SS) of the model. Conceptually, SS is the coverage of all the
possible variations for the embeddings of the elements of a triple (h,r,t) in the
corresponding geometric space e.g. vector space. Here, we provide the formu-
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lation of SS and its variations for the considered distance-based KGE models
(TransE, RotatE, and TransComplEx) and the considered relational patterns.

The solution space of an entity in tail position t is the set S of all possible
vectors for embedding of tail t having a fixed relation vector r and a fixed head
embedding vector h, such that (h, r, t) is a triple in the KG, i.e. St|r,h = {t |
(h, r, t) ∈ KG,ϕm, ϕmp,h ∈ E, r ∈ R} where E,R, are embedding matrices of
entities and relations in the model m. ϕm is the enforced constraint by the model
formulation to show a triple (h, r, t) is correct e.g. ϕRotatE : h ◦ r = t. ϕmp is
the constraint formulation obtained by the model m with regard to pattern p.
For example, for rotate model and the given reflexive relation r, the formula is
ϕRotatEReflexive : h ◦ r = h, t ◦ r = t. The SS for the head of a triple given fixed
relation and tail Sh|r,t and the SS of a relation Sr|h,t are defined analogously.
We similarly define the relation-tail SS: Sr,t|h = {(r, t) | (h, r, t) ∈ KG,ϕm, ϕmp,
h ∈ E}. Moreover, ϕ is a formulation representing the relation solution space
Sr|t,h in a vector space V if Sr|t,h = {r | (h, r, t) ∈ KG,ϕm, ϕmp,h, t ∈ E}.

This definition holds analogously for all other solution spaces of a model for
different patterns. In our company example, the SS of an element in exam-
ple triple for Amazon being in joint project relationship with Microsoft is
|Sjp|Microsoft,Amazon| = 2 considering all possible cases by RotatE model. In
Sect. 4.2, we introduce SpacEss with considerably larger SS, and show how this
improves its ability to represent various relational patterns.

4.2 SpacEss - A Novel KGE Model Empowered by SS

With a systematic study of SS on already existing models, claimed capable of
encoding relational patterns (RotatE, TransComplEx), we concluded that none
of the existing models have a proper SS for encoding of relational patterns.
The results led us to propose a new embedding model SpacE ss considering an
extended solution space (SS) compared to existing models. We show the impact
of SS encoding different types of relation patterns by our model with its high
expressiveness, both theoretically and empirically. The improvement in expres-
siveness of SpacE ss is due the larger space for solutions than RotatE, TransE
and TransComplEx.

Given a triple (h, r, t), SpacE ss first rotates the head entity counterclockwise
and the tail entity clockwise to produce embedding vectors hθr

L
(left rotation)

and tθr
R

(right rotation) respectively. It then applies a translation corresponding
to the relation vector r from the relation-specific rotated-head (left rotation) to
the relation-specific rotated-tail (right rotation), such that

ϕSpacESS : hθr
L

+ r = tθr
R
, (3)

where hθr
L

and tθr
R

are computed as rotations of hθr
L

= h eiθr
L , tθr

R
= t e−iθr

R ,
and, θr

L and θr
R are the phase vectors for head and tail rotations corresponding

to the relation r. The score function that computes the degree of correctness for
a triple (h, r, t) is defined as:
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fr
h,t = ‖hθr

L
+ r − tθr

R
‖. (4)

Let hi and ti be the i-th elements (i = 1, . . . , d) of head and tail embedding
vectors, and θr

Li
and θr

Ri
be the left and right rotation vectors respectively. The

rotation is performed element-wise hθr
Li

= hie
iθr

Li , and tθr
Ri

= tie
−iθr

Ri . Our
model is sufficiently expressive to encode different relation patterns including
reflexive, symmetric, transitive, inverse, implication, equivalence and composi-
tion. Note that SpacEss only uses simple operators of addition, subtraction, and
multiplication over embeddings of dimension d. Therefore, the computational
complexity of the model is O(d) which is similar to RotatE and TransComplEx.

4.3 Formulation of SS for Distance-Based KGE Models

The capability of a model to encode a specific relational pattern can be proven
through a series of steps namely: 1) the formal definition of the considered rela-
tional pattern, 2) the formulation of the score function of the considered KGE
model, and 3) the triple correctness condition. The latter is used for the scoring
function and requires separate calculations which will be introduced in this part.

Conditions of Triple Correctness. The correctness of triples involved in a
relational pattern defines whether the pattern holds. Among the wide range of
scores assigned by a KGE model to the triples, a concrete threshold γ is required
for deciding the correctness of each triple in a KG. In practice, this threshold
is set as a hyper-parameter of the underlying KGE model. In this work, we use
simplified thresholds [16] for investigating the capability of models to encode
relational patterns, for correct triples: (a) if score = 0 then any triple with non-
zero score is false, and (b) if score ≤ γ then any triple with score > γ is false.
Condition (a) is the most restrictive one and follows the original formulation of
translation-based models and applies on the symmetric and inverse relations of
all the models in Table 1. In case, the condition (a) does not apply (for example
when the SS becomes zero), condition (b) could be considered with a specific γ,
and applies on reflexive patterns of all the models in Table 1.

Formulation of Solution Space (SS). Table 1 illustrates the capability of
three distance-based KGE models namely SpacEss, RotatE and TransComplEx
in encoding relation patterns namely reflexive, symmetric and inverse. The col-
umn Patterns specifies each of the investigated relation patterns. The column
Cond. shows whether threshold condition (a) or (b) is used for the considered
pattern. The Table 1 indicates whether the model is capable of encoding the
specified pattern under the specified condition or not. The column Formulation
in Table 1 lists the formula under which the models encode the corresponding
relation patterns, thus giving our desired fine-grained analysis of the capability.
For space reasons, we describe only one cell of Table 1 to show SpacEss is capable
of encoding the relation pattern symmetric under the condition (a). A relation
is symmetric if ∀h, t, (h, r, t) ↔ (t, r, h) holds. In other words, if a triple (h, r, t)
is positive, (t, r, h) must also be positive. According to equation (3):
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Table 1. A Fine-grained (Formulation) of KGE Models Encoding Relational
Patterns. Each column corresponds to a specific model which is capable of encoding
a specific relational pattern presented in each row, under a possible triple correctness
condition (Cond.) and capability (Formulation).

SpacEss (ϕmp) RotatE (ϕmp) TransComplEx (ϕmp)

Ref. ‖hi(e
iθr

Ri + e
−iθr

Ri ) -

ri‖ = λ

‖hieiθr
i − hi‖ = λ ‖ − 2hi − r‖ = λ

Sym. (e
iθr

Li − e
−iθr

Ri ) = 0 r2
i = 1 Re(ri) = 0

Re(hi) = Re(ti)

Im(h) + Im(r) = Im(t)

Inv. h(e
iθ

r1
Li +e

−iθ
r2
Ri )+r1i −

r2i = (e
iθ

r1
Ri − e

−iθ
r2
Li )

r1ir2i = 1 2(Im(hi) + Im(ti)) +

Im(r1i) + Im(r2i) = 0

Re(r)1 + Re(r)2 = 0

{
hθr

Li
+ ri = tθr

Ri

tθr
Li

+ ri = hθr
Ri

, (5)

after a set of derivations, the resulting condition turns to be eiθr
Li + e−iθr

Ri = 0
(see Table 1 for symmetric in SpacEss). It follows that a relation r is a symmetric
relation if the following equations hold for it:

cos(θr
Li

) = − cos(θr
Ri

) = cos(π − θr
Ri

),
sin(θr

Li
) = sin(θr

Ri
) = sin(π − θr

Ri
) .

(6)

Therefore, in order to encode symmetric relation patterns by SpacEss, the sum-
mation of the rotations on the left and right sides (θr

Li + θr
Ri) should be equal

to π. There are infinitely many solutions for (6) (e.g. {θr
Li

= 0, θr
Ri

= π}, {θr
Li

=
π/3, θr

Ri
= 2π/3}, . . .). We use the same reasoning to obtain results for each of

the models with regard to an underlying relation pattern.

Company Example for Symmetry in SpacEss. Extending SS in SpacE ss

enables it to correctly encode all the patterns existed in our company example.
Due to a bigger SS, triples are properly encoded in a vector space. This enables
SpacEss to return correct inferences opposite to RotatE. Figure 3 shows how
SpacEss encodes the example from Fig. 1. A left and a right rotation is assigned
for each relation, e.g. one out of infinite solutions could be θLbr

= 45 and θRbr
=

−135◦. In Sub-figure a and b, the encoding of the positive triples from the
symmetric relations are shown, and Sub-figure c represents the correct encoding
of non-symmetric relations. In Sub-figure d, we show that SpacEss does not infer
any expected incorrect triple (wrong inferences) from non-symmetric relations
rc, ro. More precisely, the rc relation in Sub-figure d is forced by the model
formulation to have a different direction than the relation rc in Sub-figure c.
The same applies for ro. As it contradicts with the actual triple in Sub-figure
c, the model concludes that the two triples in Sub-figure d do not hold in the
vector space as correct inferences.

The correct embeddings of rc, ro are shown in Sub-figure c. Using these vec-
tors, we conclude that Microsoft + rc �= eBay and Looker + ro �= Google.
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Fig. 3. Company Example in SpacEss. Encoding of the positive triples as correct
inferences (blue vectors for entities and black for relations) and failure in returning
wrong inferences (red vectors). (Color figure online)

Sub-figure d shows that the embeddings of rc, ro relations are different from
their actual embeddings shown in Sub-figure c. Therefore, the model refuses the
wrong inference of these symmetric relations which was not the case in RotatE.

Medium-Grained Analysis. So far, we have discussed a very coarse-grained
capability, namely “yes”/“no”, and a very fine-grained capability, namely the
defining formula of the SS (see Table 1). It remains to show a medium-grained
analysis that would allow us to easily compare different models. In Table 2, dif-
ferent variations of feasible solution space for three KGE models are shown which
exactly gives us this medium-grained understanding. In Table 4 we visualize how
theoretic FSS assumption hold in practice.

Table 2. Comparison of Solution SpacEss for Different KGE Models. An
element-wise comparison of different values for SS are shown.

SpacEss Rotate TransComplEx

Ref. Sr|h Sh|r - Sr|h Sh|r - Sr|h Sh|r -

Inf Inf - 2 Inf - Inf 4 -

Sym. Sr|h,t Sh|r,t Sh,r|t Sr|h,t Sh|r,t Sh,r|t Sr|h,t Sh|r,t Sh,r|t
Inf 1 Inf 2 1 2 1 1 Inf.

Inv. Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t

Inf 1 Inf 4 1 1 1 1 1

Note that solution space allows multiple dimensions, e.g. fixing head and
having freedom in relation and tail, or any of the other combinations. For each
relational pattern, the solution of each possible combination of vectors is pro-
vided. For example, a combination of three possible solutions Sr|h,t, Sh|r,t and
Sh,r|t is considered for symmetric relations. Thus, in case Sr|h,t = Inf if for
SpacEss; the solution space for RotatE, however is 2 i.e., Sr|h,t = 2. In the
same way, SpacEss provides a bigger solution space for other relation patterns
compared to TransComplEx and RotatE.
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Fig. 4. Solution Space. The possible solutions for symmetric relation of “Similar To”
in WN18 by RotatE (2) and SpacEss (Inf.) – compatible results in Table 2.

5 Experiments

The proposed model is evaluated on the link prediction problem using the filtered
setting [3]. The task here is to predict whether a relation is likely to hold between
two given entities. Here, we first generate a set of candidate triples by corrupting
once the head h and once the tail entity t for each positive test triple (h, r, t).
We remove any candidate triples constructed in this way if they appear in either
validation, training, or the test set. Finally, we rank the remaining candidate
triples against the original test triple (h, r, t). We use the standard evaluation
methods: mean rank (MR), mean reciprocal rank (MRR) and hits at top N
(Hits@N) for N = 1, 3, and 10 [24]. MR is the average rank of all the correct test
triples; MRR is the average reciprocal rank of the correct triples and is defined
as:

∑nt

j=1
1
rj

, where rj is the rank of the j-th (positive) test triple and nt - the

Table 3. Evaluation 1. Results of models evaluated on FB15k and WN18.
SpacEss+Pat is SpacEss model with pattern Pat explicitly injected. SpacEss-small
is SpacEss model with 10 negative samples per one positive and dimension of 200.
Results for models marked by � are reported from [19]; results for TuckER are from
[1]; and results from TransComplEx are quoted from [16].

FB15k WN18

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE� – .463 .297 .578 .749 – .495 .113 .888 .943

DistMult� 42 .798 – – .893 655 .797 – – .946

HolE� – .524 .402 .613 .739 – .938 .930 .945 .949

ComplEx� – .692 .599 .759 .840 – .941 .936 .945 .947

ConvE� 51 .657 .588 .723 .831 374 .943 .935 .946 .956

RotatE� 40 .797 .746 .830 .884 309 .949 .944 .952 .959

TuckER – .795 .741 .833 .892 – .953 .949 .955 .958

TransComplEx 38 .682 – – .875 284 .922 – – .955

SpacEss 34.5 .760 .667 .836 .895 197 .946 .936 .953 .962

SpacEss-small 41 .732 .630 .815 .884 228 .946 .936 .953 .962

SpacEss+Inverse 35.3 .774 .686 .845 .898 141 .939 .921 .953 .962

SpacEss+Implication 35 .765 .673 .839 .896 – – – – –

SpacEss+Symmetry 36 .768 .680 .838 .894 – – – – –

SpacEss+Equality 36 .773 .687 .845 .896 – – – – –

SpacEss+All 33.7 .789 .713 .851 .898 – – – – –
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Table 4. Evaluation 2. Results of models evaluated on FB15k-237 and WN18RR.
SpacEss+Pat is SpacEss model with pattern Pat explicitly injected. SpacEss-small is
SpacEss model with 10 negative samples per one positive and dimension of 200. Results
for models marked by � are reported from [19]; results for TuckER are from [1]; and
results from TransComplEx are quoted from [16].

FB15k-237 WN18RR

MR MRR HIT@1 HIT@3 HIT@10 MR MRR HIT@1 HIT@3 HIT@10

TransE� 357 .294 – – .465 3384 .226 – – .501

DistMult� 254 .241 .155 .263 .419 5110 .43 .39 .44 .49

ComplEx� 339 .247 .158 .275 .428 5261 .44 41 .46 .51

ConvE� 244 .325 .237 .356 .501 4187 .43 .40 .44 .52

RotatE� 177 .338 .241 .375 .533 3340 .476 .428 .492 .571

TuckER – .358 .266 .394 .544 – .470 .443 .482 .526

TransComplEx 223 .317 – – .493 4081 .389 – – .498

SpacEss 167 .337 .238 .376 .539 2959 .457 .392 .488 .583

SpacEss-small 171 .333 .236 .369 .530 2986 .469 .412 .493 .577

SpacEss+Inverse 167 .340 .243 .375 .537 – – – – –

SpacEss+Implication 168 .338 .240 .374 .540 – – – – –

SpacEss+Equality 167 .337 .240 .376 .538 – – – – –

SpacEss+All 163 .335 .237 .372 .533 – – – – –

Table 5. Evaluation 3. Results with low Dimension equal to 10.

FB15k WN18

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE� 3350 .023 .009 .022 .048 1355 .128 .066 .138 .246

DistMult� 3459 .021 .010 .019 .041 753 .403 .247 .475 .742

ComplEx� 876 .122 .069 .134 .220 709 .453 .304 .524 .769

RotatE� 748.7 .050 .018 .045 .105 891 .522 .403 .591 .748

TransComplEx 511 .115 .053 .132 .239 1700 .117 .065 .123 .221

SpacEss 393 .130 .069 .136 .246 805 .569 .451 .647 .785

FB15k-237 WN18RR

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE� 431 .159 .092 .170 .292 6207 .093 .009 .141 .249

DistMult� 432 .159 .089 .170 .302 8749 .100 .001 .180 .352

ComplEx� 388 .165 .094 .173 .314 8977 .203 .118 .266 .358

RotatE� 489 .132 .067 .139 .266 6358 .323 .245 .391 .430

TransComplEx 453 .154 .088 .163 .292 6645 .177 .119 .202 .291

SpacEss 390 .183 .109 .197 .334 6115 .393 .368 .406 .437

number of triples in the test set; and Hits@N is the percentage of the triples
whose rank is equal or smaller than N .
Datasets. We evaluate our model on set of four widely used knowledge graphs:
FB15k [3] FB15k-237 [20], WN18 [3], and WN18RR [4]. The relation patterns
(rules) for FB15k and WN18 are adapted from [8] and [7] respectively. We only
considered rules with confidence level of 0.8 or higher. The number of triples
involved in symmetric, implication and inverse patterns both in FB15k and
FB15k-237 are above 35k in each pattern category. The number of triples with
inverse patterns in FB15k is above 390k. The above statistics are based on triple
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Fig. 5. Evaluation 4. Evolution of losses for relation patterns during optimization
phase with/without injection: (a) shows the convergence of losses for main relation pat-
terns in FB15K without injection. In (b), the equality patterns are shown with/without
injection; (c) shows the same for symmetric patterns and (d) shows the convergence of
losses for all patterns on FB15k-237 without injection.

counting, however, we follow [8] when constructing valid groundings: a grounding
of a rule is considered valid if the triples appearing in its antecedent are present
in the knowledge graph, while the triples in the consequent are not. Given an
example pattern p ⇒ q (e.g. inverse is ∀X,Y : r(X,Y ) =⇒ r′(Y,X)), we
refer to p as the antecedent and q as the consequent of the rule. Most of the
groundings in both FB15k and WN18 are for inverse rule.

Experimental Setup. We train our model by using the RotatE loss [19]. We
use Adagrad [5] as the optimizer of SpacEss. The hyper parameters were fine-
tuned on the validation set, using grid search over the following ranges: batch size
∈ {200, 512, 1024}, embedding dimension dim ∈{200, 500}, number of negative
samples #neg ∈ { 10, 20, 50 }, adversarial sampling temperature α ∈ {0.5, 1.0},
γ ∈{3, 9, 12, 18, 24 }, learning rate lr ∈ {0.001, 0.01, 0.1 }. γ is the hyper-
parameter of the losses. Embedding dimension 500 and 20 negative samples are
used as best hyper-parameters for our model.
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Fig. 6. Symmetric and Inverse Patterns. Practical investigation on the theories
of Table 1 in low dimension 10 for FB15K-237 and 15 for WN18.

Results and Discussion. A comparison of SpacEss to TransE, DistMult, HolE,
CompEx, ConvE, and RotatE is provided in Tables 3 and 4. We follow the steps
introduced in [7,15] for explicit pattern injecting such that: first, the loss function
for the relational patterns is computed and then the results are added to the
main loss function as a regularization term. For example, in order to inject a
symmetric pattern, we add the regularization term ‖fr(h, t) − fr(t, h)‖. We use
following definitions to compute regularization terms for the other rules: we say
that A ⇐⇒ B holds iff A = B and A =⇒ B iff A ≤ B; (soft) truth value (or
the score) of A ∧ B is computed as A × B, A ∨ B as A + B − A × B, and ¬A
as 1 − A. The loss terms for A ≤ B and A = B are computed as Relu(A − B)
and ‖A − B‖, respectively. We test our model both with and without explicitly
injected relational patterns. We use SpacEss+Pat (“Pat” for a specific pattern
that is injected) to denote that the model uses pattern regularization (one type
of rule is injected at a time). For instance, SpacEss+Inverse refers to SpacEss

with inverse relations injected explicitly via regularization terms. SpacEss+All
refers to the results of injecting multiple (all) patterns.

According to [19], FB15K and WN18 datasets contain a significant amount
of relational patterns (inverse and symmetric). Table 2 (which is derived from 1)
shows the design and development of the SpacEss model have been done with
the purpose of having a bigger solution space than RotatE and TransComplEx.
Therefore, in two evaluation settings (with bigger and smaller dimension), the
SpacEss model achieves: a) a better performance than the other distance-based
models encoding relational patterns (with same dimension), b) same accuracy
(in smaller dimension) due to expanded solution space for encoding pattern
e.g. inverse relations in our experiments on FB15K and WN18.

As shown in Table 3, SpacEss obtains 89.8 Hits@10 while RotatE and Trans-
ComplEx get 88.4 and 87.5 respectively. These results confirm our theoretical
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discussions when SpacEss outperforms RotatE and TransComplEx on FB15K.
We additionally show that even with a smaller dimension (200), the perfor-
mance of SpacEss closely compete with the results of the RotatE model on
FB15K and WN18 datasets. This is an additional confirmation for our expecta-
tion that by having a bigger solution space, the model (SpacEss) is enabled to: a)
encode relational patterns, b) have correct inferences, c) stay in high (and obtain
better) performance even with a smaller dimension. Comparing SpacEss with
SpacEss+Pat, (SpacEss with injected patterns), we conclude that our model
is capable of inferring the relational patterns even without explicit injection.
However, we also denote that pattern injection did not have a high impact on
the results of the model in this setting. This is additionally justified by tracing
the convergence of loss for relation patterns shown in Fig. 5. The losses of pat-
terns (except equality loss) converge properly by learning on data (Sub-figure
5a). Although FB15k and WN18 have testing leakage, it is still worth using
these two datasets while investigating capacity of models. These datasets con-
tain many inverse and symmetric patterns, therefore if the solution space of a
model is limited, then the model cannot express those patterns and the accuracy
is expected to be dropped substantially even with testing leakage.

As shown in Sub-figure 5b, injection enables the quality loss to converge.
Using symmetry relation (Sub-figure 5c), we show even without injection, the
model properly infers the pattern. Although with these two datasets (FB15K and
WN18), our focus has been on showcasing relation patterns of type inverse and
symmetric, encoding of relational patterns by SpacEss is not limited to these.
This is proven by running SpacEss on FB15K-237 and WN18-RR datasets within
which the inverse relational patterns have mostly been removed originally. The
results are shown in Table 4 and Table 3 where our performance is closely compet-
ing with RotatE and TransComplEx. However, in comparison to TransComplEx
with performance of 49.3, our model achieves a better performance of 53.9 in
Hits@10. Tucker gets the state-of-the-art performance on FB15K-237. However,
Tucker obtains these results by using much more parameters due to the design of
its scoring function. Moreover, this performance is also due to the used boosting
techniques such as data augmentation (adding reverse triples), and using 1−n
scoring which is not applicable in large scale KGs. Using WN18RR, SpacEss out-
performs all models considering Hits@10 and MR, even with a smaller dimension.
Table 5 includes the results for dimension 10.

As said, the solution space of a model is heavily depending on the model for-
mulation. However, one can increase it with the cost of getting high in the size
of the embedding dimension. Since the evaluation in the state-of-the-art models
have been done on relatively small standard KGs with big dimensions e.g. 500,
1000, the difference between models is not visible. Normally there would be two
ways of highlighting the effect of solution space: 1) compare the embedding mod-
els with regard to their solution space in a very large scale of KGs e.g. millions
of entities and billions of triples, 2) prototype it with toy KGs e.g. FB15k-237 in
a very low dimension e.g. 5 or 10. Since the first approach is not feasible techni-
cally, we provided the results following the second way. Our extended evaluations
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using very low dimensions show that for FB15k-237, RotatE has 26.6 Hits@10,
however SpacEss gets 33.4 with dimension 10. With dimension 5, the difference
in performance is even more visible up to 15% (RotatE shows 3% and SpacEss

19% in Hits@10) of differences (complete results have been omitted from this
paper for lack of space). Figure 6 shows the results for low dimensional of 15 over
WN18 and 10 over FB15K-237. For symmetric patterns of WN18 in Hits@1, we
gain 13% difference over RotatE (SpacEss = 61.01, RotatE = 48.3).

6 Conclusion and Future Work

In this paper, we introduced the concept of solution space as an approach towards
overcoming the expressiveness problem of embedding models. It provides a fine-
grained analysis on the capability of the models to express certain patterns. We
introduced the SpacEss model that is designed based on the concept of solution
space. We specifically provided a theoretical demonstration of the solution space
for SpacEss, RotatE and TransComplEx models on reflexive, symmetric and
inversion patterns. An experimental evaluation is provided that shows the per-
formance of SpacEss in comparison to the state-of-the-art models which are able
to encode a relational pattern. The experiments are done both in high and low
dimensions in order to simulate their utilization over large-scale KGs. The results
of the comparisons on high dimension show the performance improvements of
SpacEss influenced by the concept of solution space. This is further visible in
low dimensional embedding where the experiments show a surprising drop in
the performance of all the considered models including SpacEss, even on FB15K
which has leakage on patterns. However, the difference of performance demon-
strated by SpacEss is yet another approval on the importance of solution space.
In this work, we only investigated a few of the well-known embedding models.
Our future work contains analysing more models in terms of their solution space
and broaden our scope to find more factors that influence the expressiveness
of models. We showcased the effect of solution space considering some of the
relational patterns. We plan to extensively include other pattern types.

Acknowledgements. This work is supported by the EC Horizon 2020 grant
LAMBDA (GA no. 809965), the CLEOPATRA project (GA no. 812997), the Vienna
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Abstract. Language Models (LMs) and Knowledge Graphs (KGs) are
both active research areas in Machine Learning and Semantic Web. While
LMs have brought great improvements for many downstream tasks on
their own, they are often combined with KGs providing additionally
aggregated, well structured knowledge. Usually, this is done by lever-
aging KGs to improve LMs. But what happens if we turn this around
and use LMs to improve KGs?

In this paper, we propose a method enabling the use of the knowl-
edge inherently encoded in LMs to automatically improve explicit knowl-
edge represented in common sense KGs. Edges in these KGs repre-
sent relations between concepts, but the strength of the relations is
often not clear. We propose to transform KG relations to natural lan-
guage sentences, allowing us to utilize the information contained in large
LMs to rate these sentences through a new perplexity-based measure,
Refined Edge WEIGHTing (REWEIGHT). We test our scoring scheme
REWEIGHT on the popular LM BERT to produce new weights for the
edges in the well-known ConceptNet KG. By retrofitting existing word
embeddings to our modified ConceptNet, we create ConceptNet Num-
BERTbatch embeddings and show that these outperform the original
ConceptNet Numberbatch on multiple established semantic similarity
datasets.

Keywords: Knowledge Graph · Language Model · Common Sense

1 Introduction

Knowledge Graphs (KG) are one of the core areas of research in the Semantic
Web community [11]. Their creation and curation have long been tasks of great
interest, since the resulting graphs are invaluable in a wide range of applications
within the community, but also in Natural Language Processing, Information
Retrieval and Machine Learning. Thus, KGs provide a natural link between the
Semantic Web and Machine Learning, where they are being used to provide

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-62419-4 26) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 456–473, 2020.
https://doi.org/10.1007/978-3-030-62419-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62419-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-62419-4_26
https://doi.org/10.1007/978-3-030-62419-4_26
https://doi.org/10.1007/978-3-030-62419-4_26


LM4KG 457

Fig. 1. Illustration of the REWEIGHT pipeline. A KG’s relations are weighted through
transforming them to sentences and obtaining perplexity scores with an LM.

explicit, structured background knowledge that may not be readily available in
unstructured data sources. While the use of KGs in Machine Learning applica-
tions is very common [27,28,37], in this paper we propose to go in the oppo-
site direction: We use a well-established model from the area of Natural Lan-
guage Processing, the Language Model (LM) BERT [8] to improve the knowledge
encoded in a widely used, state of the art KG, ConceptNet [28].

In order to supply a range of information that is as broad as possible, KGs are
often constructed using (semi-)automatic methods, with ConceptNet combining
multiple other knowledge bases (e.g., Wiktionary, DBPedia) as well as extract-
ing additional information from plain text and games with a purpose [14,28,30].
While these sources are mostly reliable, there is no explicit information about the
strength of the relations described therein. However, often it is crucial to know
the strength of the relation between two words: For example, a search engine
may want to perform a query expansion using a KG to look for related terms.
When looking for terms related to “word”, a KG like Wiktionary would return
both “god” and “language”. While both relations are correct, the second one
is more prevalent in most situations and would usually be considered stronger,
meaning that it will be the better choice for a query expansion in most contexts.
However, Wiktionary contains no indication that there is a difference between
both relations. ConceptNet partially deals with this issue by assigning reliability
scores to different sources, but this does not help to distinguish between rela-
tions from the same source. Hence we are interested in automatically extracting
this prevalence information from unstructured data and adding it as structured
information to the graph by refining its edge weights.

Hypothesis. In this paper, we propose Refined Edge WEIGHTing
(REWEIGHT), a novel approach towards automatically acquiring the preva-
lence information of relations in order to weight the edges in a KG using pre-
trained LMs such as BERT [8]. Recent research has shown that these models
trained on enormous corpora contain a certain amount of world knowledge, in
some cases even being able to perform limited question answering without ever
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being trained for that task or being given explicit background information [24].
Recent work on BERT specifically suggests that it may contain relevant common
sense information [23,35]. Seeing LMs such as BERT as an automatic informa-
tion extraction approach with access to a vast amount of data through training,
we hypothesize that, by representing a relation as a natural language sentence
and asking BERT to rate how likely the sentence is to occur (i.e., calculating
its perplexity), we will be able to automatically extract a weighting for common
sense relations that corresponds well to a human rating.

Approach. Our methodology, illustrated in Fig. 1, can be summarised as follows:
We use an existing KG as a starting point. From this graph, we extract all edges
(corresponding to relations between two words) and construct sentences from
these edges by applying a manually defined set of rules and automated grammar
correction. The resulting sentences are then used as input to a LM and their
perplexity is calculated. We apply a transformation to the perplexity scores to
map them to the range of the edge weights in the original graph, where high edge
weights correspond to strong relations. Finally, we feed the edge weights back
into the KG, yielding an enriched knowledge resource that contains information
about the prevalence of its relations. While we utilize BERT’s common sense
knowledge in our pipeline, we formulate the approach in a general way to allow
application on all types of KGs with different LMs.

To evaluate our approach, we show that REWEIGHT is capable of improving
the already well suited ConceptNet KG on the task of refining existing word
embeddings for semantic relatedness. We evaluate REWEIGHT by applying the
same retrofitting [10] procedure as ConceptNet Numberbatch [28], showing that
the enriched graph yields embeddings with improved performance on multiple
semantic relatedness datasets.

Contribution. Our contribution in this paper is three-fold: 1. We propose a
novel, general methodology for enriching KGs by weighting the edges in a KG
according to their importance. 2. We update the weights of the common sense
KG ConceptNet with the BERT LM, showing that our approach improves the
semantic information encoded in the graph.1 3. We perform a detailed analysis,
investigating different influence factors on our proposed approach.

Structure. The remainder of this paper is structured as follows: Sect. 2 gives
an introduction to common sense KGs and retrofitting, while Sect. 3 describes
work related to our paper. In Sect. 4 we describe our edge weighting scheme
REWEIGHT. Section 5 describes the experimental setup of our evaluation. Our
results are contained in Sect. 6, while we carry out deeper analysis in Sect. 7.
Section 8 concludes our work.

1 Code, updated KGs and embeddings are available under https://github.com/
JohannaOm/REWEIGHT.

https://github.com/JohannaOm/REWEIGHT
https://github.com/JohannaOm/REWEIGHT
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2 Background

In this section we describe the background setting of our paper. This includes a
general overview of KGs for Common Sense Knowledge, where the most promi-
nent representative is ConceptNet, and the Retrofitting algorithm that we use
to derive word embeddings from our modified KG. Following previous work, we
will later use these embeddings to evaluate the quality of our new weights.

2.1 Common Sense Knowledge Graphs

Common sense describes the most basic knowledge and information a human
has at their disposal [28].

In our experiments we focus on one of the most prevalent common sense
KGs, ConceptNet [28]. ConceptNet aggregates its information from sources
like DBPedia, Wiktionary, Open Multilingual WordNet and “games with a pur-
pose”. It is a multilingual KG specifically designed as an information source
for assessing semantic relatedness between concepts, setting a special focus on
natural language expressions. For our experiments, we use version 5.7, which
contains 30.6 million relations between 17.8 million concepts, out of which 2.3
million relations exist between 440.000 English concepts. The graphs original
weights are distributed between 0.1 and γmax = 50, with mean 1.1 and median
γ̃ = 1.

Next to ConceptNet, we also take a look at other common sense KGs. Web-
Child 2.0 [30] is an English common sense KG focusing on activities, properties,
and their semantic relations. It contains 23 million relations between 450.000 con-
cepts. YAGO 3.1 [25] is an ontology extracted from multilingual Wikipedia.
Wile YAGO, as a general knowledge base, contains many facts about specific
real world entities, we use YAGO’s taxonomy subgraph that contains more
abstract information that more closely represents generally applicable common
sense knowledge. The YAGO Taxonomy contains 1.7 million relations between
800.000 concepts.

2.2 Evaluation of KGs

Evaluating KGs is a non-trivial problem, since there is usually no ground truth
available that can directly be used as an intrinsic evaluation target. One possible
way of extrinsic evaluation is using the KG to enrich existing word embeddings
and assess the quality improvement in the embeddings induced through the KG.
We will adopt this way of evaluation by following [29] in applying Retrofitting
(cf. Sect. 2.3) to enrich word embeddings using either the unmodified version
of a KG or the modified version after applying REWEIGHT. Retrofitting uses
the weights in the KG as indication of how close two words should be, making
this a suitable method of evaluating whether REWEIGHT actually improves
the weights in the KG: If the quality of the embeddings improves after applying
REWEIGHT, we can conclude that we have improved the weights in the KG.
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2.3 Retrofitting

Retrofitting [10] uses relational information of KGs to refine existing word
embeddings. The main idea is to re-calibrate the embedding vector of each word,
leaving it both close to the original embedding vector and close to the embed-
dings of all neighboring words in the KG.

Formally, retrofitting minimizes the objective function

Ψ(Q) =
∑

i∈V

[
αi||qi − q̂i||2 +

∑

(i,j)∈E

βi,j ||qi − qj ||2
]

(1)

where qi and q̂i mark the new and original embeddings of word i out of vocab-
ulary V respectively, and βi,j represents the weight of the edge (i, j) ∈ E in
the KG, which we want to improve with REWEIGHT. αi is a hyper-parameter
determining how close qi should stay to q̂i.

[28] use an extended version of retrofitting that is capable of processing out-
of-vocabulary words. In this work we also use the same extended version.

3 Related Work

KGs and (large) LMs have been investigated extensively in recent years. One
of the best understood large language models is BERT. It performs on par
with knowledge bases extracted from text [23] and substantially outperforms
pretrained word embeddings when queried for relational common sense knowl-
edge [4]. When compared to other recently introduced LMs, BERT outperformed
GPT2 and XLnet on a series of common sense tasks [38]. BERT also offers enough
clues to enable common sense reasoning for visual understanding, and more so
than GloVe and ELMo embeddings [35]. Hence, we conclude that BERT is a
fitting model to extract common sense knowledge for KG enhancement.

In general, knowledge resources can be a vital addition to any NLP task.
There exist various methods to create knowledge bases, e.g. from web resources
like Wikipedia or through crowdsourcing as in ConceptNet. So far, relations
from KGs have mostly been used to enrich LMs: either during training [32,34]
or by adapting the resulting embeddings afterwards (retrofitting) [10,18,29]. A
prominent example is ERNIE [36], which aligns KG entities from WikiData with
NEs to then train contextual word embeddings similar to BERT. Experimental
results show that ERNIE significantly outperforms BERT on knowledge-driven
tasks such as relation classification. It is also possible to learn an improved word
embedding by integrating human feedback [22] or by jointly exploiting a text
corpus and a KG [2].

To the best of our knowledge, we are the first to explore the usage of LMs
to enhance common sense knowledge in a KG. We asses the validity of our
method by producing word embeddings from our improved KG and evaluating
them on several semantic similarity tasks, which stem from the primary Con-
ceptNet papers [28] and [29] and hence provide direct comparison to the initial
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results. Additionally, we assume that semantic similarity of word representations
is a good indicator of improvement, as it has been shown that it influences other
tasks, e.g. named entity disambiguation [9].

A related setting for improving existing KGs is graph completion, or link
prediction, in which the goal is to automatically create edges between existing
and new nodes of a given KG [3,26]. There exist approaches which successfully
utilize BERT for the task of graph completion on ConceptNet [20] as well as
WordNet and Freebase [33]. While this is in principle similar to our method,
we set ourselves a different task: Where KG completion allows for enriching
existing KGs with new nodes and relations, this is only effective when the base
graph used for training the completion approaches already contains facts of high
quality. Our aim, however, is to further improve the information contained in
existing edges in the base KG.

4 Methodology

To transfer knowledge from a LM to a KG, we propose REWEIGHT, which
consists of a sentence construction and a weight generation step.

4.1 Sentence Construction

Relation-to-Sentence Mapping. We want to evaluate the information contained
in a KG by means of an LM. Thus, we first transform every edge e ∈ E from the
graph into a natural language sentence. We manually define a set of rules, which
map the relations between graph nodes to sentences. For example, a “DefinedAs”
relation between nodes A and B in ConceptNet is transformed to the sentence
“A is defined as B”. For most relations, such a simple transcription of the
relation is sufficient. For some relation types, however, we observe that the LM
reacts poorly to the direct transcription. We assume that this is due to the
sparsity of sentences explicitly mentioning words such as “antonym” in their
training data. Hence, we manually create transcriptions to better reflect natural
language. Similarly, we observe that sentences are rated as more likely if all
concepts are preceded by the indefinite article “a”. For the full mapping we
employ for the ConceptNet KG, we refer to the Supplementary Material.

Sentence Correction. Due to the simple transformation rules, sentences gener-
ated in the previous step may not always be grammatically correct. LMs like
BERT, however, have been shown to encode both syntactic and semantic infor-
mation [17]. Since we aim to use the LM for assessing the semantic content
of the sentence, we would like to discard any influence of syntax. To achieve
this, we employ an additional LM trained to improve the grammatical quality
of sentences. We feed our rule-generated sentences into the grammar correction
model, obtaining semantically equivalent sentences with improved syntax. Fur-
ther details on the specific implementation used in this work is given in Sect. 5.
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4.2 Weight Generation

After constructing a sentence for every edge e ∈ E in the KG, we need to
measure the sentences’ meaningfulness. We use the perplexity of a pre-trained
LM to assess whether the sentence and thus the relation contains a probable
fact, assuming that a well-trained LM will assign a high perplexity to sentences
describing questionable or uncommon relations.

Perplexity in Bi-directional LMs. Since [7] has shown that the common defini-
tion of perplexity is not applicable to bi-directional LMs such as BERT, we use
their approximation to compute a score for each edge e ∈ E in the graph: the
perplexity pp(e) for each sentence se = 〈we,1, . . . , we,ne

〉 can be approximated as

pp(e) = exp

⎛

⎝− 1
ne

ne∑

j=1

log p(we,j |〈we,k : k �= j〉)
⎞

⎠ , (2)

where 〈we,k : k �= j〉 denotes the context of we,j in sentence se.
We will now introduce two approaches to transform the resulting perplexities

from their original range of [1,+∞) to the range of original KG weights [0, γmax],
where γmax is the maximum weight of the original KG and γ̃ its median.

REWEIGHTlight. For a light variant of the REWEIGHT scheme, we obtain
the weight for an edge e ∈ E in the KG through transforming the perplexities
obtained by the LM into the range of the original KG edge weights through

βRWL(e) :=
γmax

pp(e)
(3)

where γmax denotes the maximum weight in the original KG as noted above.

REWEIGHTmod. Furthermore, we propose an adaptive version of
REWEIGHT, making use of a parameter ppb to separate sentences into reason-
able and unreasonable ones. Let ppmax be the maximum perplexity obtained by
feeding all edges e ∈ E through the above pipeline, ppmax = maxe∈Epp(e), and
ppb a parameter, which can be chosen freely. Then we define our REWEIGHTmod

weights as

βRWM(e) :=
{

r(e), if pp(e) < ppb
u(e), otherwise (4)

with r : [0, ppb[ → ]γ̃, γmax] producing new edge weights for reasonable sentences
and u : [ppb,∞[ → [0, γ̃] for uncommon relations. For both functions we will
utilize an inverted perplexity, which limits the influence of very high values

ppinv(e) = log10

(
ppmax

pp(e)

)
. (5)

We feed this inverted perplexity into a min-max-scaling scheme separately
for r(e) and u(e), to distribute scores evenly for both partitions. Thus, we set

u(e) :=
γ̃ · ppinv(e)

ppinv
b

, (6)
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where ppinv
b := log10(

ppmax
ppb

). Note that while the lower bound for our new edge
weights could be set to any value, we choose 0 as the retrofitting method used
in our experiments treats relations with edge weight 0 as non-existent, allowing
our rating scheme to effectively remove edges with very low reasonability scores.
For reasonable sentences we use a similar min-max-scaling,

r(e) := γ̃ + (γmax − γ̃) · ppinv(e) − maxe∈E(ppinv(e)) + log10(ppb)
log10(ppb)

. (7)

The resulting weights are then used to replace the edge weights of the KG,
yielding a linear mapping with control over the reasonability border ppb.

5 Experimental Setting

We use the following setup throughout all our experiments: We apply
REWEIGHT to ConceptNet to derive a new weighting for all relations between
English concepts, leaving all relations that involve at least one non-English con-
cept unchanged. We additionally follow [28] by removing uncommon concepts
with less than three neighbors, and concepts that are not in any way connected
to those in the vocabulary of the word embeddings used during Retrofitting.

For the sentence correction step of our approach, we use the BERT-based
language correction model PIE [1], a current model performing strongly on the
CoNLL-2014 shared task on grammatical error correction [21]. We additionally
chose the PIE grammar checker since it is specifically tuned to improve sentences
towards what BERT would consider to be syntactically correct, fitting the aim of
mitigating the syntactic signal of sentences. The model takes as input sentences
for correction and iteratively improves their grammar. In our experiments we use
three correction iterations over each sentence, after which no further changes to
the sentences were observed.

To obtain the perplexity of each sentence, we then use an openly available
BERT LM adaptation2 that calculates sentence perplexities based on the per-
plexity approximation for bidirectional LMs described in Sect. 4.2. We specif-
ically chose a BERT model, since next to its state-of-the-art performance on
many natural language tasks, BERT has also been shown to contain a certain
amount of world knowledge [31]. The BERT model used in our experiments is
the BERT-large (whole word masked) model.

5.1 Evaluation Task

As highlighted in Sect. 2.2, we extrinsically evaluate the weights determined by
REWEIGHT by deriving word embeddings from our modified ConceptNet using
the expanded retrofitting algorithm described in Sect. 2.3. With retrofitting using
all weights in the KG to transform the embedding space, we use the relatedness
scores between many words in this space to measure how well the information
2 https://github.com/xu-song/bert-as-language-model.

https://github.com/xu-song/bert-as-language-model
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in the KG enriches the embedding space. Comparing the results to embeddings
obtained through the base graph (with identical structure) then factors out the
impact of the general graph structure and yields an automatic evaluation scheme
that highlights the quality of the edge weights in the entire graph. In order to
enable a direct comparison of our modified weights to the original ones, we use
the same setup as [28], the only difference being that we apply Retrofitting to our
REWEIGHTed ConceptNet instead of the original. Since the resulting embed-
dings are a combination of ConceptNet NumberBatch and BERT, we name them
ConceptNet NumBERTbatch.

Where not otherwise noted, we employ REWEIGHTmod with the following
parameters: For ConceptNet we find that the median and maximum of original
weights is γ̃ = 1 and γmax = 50, respectively (cf. Sect. 2). After inspecting
perplexities of generated sentences, we set the perplexity border value to ppb =
100, which will be validated later in Sect. 6.2. We also follow [28] in assessing
the quality of the embeddings by calculating the cosine similarity of words in
the embedding space and comparing the results to human intuition through
Spearman correlation for several word similarity and relatedness datasets.

5.2 Evaluation Datasets

We use the following established semantic relatedness datasets for evaluation:
MEN3000 [5] consists of 3000 word pairs and their similarity scores collected
through crowdsourcing. Scores of the dataset are distributed between 0–50. Addi-
tionally, this dataset contains a development- and test-split of 2000 and 1000
word pairs respectively. We report our main results on the full 3000 word pairs,
while using only the development set for some additional experiments. Rare
Words (RW) [19] contains 2034 word pairs of words with low occurrence counts
in a Wikipedia text corpus. Each word pair is assigned a similarity score by ten
human annotators. The pair scores are defined between 0 and 10. For ablation
studies, we employ a development set of 1356 word pairs (RWdev). MTurk-771
[13] contains 771 word pairs with their relatedness scores. The dataset aims to
cover different types of relatedness (e.g. synonymy, meronymy, etc.). The scores
are defined between 1–5. WS353 [12] consists of 353 word pairs with human
relatedness scores distributed between 0 and 10. Semeval17-2a [6] consists of
500 word pairs, with scores ranging from 0 to 4. The pairs contain named entities
and multi-word expressions. The dataset was designed to cover different domains
(e.g. Biology, Education, etc.). SimLex999 [16] contains 999 word pairs. Human
annotators were instructed to differentiate between similarity and relatedness,
rating word pairs purely on their similarity. SimLex999 has been created to
evaluate how well models asses similarity of word pairs rather than relatedness.

On some of the described, widely used datasets, small sample size does not
allow for showing significance when comparing to an already strong baseline.
Hence, we follow [28] by calculating results on many different datasets, showing
significance on the larger and the overall trend on all datasets.
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5.3 Baselines

We evaluate our approach against two baselines. As a first baseline, we join
several pretrained word embeddings (word2vec, GloVe, FastText) through trun-
cated SVD [28], which achieves stronger performance than the base embeddings
individually. The second baseline is provided by the ConceptNet NumberBatch
embeddings [28], which are constructed from ConceptNet in the same procedure
we use for our NumBERTbatch embeddings, joining several pretrained word
embeddings (word2vec, GloVe, FastText) and Retrofitting them to ConceptNet.

Table 1. Spearman correlation of embeddings generated through retrofitting with dif-
ferent KGs on multiple word similarity datasets. Significant difference to NBorigthrough
Fischer’s z-transformation with †p < 0.01, §p < 0.05.

Group Embedding MEN 3000 RW MTurk WS353 SemEval SimLex Average

Baseline Joint 0.852 0.565 0.782 0.803 0.645 0.519 0.694

NBorig 0.872 0.630 0.822 0.833 0.779 0.633 0.762

Ours NBERTlight 0.877 †0.663 0.827 0.840 0.783 0.633 0.770

NBERT †0.881 §0.651 0.828 0.845 0.780 0.618 0.767

Other NBERTbase 0.873 0.644 0.822 0.833 0.784 0.625 0.764

LMs w/o grammar §0.879 §0.650 0.828 0.843 0.774 0.624 0.766

6 Results

In this section, we report our main experimental results in comparison to the
two baselines, as well as an ablation study evaluating different variations of
our proposed measure REWEIGHT. Table 1 contains all main results from this
section, which we will address in the course of the section.

6.1 NumBERTbatch Embeddings

We compare the NumBERTbatch embeddings resulting from our REWEIGHTed
KG to the performance of the original NumberBatch and the joint word embed-
dings without retrofitting. We additionally evaluate REWEIGHTlight, generat-
ing NumBERTbatchlight embeddings. The results for these settings are shown
in the first two blocks of Table 1. With both weighting schemes, we obtain con-
sistent improvements over the already strong original NumberBatch on multiple
datasets, especially showing significant improvements on the large MEN3000
and Rare Words (RW) datasets. This suggests that our method is capable of
improving the knowledge aggregated in a KG. It is interesting to note that, while
both schemes improve the overall performance over the baselines, they seem to
present different focuses, with one improving more strongly on MEN3000 and
the other on Rare Words. Another interesting observation is that on SimLex, a
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dataset tailored to semantic similarity (as opposed to relatedness), NumBERT-
batch performs worse than the original. This is not unexpected, since we do not
enforce a distinction between relatedness and similarity. It would be an interest-
ing task for future work to evaluate whether the performance on SimLex can be
improved by focusing on relations describing similarity, such as “SimilarTo”.

6.2 Ablation Study

In order to gain further insights into the performance of our approach, we con-
duct a deeper investigation, analyzing the influence of different hyper-parameter
choices and model variations on the performance of our method.

Varying the Perplexity Border ppb. First, we investigate the influence of the per-
plexity border ppb for REWEIGHTmod (the maximum perplexity of a sentence
that is considered to be “reasonable”), varying ppb in the range from 50 to 1000.
We find that most values for ppb do not have a large influence on the results and
refer to the supplementary material for details. Choosing higher values of ppb
leads to slight loss of performance, while still consistently remaining above the
original graph. This matches our intuition, since for very high values of ppb even
sentences that the LM deems improbable receive somewhat high scores. Thus
the separation between more and less reasonable sentences is weakened.

Clipping Outliers. As a next step, we test the impact that possible outliers (i.e.,
sentences with extremely high perplexity) may have on our weighting scheme. For
this, we define an upper bound ppc for the perplexity of generated sentences, set-
ting ppi = min(ppi, ppc) for all sentences. Results of applying REWEIGHTmod to
ConceptNet with different upper bounds show no statistically significant changes
compared to not using any upper bound. For details, we again refer to the sup-
plementary material.

Trimming Extreme Weights. To investigate how much information is contained
within the edges that received particularly low (high) weights during our re-
weighting, we experiment with setting all weights below (above) a given threshold
to 0, thus removing the information of these edges during retrofitting. We expect
removing edges with low weights to only have a small influence on the results
(since these are not particularly important), while removing highly weighted
edges having a more serious impact. The results of the experiment support our
hypothesis: Removing edges with high weights has much more impact on the
overall performance than removing edges with small weights. Details are pro-
vided in the supplementary material.

Changing the LM. In order to investigate the influence of the LM used during the
REWEIGHT process, we experiment with using the smaller BERT-base model
instead of BERT-large. With the BERT-base model containing 110M parame-
ters, significantly fewer than the 340M parameters of BERT-large, we expect
it to encode less knowledge, leading to a lower performance when used with
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REWEIGHTmod. The results in Table 1 under NBERT base show a considerable
loss of performance with the use of the smaller LM, with performance on most
datasets being only slightly above NBorig, which uses the original ConceptNet.

Table 2. Spearman correlation of embeddings generated through retrofitting. Different
KGs used for retrofitting, as well as KGs with shuffled and rescaled edge weights.

Group Embedding MEN 3000 RW MTurk WS353 SemEval SimLex Average

Scaling lim = 10 0.877 0.612 0.824 0.839 0.779 0.617 0.758

lim = 15 0.875 0.617 0.823 0.839 0.780 0.622 0.759

Shuffling R-NBorig 0.871 0.641 0.821 0.832 0.778 0.625 0.761

R-EN NBorig 0.870 0.643 0.821 0.831 0.780 0.631 0.763

R-NBERT 0.867 0.628 0.814 0.829 0.768 0.608 0.752

R-EN NBERT 0.871 0.617 0.816 0.833 0.774 0.605 0.753

Other KGs WebChild 0.850 0.507 0.781 0.803 0.674 0.529 0.691

WCBERT 0.847 0.514 0.770 0.805 0.678 0.510 0.687

Yago 0.835 0.391 0.739 0.792 0.670 0.550 0.663

YagoBERT 0.829 0.393 0.734 0.783 0.665 0.542 0.658

Removing Grammar Correction. As a final experiment, we want to show that
the grammar correction step is necessary for our model. We therefore apply the
REWEIGHTmod process without the PIE grammar checker. Results in the final
column of Table 1 show a slight decrease in performance across all datasets. This
suggests that the grammar correction step can indeed help to reduce the influence
of syntactical signals on the performance, therefore increasing the weight of the
semantic signals that we want to use for our REWEIGHTing process.

7 Analysis

In this section, we provide an extensive analysis of how our method influences
the KG’s weights. To this end, we verify that the improvements are not due to
lucky rescaling or reshuffling of the original weights and provide insight into the
weight changes from the original ConceptNet to our REWEIGHTed version.

7.1 Assessing Added Information

This section aims at showing that the improvements from our REWEIGHTed
graph are not only due to changing the underlying distribution of the weights
in the graph, but that the LM actually adds useful information. To this end, we
conduct two experiments: rescaling the weights of the original CN and reshuffling
our modified weights.
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Rescaling the Original Weights. To make sure that our method’s improvements
are not simply due to amplifying the weights in the original graph, we experiment
with manual rescaling. Specifically, the weights of all edges between English
concepts are scaled linearly between 0 and 50 through min-max scaling as follows:

γ →
{

[0, 45] if γ ≤ lim
(45, 50] else (8)

Fig. 2. ConceptNet weights before and after REWEIGHTing

where we try different values for lim in order to specifically highlight high scoring
edges in the base KG. Results for the values lim ∈ {10, 15} are reported in
Table 2. While an increase in performance in comparison to the base graph is
observable in most datasets for lim = 10, the results do not meet our weighted
NumBERTbatch embeddings. Reasons for the improvement are further discussed
when we investigate the changes made to the KG by our approach in Sect. 7.2.

Reshuffling the Modified Weights. This experiment serves as proof that our
method does not simply change the distribution of the weights in a favorable
way, without actually adding information from the LM to the graph. We take
our improved KG and randomly shuffle the weights of either (a) all relations or
(b) only English relations. If our method just luckily changed the distribution,
this reshuffling would still lead to better results than the original KG weights.
The resulting correlation coefficients after retrofitting can be observed in block
Shuffling in Table 2. It can be seen that the randomized distribution of weights
leads to lower performance on all datasets. Shuffling only the English part of
the graph appears to retain a small amount of information from the remaining
languages, yielding a slightly higher performance than shuffling the full graph.
The strong decreases in performance indicate that the information contained in
the edge weights of the graph are important for the task of semantic relatedness.
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7.2 Changes to the KG

We further investigate the changes that REWEIGHT made to the KG. Figure 2
shows the transition of edge weights during the application of REWEIGHTmod.
We observe that REWEIGHTmod redistributes its weights more broadly over
the value range, with considerably more high and low weights in comparison
to the base graph. This might explain why additionally increasing the weight
of important edges in the base graph leads to the improvements in correlation
observed in Sect. 7.1. The major changes our approach appears to make to the
weight distribution of the KG are increasing the weight of many relations in
the interval (0.9, 1], which shows an ability to highlight specific reasonable rela-
tions. REWEIGHTmod also slightly decreases the weight of many edges in the
range (1, 5], bringing e.g. “mathematical SimilarTo unquestionable” from
2.0 to 0.88. Additionally, for the edges that were rated very low in the original
ConceptNet, we observe many slight weight increases, as well as many strong
increases, with e.g. “mathematics RelatedTo geometry” being changed from
very low (0.1) to very high (34.8) weights by REWEIGHTmod.

On the other hand, we observe difficulties of the approach on relations that
include highly specific concepts such as “anthrax”. Since these concepts do not
appear in the vocabulary of the BERT LM, they are assessed on character- and
substring-level which causes higher perplexity scores than known concepts. Due
to this, highly specific relations such as “anthrax IsA disease” are changed
from high (2.8) to low scores (0.9) in spite of containing reasonable information.
This suggests possible further improvements of the approach through assessing
out-of-vocabulary concepts separately, which we leave as future work.

7.3 Choice of KG

REWEIGHT can be applied to improve the weights in any KG. Our previous
experiments have focused on ConceptNet, one of the most prevalent common
sense KGs being employed on a variety of application scenarios [27,28,37]. In
this section, we evaluate the suitability of REWEIGHT to derive new weights
for two other well-known KGs, YAGO and WebChild. As a preprocessing step,
we aggregate all scores for relations that occur several times between the same
concepts, creating a unique relation between the concepts with summed score.
We then use the KGs with original weights for retrofitting, reporting our results
in Table 2. We find that retrofitting with either WebChild or YAGO does not
achieve an improvement over the original joint embeddings (Joint in Table 1).
We evaluate both KGs further, but find that neither weighting their edges with
REWEIGHT, nor any other modifications we tried (i.e., manually scaling edge
weights, removing entire subgraphs, and removing uncommon concepts) manage
to improve on our baselines.

We therefore conclude that the application of retrofitting to WebChild and
YAGO does improve word embeddings on semantic relatedness. While this may
be caused by the Retrofitting task itself, we also make the following observations
concerning the structure of the graphs: WebChild strongly represents structured
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knowledge about activities (e.g. drive a car) and object properties (e.g. hasSize),
while relations between concepts are only represented through part-whole rela-
tions (e.g. isMemberOf, partOf ) and comparison relations (e.g. largerThan). The
YAGO Taxonomy builds hierarchical information of isA relations between con-
cepts. Although these relations contain important knowledge for word related-
ness, the relations in both KGs are focused on hierarchical connections between
concepts, which appear to carry less information for the semantic relatedness
datasets compared to the rich relations in ConceptNet. Since our method only
improves the weights of the edges and is not capable of changing the structure of
the graph, it may thus be unsuitable to improve the performance of WebChild
and YAGO for our semantic similarity tasks.

8 Conclusion

In this paper, we have proposed REWEIGHT, a pipeline for enriching structured
common sense KGs with information contained in LMs through converting KG
relations to natural language sentences and rating their reasonability. For this,
we introduced a mapping of KG edges to natural sentences, and assessed the
semantic reasonability of the sentences by calculating their perplexity with an
LM. We then introduced a scheme for transforming the resulting perplexities to
edge weights in the range of the original KG weights, yielding an enriched KG
containing additional information through knowledge from an LM.

We applied REWEIGHT on the relatedness-oriented common sense KG Con-
ceptNet, investigating whether the world knowledge contained in the BERT
LM can be used to improve the information contained in the KG for the task
of semantic relatedness. To evaluate the performance of the enriched KG, we
employed the retrofitting setting of [28], using the KG as additional information
to improve existing word embeddings and evaluating the resulting embeddings
on multiple semantic relatedness datasets.

Our results show that the BERT LM can be used to further improve the
already strongly performing ConceptNet NumberBatch across all evaluated
relatedness datasets. In an extended investigation we found that BERT man-
aged to assess the semantic reasonability of ConceptNet relations well, giving
high weights to edges with essential information for use in improving existing
word embeddings.

Overall, our results uncover promising opportunities for improving existing
KGs with unstructured information contained in LMs. Through representing
edges in KGs as natural sentences, many established techniques in Natural Lan-
guage Processing (NLP) may be used to automatically improve the information
contained in KGs. Additionally, it may be possible to add information from
specialized LMs into a KG, which in turn can be used as a source of back-
ground knowledge for domain dependent tasks [15]. One further opportunity for
future work may be the careful construction of sentences from edges, aiming to
eliminate any biases the employed NLP approaches may have towards sentence
construction, i.e. through employing different and varying sentence templates.
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COMET: commonsense transformers for automatic knowledge graph construction.
In: ACL (2019)

4. Bouraoui, Z., Camacho-Collados, J., Schockaert, S.: Inducing relational knowledge
from BERT. In: AAAI 2019 (2019)

5. Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif.
Intell. Res. 49, 1–47 (2014)

6. Camacho-Collados, J., Pilehvar, M.T., Collier, N., Navigli, R.: Semeval-2017 task
2: multilingual and cross-lingual semantic word similarity. In: 11th International
Workshop on Semantic Evaluation (SemEval-2017), pp. 15–26 (2017)

7. Chen, X., Liu, X., Ragni, A., Wang, Y., Gales, M.J.: Future word contexts in
neural network language models. In: 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 97–103. IEEE (2017)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: 2019 Conference of the
North American Chapter of the Association for Computational Linguistics (2018)

9. Eshel, Y., Cohen, N., Radinsky, K., Markovitch, S., Yamada, I., Levy, O.: Named
entity disambiguation for noisy text. In: Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL 2017), pp. 58–68 (2017)

10. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting
word vectors to semantic lexicons. In: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1606–1615 (2015)

11. Fensel, D., et al.: Knowledge Graphs: Methodology, Tools and Selected Use Cases.
Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-37439-6

12. Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Pro-
ceedings of the 10th International Conference on World Wide Web, pp. 406–414
(2001)

13. Halawi, G., Dror, G., Gabrilovich, E., Koren, Y.: Large-scale learning of word relat-
edness with constraints. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1406–1414 (2012)

14. Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: a flexible, multilingual semantic
network for common sense knowledge. In: Recent Advances in Natural Language
Processing, pp. 27–29. Citeseer (2007)

15. Hettinger, L., Dallmann, A., Zehe, A., Niebler, T., Hotho, A.: Claire at SemEval-
2018 task 7: classification of relations using embeddings. In: 12th International
Workshop on Semantic Evaluation (2018)

16. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with
(genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)

17. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure
of language? In: Association for Computational Linguistics (2019)

18. Lengerich, B., Maas, A., Potts, C.: Retrofitting distributional embeddings to knowl-
edge graphs with functional relations. In: Proceedings of the 27th International
Conference on Computational Linguistics, pp. 2423–2436 (2018)

https://doi.org/10.1007/978-3-030-37439-6


472 J. Omeliyanenko et al.

19. Luong, M.T., Socher, R., Manning, C.D.: Better word representations with recur-
sive neural networks for morphology. In: Proceedings of the Seventeenth Conference
on Computational Natural Language Learning, pp. 104–113 (2013)

20. Malaviya, C., Bhagavatula, C., Bosselut, A., Choi, Y.: Commonsense knowledge
base completion with structural and semantic context. In: AAAI (2020)

21. Ng, H.T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, R.H., Bryant, C.: The
CoNLL-2014 shared task on grammatical error correction. In: 18th Conference on
Computational Natural Language Learning: Shared Task, pp. 1–14 (2014)

22. Niebler, T., Becker, M., Pölitz, C., Hotho, A.: Learning semantic relatedness from
human feedback using relative relatedness learning. In: 16th International Semantic
Web Conference (ISWC) (2017)

23. Petroni, F., et al.: Language models as knowledge bases? In: 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 2463–2473,
January 2019

24. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

25. Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO:
a multilingual knowledge base from wikipedia, wordnet, and geonames. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 177–185. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 19

26. Sadeghi, A., Graux, D., Shariat Yazdi, H., Lehmann, J.: MDE: multiple distance
embeddings for link prediction in knowledge graphs. In: ECAI (2020)

27. Sharifirad, S., Jafarpour, B., Matwin, S.: Boosting text classification performance
on sexist tweets by text augmentation and text generation using a combination of
knowledge graphs. In: 2nd Workshop on Abusive Language Online (ALW2) (2018)

28. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of gen-
eral knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

29. Speer, R., Lowry-Duda, J.: ConceptNet at SemEval-2017 task 2: extending word
embeddings with multilingual relational knowledge. In: Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017), pp. 85–89 (2017)

30. Tandon, N., De Melo, G., Weikum, G.: WebChild 2.0: fine-grained commonsense
knowledge distillation. In: ACL 2017, System Demonstrations, pp. 115–120 (2017)

31. Xiong, W., Du, J., Wang, W.Y., Stoyanov, V.: Pretrained encyclopedia: weakly
supervised knowledge-pretrained language model. In: International Conference on
Learning Representations (2020)

32. Xu, C., et al.: RC-NET: a general framework for incorporating knowledge into
word representations. In: 23rd ACM International Conference on Information and
Knowledge Management, pp. 1219–1228 (2014)

33. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion. In:
arXiv preprint arXiv:1909.03193 (2019)

34. Yu, M., Dredze, M.: Improving lexical embeddings with semantic knowledge. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 545–550 (2014)

35. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual
commonsense reasoning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6720–6731 (2019)

36. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced lan-
guage representation with informative entities. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1441–1451 (2019)

https://doi.org/10.1007/978-3-319-46547-0_19
http://arxiv.org/abs/1909.03193


LM4KG 473

37. Zhong, W., Tang, D., Duan, N., Zhou, M., Wang, J., Yin, J.: Improving question
answering by commonsense-based pre-training. In: Natural Language Processing
and Chinese Computing (2019)

38. Zhou, X., Zhang, Y., Cui, L., Huang, D.: Evaluating commonsense in pre-trained
language models. In: AAAI (2020)



SHACL Satisfiability and Containment

Paolo Pareti1(B) , George Konstantinidis1 , Fabio Mogavero2 ,
and Timothy J. Norman1

1 University of Southampton, Southampton, UK
{pp1v17,g.konstantinidis,t.j.norman}@soton.ac.uk

2 Università degli Studi di Napoli Federico II, Napoli, Italy
fabio.mogavero@unina.it

Abstract. The Shapes Constraint Language (SHACL) is a recent W3C
recommendation language for validating RDF data. Specifically, SHACL
documents are collections of constraints that enforce particular shapes
on an RDF graph. Previous work on the topic has provided theoretical
and practical results for the validation problem, but did not consider
the standard decision problems of satisfiability and containment, which
are crucial for verifying the feasibility of the constraints and important
for design and optimization purposes. In this paper, we undertake a
thorough study of the different features of SHACL by providing a trans-
lation to a new first-order language, called SCL, that precisely captures
the semantics of SHACL w.r.t. satisfiability and containment. We study
the interaction of SHACL features in this logic and provide the detailed
map of decidability and complexity results of the aforementioned decision
problems for different SHACL sublanguages. Notably, we prove that both
problems are undecidable for the full language, but we present decidable
combinations of interesting features.

1 Introduction

The Shapes Constraint Language (SHACL) has been recently introduced as a
W3C recommendation language for the validation of RDF graphs. A SHACL
document is a collection of shapes which define particular constraints and specify
which nodes in a graph should be validated against these constraints. The ability
to validate data with respect to a set of constraints is of particular importance
for RDF graphs, as they are schemaless by design. Validation can be used to
detect problems in a dataset and it can provide data quality guarantees for the
purpose of data exchange and interoperability.

Recent work has focused on defining precise semantics and implementations
for validation of SHACL documents, in particular for the case of recursion [8].
In this paper, instead, we focus on the decision problems of satisfiability and
containment for SHACL documents; problems which have not been previously
investigated. Given a particular SHACL document, satisfiability is the problem
of deciding whether there is an RDF graph which is validated by the document;
we also investigate finite satisfiability, that is, whether there exists a valid graph
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of finite size. Containment studies whether a particular SHACL document is sub-
sumed by a second one; that is, whether all graphs that are validated by the first
are also validated by the second. We investigate whether these decision problems
can be decided not only at the level of documents, but also for individual shapes
(i.e. sets of constraints) within documents.

Satisfiability and containment are standard decision problems that have
important applications in optimization and design. When integrating two
datasets subject to two different SHACL documents, for example, it is important
to know whether the two SHACL documents are in conflict with each other, or
if one of them is subsumed by the other. At the level of shapes, an unsatisfi-
able shape constraint might not necessarily cause the unsatisfiability of a whole
SHACL document, but it is likely an indication of a design error. Being able
to decide containment for individual shapes offers more design choices to the
author of a SHACL document, and it is a venue for optimization.

In this paper we focus on the core constraint components of SHACL [16] and
we do not consider recursion. Validation under recursion is left unspecified in
SHACL and, while different semantics have been proposed [8], we already show
that even without it the language has undecidable satisfiability and contain-
ment. For a subset of the core constraint components and a restricted form of
recursion (à la stratified negation), containment of individual shape constraints
is shown to be decidable in [17]. This is achieved via reduction to description
logic reasoning [3], reminiscent to our Theorem 5.

One of our main contributions is a comprehensive translation of SHACL into
SCL , a new fragment of first-order logic extended with counting quantifiers and
the transitive closure operator. To the best of our knowledge such a translation
has not been attempted before. Our approach translates a SHACL document to
an SCL equisatisfiable sentence, i.e., there is a valid RDF graph for the first iff
there is a model for the second.

Distinct SHACL constructs translate to particular SCL features of differ-
ent expressiveness. We identify eight such prominent features (such as counting
quantifiers or transitive closure) that can be used on top of a base logic and study
their interactions. On one hand, the full language is undecidable and, in fact,
so are most fragments with just three or four features. On the other hand, our
base language has decidable satisfiability and containment, and it is ExpTime-
complete. We create a detailed map, in between these extremes, proving positive
and negative results for many interesting combinations.

2 Background and Problem Definition

The core structure of the RDF data model is a graph whose nodes and edges are
defined by a set of triples. A triple 〈s, p, o〉 identifies an edge with label p, called
predicate, from a node s, called subject, to a node o, called object. The main type
of entities that act as nodes and edges in RDF graphs are IRIs. We represent
RDF graphs in Turtle syntax and by abbreviating IRIs using XML namespaces;
the namespace sh refers to SHACL terms.
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In an RDF graph, literal constants (representing datatype values) can only
appear in the object position of a triple, while in generalized RDF [9] they can
appear in any position. We will use the generalised model for simplicity. Most
of our results apply to both data models and we will state clearly when this is
not the case. We do not use variables in the predicate position in this paper
and so we represent triples as binary relations in FOL. We use the atom R(s, o)
as a shorthand for 〈s,R, o〉. We use a minus sign to identify the inverse atom,
namely R−(s, o) = R(o, s). We use the binary relation name isA to represent
class membership triples 〈s, rdf:type, o〉 as isA(s, o).

Fig. 1. A SHACL document (left) and a graph that validates it (right).

SHACL defines constraints that can validate RDF graphs [16]. A SHACL doc-
ument is a set of shapes. A shape, denoted s:〈t, d〉, has three main components:
(1) a set of constraints which are used in conjunction, and hence referred to as
a single constraint d; (2) a set of target declarations, referred to as target defini-
tion t, which provides a set of RDF nodes that are validated against d; and (3)
a shape name s. One can think of t and d as unary queries over the nodes of G.
Given a node n in a graph G, and a shape s:〈t, d〉, we denote with G |= t(n) the
fact that node n that satisfies definition t, and G |= d(n) denotes that a node n
validates d in G. A graph G validates a shape s:〈t, d〉, formally G |= s:〈t, d〉, iff
every node in the target t validates the constraints d, that is, iff for all n ∈ G, if
G |= t(n) then G |= d(n). An empty target definition is never satisfied while an
empty constraint definition is always satisfied. A graph G validates a set of shape
definitions, i.e. a SHACL document, M , formally G |= M , iff G validates all the
shapes in M . Constraints might refer to other shapes. When a shape is refer-
enced by another shape it can be handed down a set of focus nodes to validate,
in addition to those from its own target definition. A shape is recursive when it
references itself (directly or through other shapes). As mentioned, we focus on
non-recursive SHACL documents using the SHACL core constraint components.
Without loss of generality, we assume that shape names in a SHACL document
do not occur in other SHACL documents or graphs.

The example SHACL document in Fig. 1 defines the constraint that, intu-
itively, all students must have at least one supervisor from the same faculty.
The shape with name :studentShape has class :Student as a target, meaning
that all members of this class must satisfy the constraint of the shape. The
constraint definition of :studentShape requires the non-satisfaction of shape
:disjFacultyShape, i.e., a node satisfies :studentShape if it does not satisfy
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:disjFacultyShape. The :disjFacultyShape shape states that an entity has no
faculty in common with any of their supervisors (the sh:path term defines a
property chain, i.e., a composition of roles :hasSupervisor and :hasFaculty).
A graph that validates these shapes is provided in Fig. 1. It can be made invalid
by changing the faculty of :Jane in the last triple.

We now define the SHACL satisfiability and containment problems.

(i) SHACL Satisfiability: A SHACL document M is satisfiable iff there exists
a graph G such that G |= M .

(ii) Constraint Satisfiability: A SHACL constraint d is satisfiable iff there
exists a graph G and a node n such that G |= d(n).

(iii) SHACL Containment: For all SHACL documents M1, M2, we say that
M1 is contained in M2, denoted M1 ⊆ M2, iff for all graphs G, if G |= M1

then G |= M2.
(iv) Constraint Containment: For all SHACL constraints d1 and d2 we say

that d1 is contained in d2, denoted by d1,⊆ d2 iff for all graphs G and nodes
n, if G |= d1(n) then G |= d2(n).

The satisfiability and containment problems for constraints can be reduced
to SHACL satisfiability, as follows. A constraint d is satisfiable iff there exists a
constant c, either occurring in d or a fresh one, such that the SHACL document
corresponding to shape s:〈tc, d〉 is satisfiable, where tc is the target definition
that targets node c. Similarly, constraint d1 is not contained in d2 iff there exists
a constant c, occurring in d1, d2 or a fresh one, such that the SHACL document
corresponding to shape s:〈tc, d′〉 is satisfiable; d′(x) is true whenever d1(x) is
true and d2(x) if false. Thus, satisfiability and containment of constraints in
a given SHACL fragment are decidable whenever SHACL satisfiability of that
fragment is decidable, and have the same complexity upper bound. However,
undecidability of SHACL satisfiability in a fragment does not necessarily imply
undecidability for the two constraint problems; we leave this as an open problem.

3 A First Order Language for SHACL Documents

In this section we present a translation of SHACL into an equisatisfiable frag-
ment of FOL extended with counting quantifiers and the transitive closure
operator, called SCL. As discussed before, for a shape s:〈t, d〉 in a SHACL
document M , t and d can be seen as unary queries. Intuitively, given a suit-
able translation q from SHACL into FOL, M is satisfiable iff the sentence∧

s:〈t,d〉∈M ∀x. q(t(x)) → q(d(x)) is satisfiable, i.e., a node in the target defini-
tion of a shape needs to satisfy its constraint, for every shape. We subsequently
present an approach that constructs such a sentence. This is reminiscent of [7],
where a SHACL document M is translated into a SPARQL query that is true on
graphs which however violate M . Intuitively, this query corresponds to sentence∨

s:〈t,d〉∈M ∃x.q(t(x)) ∧ ¬q(d(x)), i.e. the negation of the sentence above. Never-
theless, several assumptions made in [7], such that ordering two values is not
more complex than checking their equivalence, do not hold for the purposes of
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satisfiability and containment. We will use τ to denote the translation function
from a SHACL document M to an SCL sentence τ(M), which is polynomial in
the size of M and computable in polynomial time. We refer to our appendix1

for the complete translations of τ and its inverse τ−.
Next, we present our grammar of SCL in Definition 1. For simplicity, we

assume that target definitions contain at most one target declaration, and that
shapes referenced by other shapes have an empty target definition. This does
not affect generality, as any shape can be trivially split in multiple copies:
one per target declaration and one without any. Letters in square brackets in
Definition 1 are annotations naming SCL features and thus are not part of the
grammar. The top-level symbol ϕ in SCL corresponds to a SHACL document.
This could be empty (
), a conjunction of documents, or the translation of
an individual shape. A sentence that corresponds to a single shape could have
five different forms in SCL, depending on the target definition of the translated
shape. These are summarized in Table 1, where τd(x) is the SCL translation of
the constraint of the shape. In SHACL only four types of target declarations
are allowed: (1) a particular constant c (node target), (2) instances of class c
(class target), or (3)/(4) subjects/objects of a triple with predicate R (subject-
of/object-of target). Our translation function gives explicit names to referenced
shapes using the hasShape relation. We refer to the last component of the ϕ
rule (i.e., ∀x. hasShape(x, s) ↔ ψ(x)) as a referenced shape definition and to its
internal constant s as referenced shape.

Table 1. Translation of shape s:〈t, d〉 in SCL with respect to its target definition t.

Target declaration in t Translation τ(s:〈t, d〉)
Node target (node c) τd(c) (equivalent form of: ∀x. x = c → τd(x) )
Class target (class c) ∀x.isA(x,c) → τd(x)

Subjects-of target (relation R) ∀x, y.R(x, y) → τd(x)

Objects-of target (relation R) ∀x, y.R−(x, y) → τd(x)

No target declaration ∀x. hasShape(x, s) ↔ τd(x)

The non terminal symbol ψ(x) corresponds to the subgrammar of the SHACL
constraints. Within this subgrammar, 
 identifies an empty constraint, x = c
a constant equivalence constraint and F a monadic filter relation (e.g. F IRI(x),
true iff x is an IRI). By filters we refer to the SHACL constraints about ordering,
node-type, datatype, language tag, regular expressions and string length. Filters
are captured by F (x) and the O component. The C component captures quali-
fied value shape cardinality constraints. The E, D and O components capture the
equality, disjointedness and order property pair components. The π(x, y) sub-
grammar models SHACL property paths. Within this subgrammar S denotes

1 https://arxiv.org/abs/2009.09806.

https://arxiv.org/abs/2009.09806
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sequence paths, A denotes alternate paths, Z denotes a zero-or-one path and T
denotes a zero-or-more path.

Definition 1. The SHACL first-order language (SCL, for short) is the set of sen-
tences (ϕ) and one-variable formulas (ψ(x)) built according to the following
context-free grammar, where c and s are constants (from disjoint domains), F
is a monadic-filter name, R is a binary-relation name, � indicates the transitive
closure of the relation induced by π(x, y), the superscript ± refers to a relation
or its inverse, and n ∈ N:

ϕ := � | ψ(c) | ∀x . isA(x, c) → ψ(x) | ∀x, y . R±(x, y) → ψ(x) | ϕ ∧ ϕ; |
∀x. hasShape(x, s) ↔ ψ(x) ;

ψ(x) := � | x = c | F (x) | hasShape(x, s) | ¬ψ(x) | ψ(x) ∧ ψ(x) |
∃y. π(x, y) ∧ ψ(y) | ¬∃y. π(x, y) ∧ R(x, y) [D] | ∀y. π(x, y) ↔ R(x, y) [E] |
∀y, z . π(x, y) ∧ R(x, z) → σ(y, z) [O] | ∃≥ny . π(x, y) ∧ ψ(y) [C];

π(x, y) := R±(x, y) | ∃z . π(x, z)∧π(z, y) [S] | x=y∨π(x, y) [Z] | π(x, y)∨π(x, y) [A] |
(π(x, y))� [T];

σ(x, y) := x <± y | x ≤± y.

To enhance readability, we define the following syntactic shortcuts:

(i) ψ1(x) ∨ ψ2(x)
.= ¬(¬ψ1(x) ∧ ¬ψ2(x));

(ii) π(x, c) .= ∃y.π(x, y) ∧ y = c;
(iii) ∀y . π(x, y) → ψ(y) .= ¬∃y . π(x, y) ∧ ¬ψ(y).

Fig. 2. Translation of the SHACL document from Fig. 1 into the SPARQL query that
looks for violations (left) and into an SCL sentence (right).

Our translation τ results in a subset of SCL sentences, called well-formed.
An SCL sentence is well-formed if for every occurrence of a referenced shape s
there is a corresponding referenced shape definition sentence with the same s,
and no referenced shape definitions are recursively defined. Figure 2 shows the
translation of the document from Fig. 1, into a SPARQL query, via [7], and a
well-formed SCL sentence, via τ .

To distinguish different fragments of SCL, Table 2 lists a number of promi-
nent SHACL components, that is, important for the purpose of satisfiability. The
language defined without any of these constructs is our base language, denoted
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∅. When using such an abbreviation of a prominent feature, we refer to the
fragment of our logic that includes the base language together with that fea-
ture enabled. For example, SA identifies the fragment that only allows the base
language, sequence paths and alternate paths.

The SHACL specification presents an unusual asymmetry in the fact that
equality, disjointedness and order components forces one of their two path expres-
sions to be an atomic relation. This can result in situations where the order
constraints can be defined in just one direction, since only the less-than and less-
than-or-equal property pair constraints are defined in SHACL. Our O fragment
models a more natural order comparison that includes the > and ≥ components.
We instead denote with O’ the fragment where the order relations in the σ(x, y)
subgrammar cannot be inverted.

Table 2. Relation between prominent SHACL components and SCL expressions.

Abbr Name SHACL component Corresponding expression

S Sequence paths Sequence paths ∃z . π(x, z) ∧ π(z, y)

Z Zero-or-one paths sh:zeroOrOnePath x = y ∨ π(x, y)

A Alternative paths sh:alternativePath π(x, y) ∨ π(x, y)

T Transitive paths sh:zeroOrMorePath

sh:oneOrMorePath

(π(x, y))�

D Property Pair Disjointness sh:disjoint ¬∃y.π(x, y) ∧ R(x, y)

E Property pair equality sh:equals ∀y . π(x, y) ↔ R(x, y)

O Property pair order sh:lessThanOrEquals x ≤± y and x <± y

C Cardinality constraints sh:qualifiedValueShape

sh:qualifiedMinCount

sh:qualifiedMaxCount

∃≥ny . π(x, y) ∧ ψ(y) with n = 1

Relying on the standard FOL semantics, we define the satisfiability and con-
tainment for SCL sentences, as well as the closely related finite-model property,
in the natural way.

SCL Sentence Satisfiability. An SCL sentence φ is satisfiable iff there exists a
first-order structure Ω such that Ω |= φ.

SCL Sentence Containment. For all SCL sentences φ1, φ2, we say that φ1

is contained in φ1, denoted φ1 ⊆ φ2, iff, for all first-order structures Ω, if
Ω |= φ1 then Ω |= φ2.

SCL Finite-model Property. An SCL sentence φ (resp. formula ψ(x)) enjoys
the finite-model property iff whenever φ is satisfiable, it is so on a finite
model.

In the following two subsections, we discuss SHACL-to-SCL satisfiability and
containment. In this respect, we assume that filters are interpreted relations. In
particular, we prove equisatisfiability of SHACL and SCL on models that we call
canonical, that is, having the following properties: (1) the domain of the model
is the set of RDF terms, (2) such a model contains built-in interpreted relations
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for filters, and (3) ordering relations <± and ≤± are the disjoint union of the
total orders of the different comparison types allowed in SPARQL. In Sect. 3.3,
we discuss an explicit axiomatization of the semantics of a particular set of filters
in order to prove decidability of the satisfiability and containment problems for
several SCL fragments in the face of these filters.

3.1 SHACL Satisfiability

A fine-grained analysis of the bidirectional translation between our grammar and
SHACL, provided in the appendix, can lead to an inductive proof of equisatis-
fiability between the two languages. In particular, given a satisfiable SHACL
document M which validates an RDF graph G, we can translate G and M into
a canonical first-order structure I which models τ(M), thus proving the latter
satisfiable, and vice versa. Intuitively, the structure I is composed of two sub-
structures, ΩG which corresponds to the translation of triples from G, and ΩG,M

which interprets the hasShape relation. These substructures, as explained below,
have disjoint interpretations and we write I = ΩG ∪ΩG,M to denote that I is the
structure that considers the union of their domains and of their interpretations.

For any RDF predicate R in G, the structure ΩG is a canonical structure that
interprets the binary relation R as the set of all pairs 〈s, o〉 for which 〈s,R, o〉 is
in G. The structure ΩG,M interprets hasShape as the binary relation which, for
all referenced shape definitions ∀x. hasShape(x, s) ↔ ψ(x) in τ(M), it contains
a pair 〈c, s〉 whenever ΩG satisfies ψ(c). We will call ΩG,M the shape definition
model of G and M . Since we do not address recursive shape definitions, this
model always exists (corresponding to the faithful total assignment from [8]).
Inversely, given a well-formed SCL sentence φ that is satisfiable and has a model
I, by eliminating from I all references of hasShape and then transforming the
elements of the relations to triples we get an RDF graph G that is valid w.r.t.
the SHACL document τ−(φ).

Theorem 1. For all SHACL documents M : (1) τ(M) is polynomially com-
putable; (2) M is (finitely) satisfiable iff τ(M) is (finitely) satisfiable on a canon-
ical model.
For all well-formed SCL sentences φ: (1) τ−(φ) is polynomially computable; (2)
φ is (finitely) satisfiable on canonical models iff τ−(φ) is (finitely) satisfiable.

3.2 SHACL Containment

Containment of two SHACL documents does not immediately correspond to the
containment of their SCL translations. Given two SHACL documents M1 and
M2 where M1 is contained in M2, there might exist a first-order structure I that
models τ(M1) but not τ(M2). Notice, in fact, that structure I = ΩG ∪ ΩG,M1

models M1, but that ΩG,M1 does not necessarily model the referenced shape
definitions of τ(M2). Let δ(φ) be the definitions of referenced shapes in an SCL
sentence φ. Note that for a graph G and a SHACL document M the shape
definition model ΩG,M models δ(τ(M)). The reduction of SHACL containment
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into SCL is, therefore, as follows. This result also applies for containment over
finite structures.

Theorem 2. For all SHACL documents M1 and M2: (1) δ(τ(M2)) is polyno-
mially computable; (2) M1 ⊆ M2 iff τ(M1)∧ δ(τ(M2)) ⊆ τ(M2) on all canonical
models.

Proof. (⇒) Let M1 ⊆ M2. If M1 is not satisfiable the theorem holds. If M1 is
satisfiable, let G be any graph that validates M1, and thus M2. It holds that
ΩG ∪ ΩG,M1 models τ(M1) per Sect. 3.1, and ΩG ∪ ΩG,M2 models τ(M2). It is
easy to see that if ΩG ∪ ΩG,M1 models τ(M1) the union of another hasShape
interpretation over a disjoint set of shape names, i.e., ΩG ∪ ΩG,M1 ∪ ΩG,M2 also
models τ(M1). Similarly ΩG ∪ ΩG,M1 ∪ ΩG,M2 models τ(M2) as well.

(⇐) If M1 is not contained in M2, then there is a graph G that models M1

but not M2. Thus, ΩG ∪ ΩG,M1 models τ(M1) but ΩG ∪ ΩG,M2 does not model
τ(M2). So we have that ΩG ∪ ΩG,M1 ∪ ΩG,M2 models τ(M1)∪ δ(τ(M2)) but not
τ(M2). ��

Since our grammar is not closed under negation we cannot trivially reduce
(finite) SCL containment to (finite) SCL satisfiability. Nevertheless, all positive
(decidability and complexity) results are obtained by exhibiting inclusion of
some SCL fragment into a particular (extension of a) fragment of first-order
logic already studied in the literature that is closed under negation. Thus we
can always solve the (finite) SCL containment problem for sentences φ1 ⊆ φ2

by deciding (finite) unsatisfiability of a sentence φ1 ∧ ¬φ2. Dually, the unsatis-
fiability of an SCL sentence φ is equivalent to φ ⊆ ⊥. Hence, containment and
unsatisfiability have the same complexity.

3.3 Filter Axiomatization

Decidability of SCL satisfiability depends on the decidability of filters. In this
section we present a decidable axiomatization that allows us to treat some
filters as simple relations instead of interpreted ones. In particular, we do
not consider sh:pattern which supports complex regular expressions, and the
sh:lessThanOrEquals or sh:lessThan that are binary relations (the O and O’
components of our grammar). All other features defined as filters in Sect. 3 are
represented by monadic relations F (x) of the SCL grammar.

The actual problem imposed by filters w.r.t. deciding satisfiability and con-
tainment is that each combination of filters might be satisfied by a limited num-
ber of elements (zero, if the combination is unsatisfiable). For example, the
number of elements of datatype boolean is two, the number of elements that
are literals is infinite and the number of elements of datatype integer that are
greater than 0 and lesser than 5 is four.

Let a filter combination F(x) denote a conjunction of atoms of the form
x = c, x �= c, F (x) or ¬F (x), where c is a constant and F is a filter predicate.
Given a filter combination, it is possible to compute the number of elements
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that can satisfy it. Let γ be the function from filter combinations to naturals
returning this number. The computation of γ(F(x)) for the monadic filters we
consider is trivial as it boils down to determining: (1) the lexical space and
compatibility of datatypes and node types (including those implied by language
tag and order constraints); (2) the cardinality of intervals defined by order or
string-length constraints; and (3) simple RDF-specific restrictions, e.g., the fact
that each node has at most one datatype and language tag. Combinations of
the previous three points are equally computable. Let Fϕ be the set of filter
combinations that can be constructed with the filters and constants occurring
in a sentence ϕ. The filter axiomatization α(ϕ) of a sentence ϕ is the following
conjunction (conjuncts where γ(F(x)) is infinite are trivially simplified to 
).

α(ϕ) =
∧

F(x)∈Fϕ
∃≤γ(F(x))x. F(x)

Theorem 3. An SCL sentence φ is satisfiable on a canonical model iff φ∧α(φ) is
satisfiable on an uninterpreted model. Containment φ1 ⊆ φ2 of two SCL sentences
on all canonical models holds iff φ1 ∧ α(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted
models.

Proof Sketch. We focus on satisfiability, since the proof for containment is sim-
ilar. First notice that every canonical model I of ϕ is necessarily a model of
φ∧α(φ). Indeed, by definition of the function γ, given a filter combination F(x),
there cannot be more than γ(F(x)) elements satisfying F(x), independently of
the underlying canonical model. Thus, I satisfies α(φ). Consider now a model I
of φ∧α(φ) and let I� be the structure obtained from I by replacing the interpre-
tations of the monadic filter relations with their canonical ones. Obviously, for
any filter combination F(x), there are exactly γ(F(x)) elements in I� satisfying
F(x), since I� is canonical. As a consequence, there exists a injection ι between
the elements satisfying F(x) in I and those satisfying F(x) in I�. At this point,
one can prove that I� satisfies ϕ. Indeed, every time a value x, satisfying F(x)
in I, is used to verify a subformula ψ of ϕ in I, one can use the value ι(x) to
verify the same subformula ψ in I�. ��

4 SCL Satisfiability

In this section we embark on a detailed analysis of the satisfiability problem for
different fragments of SCL. Some of the proven and derived results are visualized
in Fig. 3. The decidability results are proved via embedding into known decidable
(extensions of) fragments of first-order logic, while the undecidability ones are
obtained through reductions from the domino problem. Since we are not consid-
ering filters explicitly, but via axiomatization, the only interpreted relations are
the equality and the orderings.

For the sake of space and readability, the map depicted in the figure is not
complete w.r.t. two aspects. First, it misses few fragments whose decidability can
be immediately derived via inclusion into a more expressive decidable fragment,
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Fig. 3. Decidability and complexity map of SCL. Round (blue) and square (red) nodes
denote decidable and undecidable fragments, respectively. Solid borders on nodes cor-
respond to theorems in this paper, while dashed borders are implied results. Directed
edges indicate inclusion of fragments, while bidirectional edges denote polynomial-time
reducibility. Solid edges are preferred derivations to obtain tight results, while dotted
ones leads to worst upper-bounds or model-theoretic properties. Finally, a light blue
background indicates that the fragment enjoys the finite-model property, while those
with a light red background do not satisfy this property. (Color figure online)

e.g., Z A D E C or S Z A T D. Second, the rest of the missing cases have an open
decidability problem. In particular, while there are several decidable fragments
containing the T feature we do not know any decidable fragment with the O or
O’ feature. Notice that the undecidability results making use of the last two are
only applicable to generalized RDF.

As first result, we show that the base language ∅ is already powerful enough
to express properties writable by combining the S, Z, and A features. In particular,
the latter one does not augment the expressiveness when the D and O features
are considered alone.

Theorem 4. There are semantic-preserving and polynomial-time finite-model-
invariant satisfiability-preserving translations between the following SCL frag-
ments: 1. ∅ ≡ S ≡ Z ≡ A ≡ S Z ≡ S A ≡ Z A ≡ S Z A; 2. D ≡ A D; 3. O ≡ A O;
4. D O ≡ A D O.
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Proof. To show the equivalences between the fourteen SCL fragments mentioned
in the thesis, we consider the following first-order formula equivalences that
represent few distributive properties enjoyed by the S, Z, and A features w.r.t.
some of the other language constructs. The verification of their correctness only
requires the application of standard properties of Boolean connectives and first-
order quantifiers.

– [S]. The sequence combination of two path formulas π1 and π2 in the body
of an existential quantification is removed by nesting two quantifications, one
for each πi:

∃y . (∃z . π1(x, z) ∧ π2(z, y)) ∧ ψ(y) ≡ ∃z . π1(x, z) ∧ (∃y . π2(z, y) ∧ ψ(y)).

– [Z]. The Z path construct can be removed from the body of an existential
quantification on a free variable x by verifying whether the formula ψ in its
scope is already satisfied by the value bound to x itself:

∃y . (x = y ∨ π(x, y)) ∧ ψ(y) ≡ ψ(x) ∨ ∃y . π(x, y) ∧ ψ(y).

– [A]. The removal of the A path construct from the body of an existential
quantifier or of the D and O constructs can be done by exploiting the following
equivalences:

∃y . (π1(x, y) ∨ π2(x, y)) ∧ ψ(y) ≡ (∃y . π1(x, y) ∧ ψ(y)) ∨ (∃y . π2(x, y) ∧ ψ(y));

¬∃y. (π1(x, y) ∨ π2(x, y)) ∧ R(x, y) ≡ (¬∃y. π1(x, y) ∧ R(x, y))∧(¬∃y. π2(x, y) ∧ R(x, y));

∀y, z . (π1(x, y) ∨ π2(x, y)) ∧ R(x, z) → σ(y, z) ≡ (∀y, z . π1(x, y) ∧ R(x, z) → σ(y, z))

∧ (∀y, z . π2(x, y) ∧ R(x, z) → σ(y, z)).

At this point, the equivalences between the fragments naturally follow by itera-
tively applying the discussed equivalences.

The removal of the Z and A constructs from an existential quantification might
lead, however, to an exponential blow-up in the size of the formula due to the
duplication of the body ψ of the quantification. To obtain polynomial-time finite-
model-invariant satisfiability-preserving translations, we first construct from the
given sentence ϕ a finite-model-invariant equisatisfiable sentence ϕ�. The latter
has a linear size in the original one and all the bodies of its quantifications are
just plain relations. Then, we apply the above described semantic-preserving
translations to ϕ� that, in the worst case, only leads to a doubling in the size.
The sentence ϕ� is obtained by iteratively applying to ϕ the following two rewrit-
ing operations, until no complex formula appears in the scope of an existential
quantification. Let ψ′(x) = ∃y . π(x, y)∧ ψ(y) be a subformula, where ψ(y) does
not contain quantifiers other than possibly those of the S, D, and O features.
Then: (i) replace ψ′(x) with ∃y . π(x, y)∧ hasShape(y, s), where s is a fresh con-
stant; (ii) conjoin the resulting sentence with ∀x. hasShape(x, s) ↔ ψ(x). The
two rewriting operations only lead to a constant increase of the size and are
applied only a linear number of times. ��

It turns out that the base language ∅ resembles the description logic ALC
extended with universal roles, inverse roles, and nominals [3]. This resemblance
is exploited as the key observation at the core of the following result.
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Theorem 5. All SCL subfragments of S Z A enjoy the finite-model property.
Moreover, the satisfiability problem is ExpTime-complete.

Proof. The finite-model property follows from the fact that Theorem 8 states
the same property for the subsuming language S Z A D. As far as the satisfiabil-
ity problem is concerned, thanks to Item 1 of Theorem 4, we can focus on the
base language ∅. It can be observed that the description logic ALC extended
with inverse roles and nominals [3] and the language ∅ deprived of the universal
quantifications at the level of sentences are linearly interreducible. Indeed, every
existential modality ∃R.C (resp., ∃R−.C) precisely corresponds to the SCL con-
struct ∃y .R(x, y)∧ψC(y) (resp., ∃y .R−(x, y)∧ψC(y)), where ψC(y) represents
the concept C. Moreover, every nominal n corresponds to the equality construct
x = cn, where a natural bijection between nominals and constants is considered.
Since the aforementioned description logic has an ExpTime-complete satisfiabil-
ity problem [11,24], it holds that the same problem for all subfragments of S Z A
is ExpTime-hard. Completeness follows by observing that the universal quan-
tifications at the level of sentences can be encoded in the further extension of
ALC with the universal roles [24], which has an ExpTime-complete satisfiability
problem [23]. ��

To derive properties of the Z A D E fragment, together with its sub-fragments
(two of those – E and A E – are shown in Fig. 3), we leverage on the syntactic
embedding into the two-variable fragment of first-order logic.

Theorem 6. The Z A D Efragment of SCL enjoys the finite-model property. More-
over, the associated satisfiability problem is solvable in NExpTime.

Proof. Via inspection of the SCL grammar one can notice that, by avoiding the
S and O features of the language it is only possible to write formulas with at
most two free variables [19]. For this reason, every Z A D E formula belongs to
the two-variable fragment of first-order logic which is known to enjoy both the
finite-model property and a NExpTime satisfiability problem [13]. ��

The embedding used in the previous theorem can be generalized when the C
feature is added to the picture. However, this additional expressive power does
not come without a price since the complexity increases and the finite-model
property is lost.

Theorem 7. The C fragment of SCL does not enjoy the finite-model property
and has a NExpTime-hard satisfiability problem. Nevertheless, the finite and
unrestricted satisfiability problems for Z A D E C are NExpTime-complete.

Proof. As for the proof of Theorem 6, one can observe that every Z A D E C formula
belongs to the two-variable fragment of first-order logic extended with counting
quantifiers. Such a logic does not enjoy the finite-model property [14], since it
syntactically contains a sentence that encodes the existence of an injective non-
surjective function from the domain of the model to itself. The C fragment of
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SCL allows us to express the same property via the following sentence ϕ, thus
implying the first part of the thesis:

ϕ
.= isA(0, c) ∧ ¬∃x . R−(0, x) ∧ ∀x . isA(x, c) → ψ(x);

ψ(x) .= ∃=1y . (R(x, y) ∧ isA(y, c)) ∧ ¬∃≥2y .R−(x, y).

Intuitively, the first two conjuncts of ϕ force every model of the sentence to
contain an element 0 that does not have any R-predecessor and that is related
to c in the isA relation. In other words, 0 is not contained in the image of the
relation R. The third conjunct of ϕ ensures that every element related to c w.r.t.
isA has exactly one R-successor, also related to c in the same way, and at most
one R-predecessor. Thus, a model of ϕ must contain an infinite chain of elements
pairwise connected by the functional relation R.

By generalizing the proof of Theorem 5, one can notice that the C fragment
of SCL semantically subsumes the description logic ALC extended with inverse
roles, nominals, and cardinality restrictions [3]. Indeed, every qualified cardinal-
ity restriction (≥ nR.C) (resp., (≤ nR.C)) precisely corresponds to the SCL
construct ∃≥ny .R(x, y)∧ψC(y) (resp., ¬∃≥n+1y .R(x, y)∧ψC(y)), where ψC(y)
represents the concept C. Thus, the hardness result for C follows by recalling that
the specific ALC language has a NExpTime-hard satisfiability problem [18,25].
On the positive side, however, the extension of the two-variable fragment of
first-order logic with counting quantifiers has decidable finite and unrestricted
satisfiability problems. Specifically, both can be solved in NExpTime, even in the
case of binary encoding of the cardinality constants [20,21]. Hence, the second
part of the thesis follows as well. ��

Thanks to the axiomatization of (the subset of) filters given in Sect. 3.3, it is
immediate to see that the ZADEC fragment extended with these filters is decidable
as well. Indeed, although the sentence α(ϕ) is not immediately expressible in
SCL it belongs to the two-variable fragment of FOL extended with counting
quantifiers. Notice however that, since α(ϕ) might be exponential in the size of
ϕ, this approach only leads to a (potentially) coarse upper bound. An attempt to
prove a tight complexity result might exploit the SMT-like approach described
in [2] for the LTL part of Strategy Logic. Indeed, one could think to extend the
decision procedure for the above FOL fragment in such a way that the filter
axiomatization is implicitly considered during the check for satisfiability.

For the S Z A D fragment, we obtain model-theoretic and complexity results
via an embedding into the unary-negation fragment of first-order logic. When
the T feature is considered, the same embedding can be adapted to rewrite S
Z A T D into the extension of the above first-order fragment with regular path
expressions. Unfortunately, as for the addition of the C feature to Z A D E, we pay
the price of losing the finite-model property. In this case, however, no increase
of the complexity of the satisfiability problem occurs.

Theorem 8. The S Z A D fragment of SCL enjoys the finite-model property. The
S T D fragment does not enjoy the finite-model property. However, the finite and
unrestricted satisfiability problems for S Z A T D are solvable in 2ExpTime.
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Proof. By inspecting the SCL grammar, one can notice that every formula that
does not make use of the T, E, O, and C constructs can be translated into the
standard first-order logic syntax, with conjunctions and disjunctions as unique
binary Boolean connectives, where negation is only applied to formulas with at
most one free variable. For this reason, every S Z A D formula semantically belongs
to the unary-negation fragment of first-order logic, which is known to enjoy the
finite-model property [5,6].

Similarly every S Z A T D formula belongs to the unary-negation fragment of
first-order logic extended with regular path expressions [15]. Indeed, the gram-
mar rule π(x, y) of SCL, precisely resembles the way the regular path expressions
are constructed in the considered logic, when one avoids the test construct.
Unfortunately, as for the two-variable fragment with counting quantifiers, this
logic also fails to satisfy the finite-model property since it is able to encode the
existence of a non-terminating path without cycles. The S T D fragment of SCL
allows us to express the same property, as described in the following. First of all,
consider the S T path formula π(x, y) .= ∃z . (R−(x, z) ∧ (R−(z, y))�). Obviously,
π(x, y) holds between two elements x and y of a model if and only if there exists
a non-trivial R-path (of arbitrary positive length) that, starting in y, leads to
x. Now, by writing the S T D formula ψ(x) .= ¬∃y . (π(x, y)∧ R(x, y)), we express
the fact that an element x does not belong to any R-cycle since, otherwise, there
would be an R-successor y able to reach x itself. Thus, by ensuring that every
element in the model has an R-successor, but does not belong to any R-cycle,
we can enforce the existence of an infinite R-path. The S T D sentence ϕ expresses
exactly this property:

ϕ
.= isA(0, c) ∧ ∀x . isA(x, c) → (ψ(x) ∧ ∃y . (R(x, y) ∧ isA(y, c))).

On the positive side, however, the extension of the unary-negation fragment
of first-order logic with arbitrary transitive relations or, more generally, with
regular path expressions has decidable finite and unrestricted satisfiability prob-
lems. Specifically, both can be solved in 2ExpTime [1,10,15]. ��

At this point, it is interesting to observe that the O feature allows us to
express a very weak form of counting restriction which is, however, powerful
enough to lose the finite-model property. For the proof of the following we refer
to our appendix.

Theorem 9. SCL fragments O and E O’ do not satisfy the finite-model property.

In the remaining part of this section, we show the undecidability of the sat-
isfiability problem for five fragments of SCL through a semi-conservative reduc-
tion from the standard domino problem [4,22,26], whose solution is known to be
Π1

0 -complete. A N×N tiling system (T,H,V) is a structure built on a non-empty
set T of domino types, a.k.a. tiles, and two horizontal and vertical matching rela-
tions H,V ⊆ T ×T . The domino problem asks for a compatible tiling of the first
quadrant N × N of the plane, i.e., a solution mapping ð : N × N → T such that,
for all x, y ∈ N, both (ð(x, y), ð(x+1, y)) ∈ H and (ð(x, y), ð(x, y +1)) ∈ V hold
true.
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Theorem 10. The satisfiability problems of the S O, S A C, S E C, S E O’, and S Z A E
fragments of SCL are undecidable.

Proof. The main idea behind the proof is to embed a tiling system into a model
of a particular SCL sentence that is satisfiable if and only if the tiling system
allows for an admissible tiling. The hardest part in the reduction consists in the
definition of a satisfiable sentence all of whose models homomorphically contain
the infinite grid of the tiling problem. In other words, this sentence should admit
an infinite square grid graph as a minor of the model unwinding. Given that,
the remaining part of the reduction can be completed in the base language ∅.

Independently of the fragment we are proving undecidable, consider the sen-
tence

ϕ
.=

∨

t∈T
isA(0, t) ∧

∧

t∈T
∀x . isA(x, t) → (ψt

T (x) ∧ ψG(x)).

Intuitively, this first states the existence of the point 0, the origin of the grid,
labeled by some tile and then ensures the fact that all points x, that are labeled
by some tile t, need to satisfy the two formulas ψt

T (x) and ψG(x). The first
formula is used to ensure the admissibility of the tiling, while the second one
forces the model to embed a grid.

ψt
T (x)

.
=

t′ �=t∧

t′∈T

¬isA(x, t′)

∧
⎛

⎝∀y . H(x, y) →
∨

(t,t′)∈H

isA(y, t′)

⎞

⎠ ∧
⎛

⎝∀y . V (x, y) →
∨

(t,t′)∈V

isA(y, t′)

⎞

⎠

The first conjunct of the ∅ formula ψt
T (x) verifies that the point x is labeled

by no other tile than t. The second part, instead, ensures that the points y on
the right or above of x are labeled by some tile t′ which is compatible with
t, w.r.t. the constraints imposed by the horizontal H and vertical V relations,
respectively.

At this point, we can focus on the formula ψG(x) defined as follows:

ψG(x)
.= (∃y .H(x, y)) ∧ (∃y . V (x, y)) ∧ γ(x).

The first two conjuncts guarantee the existence of an horizontal and vertical
adjacent of the point x, while the subformula γ(x), whose definition depends on
the considered fragment of SCL, needs to enforce the fact that x is the origin
of a square. That is, that going horizontally and then vertically or, vice versa,
vertically and then horizontally the same point is reached. In order to do this,
we make use of the two S path formulas πHV (x, y) .= ∃z . (H(x, z) ∧ V (z, y))
and πV H(x, y) .= ∃z . (V (x, z)∧ H(z, y)). In some cases, we also use the S A path
formula πD(x, y) .= πHV (x, y)∨πV H(x, y) combining the previous ones. We now
proceed by a case analysis on the specific fragments.

– [S O] By assuming the existence of a non-empty relation D connecting a point
with its opposite in the square, i.e., the diagonal point, we can say that all
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points reachable through πHV or πV H are, actually, the same unique point:

γ(x)
.
= ∃y . D(x, y)

∧ ∀y, z. πHV (x, y) ∧ D(x, z) → y ≤ z ∧ ∀y, z. πHV (x, y) ∧ D(x, z) → y ≥ z

∧ ∀y, z. πV H(x, y) ∧ D(x, z) → y ≤ z ∧ ∀y, z. πV H(x, y) ∧ D(x, z) → y ≥ z.

The S O formula γ(x) ensures that relation D is non-empty and functional and
that all points reachable via πHV or πV H are necessarily the one reachable
through D.

– [S A C] By applying a counting quantifier to the formula πD encoding the union
of the points reachable through πHV or πV H , we can ensure the existence of
a single diagonal point: γ(x) .= ¬∃≥2y . πD(x, y).

– [S E C] As for the S O fragment, here we use a diagonal relation D, which needs
to contain all and only the points reachable via πHV or πV H . By means of
the counting quantifier, we ensure its functionality:

γ(x) .= ¬∃≥2y.D(x, y) ∧ ∀y.πHV (x, y) ↔ D(x, y) ∧ ∀y.πV H(x, y) ↔ D(x, y).

– [S E O’] This case is similar to the previous one, where the functionality of D
is obtained by means of the O construct:

γ(x) .= ∀y, z .D(x, y) ∧ D(x, z) → y ≤ z

∧ ∀y . πHV (x, y) ↔ D(x, y) ∧ ∀y . πV H(x, y) ↔ D(x, y).

– [S Z A E] This proof is inspired by the one used for the undecidability of the
guarded fragment extended with transitive closure [12]. This time, the func-
tionality of the diagonal relation D is indirectly ensured by the conjunction of
the four formulas γ1(x), γ2(x), γ3(x), and γ4(x) that exploit all the features
of the fragment:

γ(x) .= γ1(x) ∧ γ2(x) ∧ γ3(x) ∧ γ4(x) ∧ ∀y . πD(x, y) ↔ D(x, y), where

γ1(x)
.= ∀y .

⎛

⎝
∨

i∈{0,1}
Di(x, y)

⎞

⎠ ↔ D(x, y),

γ2(x)
.=

⎛

⎝
∨

i∈{0,1}
¬∃y.Di(x, y)

⎞

⎠∧
⎛

⎝
∧

i∈{0,1}
∀y.Di(x, y) → ∃z.D1−i(y, z)

⎞

⎠,

γ3(x)
.=

∧

i∈{0,1}
∀y .

(
x = y ∨ Di(x, y) ∨ D−

i (x, y)
) ↔ Ei(x, y), and

γ4(x)
.=

∧

i∈{0,1}
∀y . (∃z.(Ei(x, z) ∧ Ei(z, y))) ↔ Ei(x, y).

Intuitively, γ1 asserts that D is the union of the two accessory relations D0

and D1, while γ2 guarantees that a point can only have adjacents w.r.t. just
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one relation Di and that these adjacents can only appear as first argument of
the opposite relation D1−i. In addition, γ3 ensures that the additional relation
Ei is the reflexive symmetric closure of Di and γ4 forces Ei to be transitive
as well.
We can now prove that the relation D is functional. Suppose by contradiction
that this is not case, i.e., there exist values a, b, and c in the domain of the
model of the sentence ϕ, with b �= c such that both D(a, b) and D(a, c) hold
true. By the formula γ1 and the first conjunct of γ2, we have that Di(a, b)
and Di(a, c) hold for exactly one index i ∈ {0, 1}. Thanks to the full γ2, we
surely know that a �= b, a �= c, and neither Di(b, c) nor Di(c, b) can hold.
Indeed, if a = b then Di(a, a). This in turn implies D1−i(a, d) for some value
d due to the second conjunct of γ2. Hence, there would be pairs with the
same first element in both relations, trivially violating the first conjunct of
γ2. Similarly, if Di(b, c) holds, then D1−i(c, d) needs to hold as well, for some
value d, leading again to a contradiction. Now, by the formula γ3, both Ei(b, a)
and Ei(a, c) hold, but Ei(b, c) does not. However, this clearly contradicts γ4.
As a consequence, D is necessarily functional.

Now, it is not hard to see that the above sentence ϕ (one for each fragment) is
satisfiable if and only if the domino instance on which the reduction is based on
is solvable. ��

5 Conclusion

In this paper we define and study the decision problems of satisfiability and
containment for SHACL documents and shape constraints. In order to do so,
we introduce a complete translation between SHACL and SCL, a fragment of
FOL extended with counting quantifiers and a transitive closure operator. Using
these translations we lay out a map of SHACL fragments for which we are able
to prove undecidability or decidability along with complexity results, for the sat-
isfiability and containment problems. We also expose semantic properties and
asymmetries within SHACL which might inform a future update of the specifi-
cation. The satisfiability and containment problems are undecidable for the full
SHACL specification. However, decidability can be achieved by restricting the
usage of certain SHACL components, such as cardinality restrictions over prop-
erty shapes or property paths. Nevertheless, the decidability of some fragments
of SHACL remains an open question, worthy of further investigation.
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Abstract. With the ever-increasing number of RDF-based knowledge
graphs, the number of interconnections between these graphs using the
owl:sameAs property has exploded. Moreover, as several works indicate,
the identity as defined by the semantics of owl:sameAs could be too
rigid, and this property is therefore often misused. Indeed, identity must
be seen as context-dependent. These facts lead to poor quality data when
using the owl:sameAs inference capabilities. Therefore, contextual iden-
tity could be a possible path to better quality knowledge. Unlike classical
identity, with contextual identity, only certain properties can be prop-
agated between contextually identical entities. Continuing this work on
contextual identity, we propose an approach, based on sentence embed-
ding, to find semi-automatically a set of properties, for a given identity
context, that can be propagated between contextually identical entities.
Quantitative experiments against a gold standard show that our app-
roach achieved promising results. Besides, the use cases provided demon-
strate that identifying the properties that can be propagated helps users
achieve the desired results that meet their needs when querying a knowl-
edge graph, i.e., more complete and accurate answers.

Keywords: RDF · Contextual identity · Property propagation ·
Knowledge graph · Linked data · Sentence embedding

1 Introduction

Open and RDF-based knowledge graphs (KGs), like prominent Wikidata1 or
DBpedia2, are continuously growing in terms of size and usage. Consequently,
the number of entities described in those KGs leads to a problem for both data
publishers and data users: how to know if two entities are the same or
not? According to Noy et al. [18], this question remains one of the top challenges
1 https://www.wikidata.org.
2 https://wiki.dbpedia.org/.
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in knowledge graphs industry. To interlink KGs, the owl:sameAs property has
been defined by the W3C3 in 2004 to link entities that are the same. Indeed, a
(real world) object is described across several KGs, and those descriptions are
linked thanks to the owl:sameAs property. However, the semantic definition of
owl:sameAs is very strict. It is based on Leibniz’s identity definition, i.e., the
identity of indiscernibles: ∀x,∀y(∀p,∀o, (〈x, p, o〉 and 〈y, p, o〉) → x = y). And
its converse, the indiscernibility of identicals: ∀x,∀y(x = y → ∀p,∀o, (〈x, p, o〉 →
〈y, p, o〉)). Hence, two entities are considered identical if they share all their
〈property, value〉 pairs in all possible and imaginable contexts. In other words,
two entities are identical if all their properties are indiscernibles for each
value.

Once an identity link is stated between two entities, it is possible to use
〈property, value〉 pairs from one entity to another. However, it is a very strong
assertion to state that two objects are the same whatever the context. From a
philosophical point of view, there are multiple counterarguments to the definition
of Leibniz’s identity. For example, if we consider two glasses from the same set
of glasses, they are indiscernible from each other and yet they are two different
physical objects. Similarly, is a person the same as he or she was ten years ago?

It is also a technical problem because of the open-world assumption [6], on
the one hand, and on the other hand, because of what a data publisher has
in mind that could be different from what the user expects when using data.
Besides, when data is published, it is “almost” impossible to know the con-
sensus behind the decision of creating an owl:sameAs link. Several works such
as [11] and [5] have demonstrated that the use of owl:sameAs was inadequate.
Indeed, established links might be considered as true only in specific contexts.

As a first intuition, a contextual identity between two entities might be seen
as a subset of properties Π for which these entities share the same values for
each p ∈ Π.

Example 1. Two different generic drugs Drug1 and Drug2 can be identical
when considering the active ingredient. If a KG contains the triples 〈Drug1
activeIngredient Molecule1 〉 and 〈Drug2 activeIngredient Molecule1〉, then
Drug1 ≡activeIngredient Drug2 when the context is activeIngredient.

One of the core features of owl:sameAs is to be able to propagate all prop-
erties from an entity to other identical entities. Hence, owl:sameAs allows to
discover more knowledge and to increase completeness. In the same way, contex-
tual identity must help to discover more knowledge and to increase com-
pleteness, but only under specific circumstances. So, to be useful, a contextual
identity must specify what is happening with properties that are not part of
the context. In other words, an identity context must have propagating
properties.

Example 2. Following the Example 1, stating only Drug1 ≡activeIngredient

Drug2 has a limited interest, if we do not know what to do with other properties

3 https://www.w3.org/TR/owl-ref/.

https://www.w3.org/TR/owl-ref/
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besides activeIngredient. Considering the context activeIngredient, the prop-
erty targetDisease is propagating, and if the statement 〈Drug1 targetDisease
Disease1 〉 exists then we can state that 〈Drug2 targetDisease Disease1〉. But if
we consider the property excipient as context, then the property targetDisease
is not propagating.

Moreover, the ability to propagate a property between entities depends on the
context, i.e., the same property might be propagating in a context C1 and not
propagating in a context C2 as illustrated in Example 2.

Research Questions: With a given identity context between two entities, how
to find properties that can be propagated? Is it possible to find propagating
properties (semi-)automatically?

In this paper, based on the context definition of Idrissou et al. [14], we propose
an approach to find propagating properties to facilitate knowledge discovery
for users. Instead of manually listing the propagating properties as in Idrissou
et al. [14], we automatically identify the propagating properties for a given con-
text using semantic textual similarity, significantly reducing burden to users.
The semantic similarity is based on the sentence embeddings corresponding to
the textual descriptions of the properties. We validated our approach through
quantitative and qualitative experiments.

The rest of the paper is organized as follows. In following section, we present
the related work. In Sect. 4, we present our approach. In Sect. 5, we present
the experiments we have conducted. Finally, we conclude and define the next
directions for our future work in Sect. 6.

2 Related Work

In the first part of this section, we describe papers that pointed out the problems
raised by the owl:sameAs usage. In the second part, we discuss the proposals
that tackle these problems.

2.1 Identity Crisis

As early as 2002, Guarino and Welty [10] raised the issue of identity for ontolo-
gies. Especially when time is involved, stating that two things are identical
became a philosophical problem. The authors proposed to involve in identity
only essential properties, i.e., a property that cannot change. As described in
Horrocks et al. [13], the owl:sameAs property purpose is to link two entities
that are strictly the same, i.e., both entities are identical in every possible con-
text. owl:sameAs has a strict semantics allowing to infer new information. Many
existing tools produce such owl:sameAs links [9], and several surveys are avail-
able to this end [1,9,17].

However, none of these approaches consider contextual identity links. Their
purpose is to discover identity links that allegedly always hold. This is, from a
philosophical point of view, hard to obtain as underlined by Leibnitz’s identity
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definition. Indeed, as stated for example in Halpin et al. [11] or Ding et al. [5],
because of the strict semantic of owl:sameAs, the burden of data publishers
might be too heavy. As a matter of fact, owl:sameAs links are not often ade-
quately used. Some might be simply wrong, and, more insidiously, some might
be context-dependent, i.e., the owl:sameAs link does not hold in every possible
context because it is hard to obtain a consensus on the validity of a statement.
What a data modeler means may not be what a data user expects. This misuse
of owl:sameAs is often referred to as the “identity crisis” [11].

2.2 Contextual Identity

Beek et al. [2] addressed this issue by constructing a lattice of identity contexts
where contexts are defined as sets of properties. All entities belonging to a con-
text share the same values for each property of this context. Hence, a context
is a set of indiscernible properties for an entity. However, the authors do not
give indications about the usage of properties not belonging to such contexts.
Raad et al. [19] proposed an algorithm named DECIDE to compute contexts,
where identity contexts are defined as sub-ontologies. Nevertheless, as in the first
work, properties of entities that are not in the sub-ontology are ignored. So, in
both previous works, there is a limitation of properties that do not belong to a
context. This limitation cripples the interest of using such approaches. Indeed,
one of the goals of an identity context is to define an identity relation between
two entities to use information about one on the other. The solution by Idrissou
et al. [14] involves such propagation of properties, and thus, increases complete-
ness of an entity according to a context. However, this proposal requires users
to provide both the propagating and indiscernible properties as input. Hence, it
leaves the burden to the user to identify and provide context and properties.

In this work, we propose to remove this burden partially from the user,
i.e., to semi-automatically compute the propagation set of properties
given an indiscernibility set of properties. For this, we will use sentence
embedding (presented in Sect. 4.3) to compute the embeddings of properties
using their descriptions to discover the propagating properties with respect
to a given identity context (as defined in [14]).

3 Motivation

Sometimes, real-world entities may be close regarding their properties but not
the same. For example, the French capital, Paris, is both a city and a department
(an administrative subdivision of the French territory). While considering that
the city and the department are the same concerning their geography, they are
two distinct entities administratively (or legally) speaking, i.e., they are not
considered the same per owl:sameAs. Now, suppose both Paris are represented
in a KG as distinct entities, and both are linked to (possibly distinct) movie
theaters. If one wants to retrieve movie theaters located in the city of Paris,
results will not be complete if some of them are linked to the department (see
Fig. 1).
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Fig. 1. Excerpt of a KG about Paris, France. The properties in red are indiscernible
for both the city and the department. The properties in blue are propagating given the
red properties are indiscernible. (Color figure online)

Fig. 2. Simplified identity lattice from Fig. 1: each node is an indiscernible set of prop-
erties. Only the red nodes have similar entities. (Color figure online)
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A French citizen might know this ground truth, but how to allow an auto-
mated agent to discover this fact? Contextual identity is a possible answer to
this question, i.e., a set of properties for which values are the same for both
entities. Considering the present example, both Paris (city and department)
are geographically the same and some properties related to geography might be
propagated. In Fig. 1, the dotted red properties (geo and label) are indiscernible
(have the same values) and the located in properties are propagating. Although
the two entities do not share the same values for the located in property, this
one is related to the geographic context. Indeed, for a human agent, the located
in property might be obviously propagated between the two entities. While we
expected to have the four movie theaters located in Paris, a query on the City
of Paris will only return movie theaters 1, 2 and 3 (see Fig. 1).

Thus, discovering such contexts of identity between entities, might improve
completeness of query results. Our intuition is inspired by Tobler’s first law [23],
that is: “Everything is related to everything else, but near things are more related
than distant things.” Therefore, we hypothesize that, from a semantic
point of view, the closer a property is to the identity context, the
more likely it could be a good candidate for propagation. In the pre-
vious example, located in clearly refers to a geographic fact, and the context of
identity is about geography since it is composed of geographical coordinates. So,
the idea is to compute a semantic distance between indiscernible prop-
erties and candidate properties for propagation. Consequently, numbers,
and in our case numerical vectors, are best suited to compute this distance.
A numerical representation of the textual description of each property through
its rdfs:comment or schema:description can provide a basis to get this vector.
In most KGs, properties are described with such sentences. For example, 99%
of properties in Wikidata have descriptions. Sentence embeddings of property
descriptions output numerical vectors such that semantically similar descriptions
appear closer in the vector space.

4 Approach

4.1 Preliminaries

As mentioned in Sect. 2, several proposals have been made to define an identity
context. We choose the one from Idrissou et al. [14] since it is the only one that
considers the propagation of properties. They give the following definition of the
identity context:

Definition 1 (Identity Context). An identity context C = (Π,Ψ,≈) is defined
by two sets of properties (Π and Ψ) and an alignment procedure (≈). Π is
the indiscernibility set of properties (Eq. 1) and Ψ is the propagation set of
properties (Eq. 2). In the following, x and y are entities.

x =(Π,Ψ,≈) y ↔ ∀(p1, p2) ∈ Π2 with p1 ≈ p2

and ∀v1, v2 with v1 ≈ v2 : 〈x, p1, v1〉 ↔ 〈y, p2, v2〉
(1)
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x =(Π,Ψ,≈) y → ∀(p1, p2) ∈ Ψ2 with p1 ≈ p2

and ∀v1, v2 with v1 ≈ v2 : 〈x, p1, v1〉 ↔ 〈y, p2, v2〉
(2)

Moreover, we define the level of a context |ΠC | as the number of its indis-
cernible properties.

In the case where similar entities according to an identity context belong to
the same KG, it is not necessary to have an alignment procedure.

An entity can have several identity contexts, depending on properties in the
indiscernibility set Π. Indeed, two different combinations of properties can give
different sets of similar entities. The identity lattice of all identity contexts of an
entity e is defined as follow:

Definition 2 (Identity Lattice). An identity lattice L is a lattice, where each
element is an identity context. The set inclusion between indiscernibility set of
properties of each context is the binary relation responsible for the partial order.

The last notion is the seed of a lattice or a context that we define as follows:

Definition 3 (Seed of a lattice or a context). Each context of a lattice is
constructed from the same entity e. This entity e is called the seed of the lattice.

As per Definition 2, to build an identity lattice, we need to start from a seed,
despite the fact that the lattice could potentially be valid with another seed (see
Fig. 2).

Now that we have defined the necessary concepts, we will explain the core of
our approach.

4.2 Computation of Contexts

We present Algorithm 1 that computes an identity lattice. It takes as input the
seed entity, the source KG to which the seed belongs, the target KG (possibly
the same as the source KG) and an alignment procedure if the two KGs are
distinct. The main idea is to start by computing level one identity contexts with
each seed’s property and finally combine those contexts to obtain upper-level
identity contexts. When building a context, its first part is its indiscernibility
set, from which we then get similar entities, to obtain candidate properties for
propagation and, in the end, propagating properties.

The first step, line 3, is to compute all level 1 identity contexts (see Defi-
nition 1). Indeed, for each property p of the seed, there is exactly one identity
context (its indiscernibility set is Π = {p}). Later, identity contexts with only
one indiscernibility property will be merged to give identity contexts of higher-
levels. Next, we retrieve similar entities entitiesp to the seed that have the same
value(s) for the given property p. If p is multi-valuated, then entities in entitiesp

are similar to the seed for all values o such that 〈seed p o〉. It is worth noting
that, when filling entitiesp, we search only entities that have the same type(s)
with the seed. This is because we want to avoid absurd results, e.g., comparing
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Data: KG1: the source KG, KG2: the target KG, seed: an entity of KG1, ≈: an
alignment procedure between KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the
target KG

1 L = ∅;
/* Get all explicit and implicit types of the seed */

2 Tseed = {t : 〈seed rdf :type t〉 ∈ KG1};
/* the following will create all contexts of the level 1 (with only

one indiscernible property) */

3 for each property p of seed do
4 candidateEntities = ∅;
5 for each value o such as 〈seed p o〉 ∈ KG1 do

/* entitiesp,o is the set of indiscernible entities with seed
with respect to the p, o pair */

6 entitiesp,o = {e : (∃(p′, o′), p′ ≈ p, o′ ≈ o, 〈e p′ o′〉 ∈ KG2) ∧ (∃t ∈
Tseed, t

′ ≈ t, 〈e rdf :type t′〉 ∈ KG2)};
7 if entitiesp,o 	= ∅ then
8 candidateEntities = candidateEntities ∪ {entitiesp,o};
9 end

10 end
/* entitiesp is the set of indiscernible entities with seed with

respect to the property p */

11 entitiesp =
⋂

candidateEntities;
12 Ψ = getPropagationSet(seed, entitiesp, {p});
13 if Ψ 	= ∅ then
14 Π = {p};
15 C = (Π, Ψ, ≈);
16 L = L ∪ C;

17 end

18 end
/* Now we can combine contexts of the same level */

19 return constructUpperLevels(L, KG1, KG2, seed, ≈)
Algorithm 1: createLattice: calculate identity lattice of an entity.

a person with an airplane. It also has the advantage of lowering the number of
possible identity contexts to compute. Finally, based on entitiesp, we compute
the propagation set Ψ (line 8) as explained in the following section (Sect. 4.3).

The second step (see Algorithm 2) is to compute upper-level identity contexts
based on those from level 1. The loop (line 2) of the algorithm calculates these
upper-levels by combining contexts of the same level, and stops when it cannot
construct new upper-level identity contexts. This calculation is based on an
identity lattice operator, which is the set inclusion on indiscernibility sets. For
example, a level 2 context is built on two contexts from level 1. Again, to lower
the number of possible identity contexts to compute, if there is no similar entity
to the seed for a given context Ci, there is no need to compute higher-level
contexts based on Ci.
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Data: L: the lattice with only level one contexts, KG1: the source KG, KG2: the
target KG, seed: an entity of KG1, ≈: an alignment procedure between
KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the
target KG

/* lvl is the current level in the lattice */

1 lvl = 1;
2 while ∅ /∈ L do
3 contexts = ∅;
4 for (C1, C2) ∈ {(Ci, Cj) ∈ L × L : |ΠCi | = |ΠCj | = lvl, i > j} do
5 Π = ΠC1 ∪ ΠC2 ;

/* getEntities function gives the set of entities that are

similar under the given identity context in the given KG */

6 entities = getEntities(C1, KG2) ∩ getEntities(C2, KG2);
7 if entities 	= ∅ and Π /∈ L then
8 Ψ = getPropagationSet(seed, entities, Π);

/* see Algo. 3 */

9 if Ψ 	= ∅ then
10 C = (Π, Ψ, ≈);
11 contexts = contexts ∪ C;

12 end

13 end

14 end
15 L = L ∪ contexts;
16 lvl = lvl + 1;

17 end
18 return L
Algorithm 2: constructUpperLevels: calculate upper-levels of the identity
lattice of an entity.

4.3 Propagation Set Using Sentence Embedding

Our approach for computing propagation set (Line 8 in Algorithm2) is elabo-
rated in Algorithm 3. It is based on sentence embedding which maps a sentence
to a numerical vector. Ideally, semantically close sentences appear nearby in the
numerical vector space.

Sentence embedding is a technique that maps a sentence to a numerical
vector. Ideally, semantically close sentences are represented by close vectors in
the numerical space considered. The reasons behind using sentence embedding
instead of a more classical distance measures, e.g., the edit distance, RDF graph
embedding like RDF2Vec [20], or an ontological alignment technique are: (i) clas-
sical string distances ignore sentence semantics, (ii) RDF graph embedding tech-
niques are not yet adapted to such task, and (iii) ontological alignment tech-
niques align pairwise properties and not sets of properties. Sentence embedding
is widely used in several tasks such as computing semantic similarities between
two texts. An encoder derives sentence embeddings, to capture the semantics of
a language, from a large text corpus. State-of-the-art encoders include Universal
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Data: seed: the entity that generated Π,
entities: set of entities similar to seed with respect to Π,
Π: an indiscernibility set
Result: Ψ : a propagation set
/* computation of the embeddings of each property in Π by using one

of the encoder */

1 indiscernibilityEmbeddings ← getEmbeddings(Π);
2 meanV ector ← mean(indiscernibilityEmbeddings);

/* getCandidateProperties function returns the set of all candidate

properties for propagation */

3 candidates ← getCandidateProperties(Π, {seed} ∪ entities);
/* then compute their embeddings */

4 candidatesEmbeddings ← getEmbeddings(candidates);
5 Ψ ← ∅;
6 for candidateV ector in candidatesEmbeddings do
7 similarity ← cosineSimilarity(candidateV ector, meanV ector);
8 if similarity ≥ threshold then
9 Ψ ← Ψ ∪ {candidateV ector};

10 end

11 end
12 return Ψ

Algorithm 3: getPropagationSet: calculate the propagation set.

Sentence Encoder [3], GenSen [22] and InferSent [4]. A lot of attention has been
given to sentence embeddings lately.

As presented in Sect. 1, our intuition, based on Tobler’s first law, is that
a propagation set of properties can be found given an indiscernibility set, if
vectors of descriptions of those two sets are close enough. In this work, we pro-
pose to use property descriptions (e.g., rdfs:comment or schema:description as
“standard plug type for mains electricity in a country”) to find properties that
are semantically related and consequently good candidates for propagation for
a given indiscernibility set Π. For example, in Wikidata, the property “direc-
tor” has the follow description: “director(s) of film, TV-series, stageplay, video
game or similar”. Descriptions are mainly composed of one sentence. Most of
the properties are described with such annotations, e.g., properties of Wikidata
are annotated with an English schema:description at 98.9%. For the embedding
computation, any of the previously described encoders can be used.

Algorithm 3 presents our proposal to compute Ψ given a Π. It takes as input
three parameters: a seed (an entity), a set of property built from the seed (indis-
cernibility set Π), and a set of entities that are similar to the seed with respect
to Π. The computation of Π is presented in the previous section (see Algo-
rithm1).

First, for each property in the indiscernibility set Π, we calculate its rep-
resentational vector. Then, we compute the mean vector that represents the
indiscernibility set. Similarly, we consider each property of the seed or its sim-
ilar entities, and compute their representational vectors. Therefore, on the one
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hand, we have one vector that represents the set of indiscernibility and, on the
other hand, we have n vectors for the n properties that are candidates for prop-
agation. Properties of similar entities (with respect to the indiscernibility set
Π) are also considered as candidates since possibly one of them can have a
propagating property that the seed does not have.

Then we loop on each candidate property to compute a cosine similarity [21]
between each candidate vector and the mean vector representing the indiscerni-
bility set Π. If the cosine similarity is high enough (above a specified threshold
as explained in the following section) the candidate property is considered as a
propagating property.

5 Experimental Results

For evaluation, we first implemented our approach, and then we present several
SPARQL queries that benefited from our approach.

5.1 Implementation and Set-Up

We implemented our approach in Python. For the sake of reproducibility, the
code is made available on a GitHub repository4. As mentioned earlier, we used
three sentence embedding approaches, namely InferSent5, GenSen6 and Univer-
sal Sentence Encoder7. We used an HDT file (see [16] and [8]) that contains a
dump of the last version of Wikidata8. The computer we used had an i7 processor
and 32 GB of RAM. As an indication, the complete calculation of the identity
lattice for an entity such as the city of Paris, France takes about 1396 ms. It
has more than 1000 property-object pairs and, in Wikidata, the mean number
of property-object pairs is about 60. Thus, it is a rather large entity and this
approach could scale well.

5.2 Quantitative Study

The goal of quantity study is to evaluate how well the proposed approach can
retrieve the propagating properties specified in Ψ , given the indiscernibility set
of properties Π for each identity context (Π, Ψ , ≡). Since there is not a prior
work or dataset that we can leverage to evaluate our algorithm, we manually
constructed a gold standard dataset from the Wikidata KG that is known for
its high data quality [7].

The dataset consists of 100 identity contexts where each context contains
the indiscernibility set of properties Π and the propagation set of properties Ψ .
We do not need an alignment procedure (≡) specified for identity contexts since
4 https://github.com/PHParis/ConProKnow.
5 https://github.com/facebookresearch/InferSent.
6 https://github.com/Maluuba/gensen.
7 https://tfhub.dev/google/universal-sentence-encoder/2.
8 http://gaia.infor.uva.es/hdt/wikidata/wikidata2018 09 11.hdt.gz.

https://github.com/PHParis/ConProKnow
https://github.com/facebookresearch/InferSent
https://github.com/Maluuba/gensen
https://tfhub.dev/google/universal-sentence-encoder/2
http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz
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both source and target KGs are the same i.e., the Wikidata KG. To test the per-
formance across different classes, identity contexts were constructed across five
diverse class types: country, comics character, political party, literary work, and
film. We randomly selected 20 entities from each class type and computed their
identity lattices. One context was selected from each lattice. The propagation
set of properties (Ψ) for each context was manually identified by looking at its
indiscernibility set of properties Π.

Evaluation: We compared our algorithm with a baseline system that computes,
using Jaccard index (JI) [15], a similarity score (range 0–1) between a candidate
property and each property in Π of a given identity context. If the mean simi-
larity score is above a specified threshold, we considered the candidate property
as a propagating property for this context.

We evaluated the performance of a model using standard Precision = tp
tp+fp ,

Recall = tp
tp+fn , and Fmeasure = 2×Precision×Recall

Precision+Recall where tp (true positive) is
the number of predicted properties that are actually in Ψ , fp (false positive) is
the number of predicted properties which are not in Ψ , and fn (false negative)
is the number of predictive properties in Ψ not selected by the model.

We experimented with different sentence embeddings (namely InferSent, Uni-
versal Sentence Encoder, and GenSen) and with different thresholds (0 to 1).
Due to space constraint, we only present the results in Table 1 corresponding to
InferSent and thresholds of 0.1 and 0.9. The proposed approach outperformed the
baseline for every threshold. This is expected because the baseline uses Jaccard
Index, and thus it relies only on the exactly matching tokens between the prop-
erty descriptions. Because our approach uses InferSent, it can obtain semanti-
cally similar descriptions even though the descriptions themselves do not contain
the exact tokens. As we increased the similarity threshold, precision increased,
but recall decreased. The threshold of 0.9 was a balance between precision and
recall that yielded the F1 scores up to 0.69 (for film and literary work). In fact,
F1 scores were above 0.60 for every class except for the country class, which
had an F1 score of 0.36 due to overlapping descriptions among propagating and
non-propagating properties. The overlapping descriptions for the country class
appeared very close in the vector space, which reduced the precision and F1
scores. In addition, the performances were impacted by noisy descriptions, and
thus, better preprocessing techniques can potentially improve these scores. In
sum, we obtained an overall F1 score of 0.59 and validated our Tobler-inspired
hypothesis, i.e., properties can be sorted using their descriptions obtaining the
propagating properties at the top. Our result further provides a strong baseline
for future research for this novel research problem.

5.3 Qualitative Study

In this section, we describe three different queries that could demonstrate the
benefits of our approach by extending their results. To achieve our goal, we used
InferSent and the threshold value equal to 0.9. All of these queries are simplified
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Table 1. Baseline and InferSent results with thresholds of 0.1 and 0.9.

Precision Recall F1

Class Threshold Baseline Approach Baseline Approach Baseline Approach

Comics character 0.1 0.40 0.39 0.1 1.00 0.16 0.54

0.9 0.00 0.49 0.00 0.90 0.00 0.61

Country 0.1 0.05 0.15 0.01 1.00 0.01 0.23

0.9 0.00 0.32 0.00 0.81 0.00 0.36

Film 0.1 0.15 0.34 0.03 1.00 0.05 0.49

0.9 0.00 0.62 0.00 0.93 0.00 0.70

Literary work 0.1 0.03 0.50 0.01 1.00 0.01 0.65

0.9 0.00 0.60 0.00 0.90 0.00 0.69

Political party 0.1 0.39 0.20 0.51 1.00 0.36 0.31

0.9 0.00 0.55 0.00 0.87 0.00 0.62

Overall 0.1 0.20 0.32 0.13 1.00 0.12 0.44

0.9 0.00 0.51 0.00 0.88 0.00 0.59

queries tested on Wikidata (for ease of reading). The original queries can be
found on the GitHub repository (See footnote 4).

Fig. 3. Qualitative experiment workflow: the elements in red are the inputs and the ele-
ment in green is the output. To simplify the diagram, we consider only one instantiated
entity linked to one instantiated property in the query. (Color figure online)

Task Description: For each query, the goal is to find an identity context that
will allow expanding the query with similar entities according to the user’s objec-
tive. In this way, users can benefit from more complete results. The workflow is
the following (see Fig. 3): first, from the query, we extract the instantiated entity
(or entities) that will be the seed(s) (step 1). Second, for each seed, we compute
its identity lattice (step 2) that will contain in each of its nodes an indiscernible
and a propagating set of properties (cf. Algorithms 1 and 3). Third, with the
instantiated property (or set of properties) linked to the seed in the query, we
select from the lattice, the node having this property in its propagation set (step
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4). This node will be considered as the identity context of the query. Indeed,
if multiple identity contexts are possible, the user must choose the best suited
for its task purpose. Finally, based on the selected identity context, we can get
similar entities (step 5) and rewrite the query with both the seed and similar
entities (step 6).

Queries: We tested our approach with three queries. The first query (List-
ing 1.1) is to retrieve all clinical trials of the drug “Paracetamol”. An interesting
expansion of this query could be to find all trials of similar legal drugs in terms
of medical conditions treated and physical interactions. The second query is to
retrieve all persons who once lead France. However, France has a complicated
history and has changed its political regime several times (for example, during
World War II, or the Napoleonian period). Thus, even if the French territory was
almost always the same during the past centuries, each political regime has its
own entity in Wikidata. Finally, the third query is to retrieve French politicians
from The Republican party that have been convicted. The peculiarity here is
that this major political party changed its name several times because of either
political scandal or humiliating defeats. We only give details about the first
query because of space limitation, the other two are available on the GitHub
repository.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE {
? c l i n i c a l T r i a l : r e s e a r ch In t e r v en t i on : Paracetamol .

}
Listing 1.1. SPARQL query retrieving all studies about the painkiller named Parac-
etamol.

Table 2. Identity context contribution to queries.

Listing 1.1 See GitHub Repo See GitHub Repo

Seed Paracetamol France The Republicans

Ψ research intervention head of member of political party

condition treated, capital, country,

Π interacts with, official language political

legal status ideology

Similar Ibuprofen French 2nd Republic, UMP,

entities Aspirin July Monarchy, . . . RPR, . . .

# of results

w/o context 586 12 2

# of results

w/ context 860 99 (77) 13

Table 2 shows the additional results brought by our approach. Each column
corresponds to a query. For the first query (and also for the next ones), there
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is only one seed “Paracetamol” (“France” and “the Republicans” in the second
and the third columns respectively) as it is the only instantiated entity in the
query. To fill this table, we first computed the lattice of the seed. Then, we
selected a context containing the property “research intervention” in its Ψ since
this property is instantiated in the query. Moreover, as explained, our goal is to
retrieve trials of similar drugs in terms of the condition treated and legal status.
Finally, the query is expanded with similar entities, as shown in Listing 1.2. The
results show a 47% increase in the number of clinical trials for the considered
context. For the second query, it should be noted that among the 99 results,
22 persons were not head of France. 14 were head of Paris City Council, and 8
were Grand Master of Masonic obedience in France. This is because the council
and the obedience are misplaced in the Wikidata ontology. These errors cannot,
therefore, be attributed to our approach. The results show a 542% increase in
the number of France leaders for the considered context. The results of the
third query show a 550% increase in the number of convicted politicians for the
considered context.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE {
VALUES (? drug ) { ( : Paracetamol ) ( : Ibuprofen )

( : Asp i r in ) }
? c l i n i c a l T r i a l : r e s e a r ch In t e r v en t i on ?drug .

}
Listing 1.2. Expanded SPARQL query retrieving all studies about Paracetamol similar
entities.

5.4 Discussion

As we have seen, our approach allows for discovering propagating properties for
a given indiscernibility set of properties Π. An identity context with its indis-
cernibility and propagation sets can provide more complete answers to queries
through query expansion. The results are very promising but need to be con-
fronted to more different kinds of KGs and to combination of distinct KGs.
Also, our approach does not work when the property of an entity lacks property
describing it (such as rdfs:comment or schema:description). Hence, the first step
for future work is to circumvent this flaw with a multifaceted approach that can
include other information than the descriptions alone. Moreover, sophisticated
preprocessing and textual similarity techniques can be incorporated to further
improve the results.

6 Conclusion and Future Work

In this paper, we demonstrated that propagating properties can be discovered
semi-automatically. To this end, we presented an approach based on sentence
embedding. Given an indiscernible set of properties, the proposed system dis-
covers properties that could be propagated using semantic similarities between
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the properties. Our approach computes, for an entity, an identity lattice that rep-
resents all its possible identity contexts, i.e., both indiscernible and propagating
properties. We validated using quantitative and qualitative evaluations that the
proposed approach generates promising results for both discovering propagating
properties and providing complete answers to the given queries.

Future work includes using other features to improve the results, like values
of properties, number of property usage, or semantic features of the property
should be tried. However, capturing ontological information of a property when
embedding is still an open problem. Secondly, using only sentence embedding,
combined with intuition from Tober’s first law, might be näıve in some cases.
Therefore, there is a need to challenge our work with a combination of distinct
KGs. For the time being, we only considered in lattices the case where the entity
is subject to a triple, and we should also consider cases where it is the value of a
triple. Moreover, using SPARQL queries to help the user to select the best-suited
identity context might be an interesting starting point for later work. Finally, to
explore SPARQL queries expansion (presented in Sect. 5.3), a prototype should
be implemented to allow users selecting the proper context according to an
ordered list of contexts. Also, using RDF* and/or SPARQL* [12] to represent
the context as defined in this paper should be investigated.
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Abstract. Works on knowledge graphs and graph-based data management often
focus either on graph query languages or on frameworks for graph analytics,
where there has been little work in trying to combine both approaches. However,
many real-world tasks conceptually involve combinations of these approaches: a
graph query can be used to select the appropriate data, which is then enriched with
analytics, and then possibly filtered or combined again with other data by means
of a query language. In this paper we propose a language that is well-suited for
both graph querying and analytical tasks. We propose a minimalistic extension of
SPARQL to allow for expressing analytical tasks over existing SPARQL infras-
tructure; in particular, we propose to extend SPARQL with recursive features,
and provide a formal syntax and semantics for our language. We show that this
language can express key analytical tasks on graphs (in fact, it is Turing com-
plete). Moreover, queries in this language can also be compiled into sequences
of iterations of SPARQL update statements. We show how procedures in our
language can be implemented over off-the-shelf SPARQL engines, with a spe-
cialised client that can leverage database operations to improve the performance
of queries. Results for our implementation show that procedures for popular ana-
lytics currently run in seconds or minutes for selective sub-graphs (our target
use-case).

1 Introduction

Recent years have seen a surge in interest in graph data management, learning and
analytics within different sub-communities, particularly under the title of “knowledge
graphs” [1]. However, more work is needed to combine complementary techniques from
different areas [2]. As a prominent example, while numerous query languages have
been proposed for graph databases, and numerous frameworks have been proposed for
graph analytics, few works aim to combine both: while some analytical frameworks
support lightweight query features [3,4], and some query languages support lightweight
analytical features [5–7], only specific types of queries or analytics are addressed.

Take, for example, the following seemingly simple task, which we wish to apply
over Wikidata1: find stations from which one can still reach Palermo metro station in

1 https://www.wikidata.org/, or see endpoint at https://query.wikidata.org/.
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Buenos Aires if Line C is closed. Although standard graph query languages such as
SPARQL [5] or Cypher [6] support path expressions that capture reachability, they can-
not express conditions on the nodes through which such paths pass, as is required by
this task (i.e., that they are not on Line C). Consider a more complex example that
again, in principle, can be answered over Wikidata: find the top author of scientific
articles about the Zika virus according to their p-index within the topic. The p-index
of authors is calculated by computing the PageRank of papers in the citation network,
and then summing the scores of the papers for each respective author [8]. One way this
could currently be achieved is to: (1) perform a SPARQL query to extract the citation
graph of articles about the Zika virus; (2) load the graph or connect the database with
an external tool to compute PageRank scores; (3) perform another query to extract the
(bipartite) authorship graph for the articles; (4) load or connect again the authorship
graph into the external tool to join authors with papers, aggregate the p-index score per
author, sort by score, and output the top result. Here the user must ship data back and
forth between different tools or languages to solve the task. Another strategy might be
to load the Wikidata dump directly into a graph-analytics framework and address all
tasks within it; in this case, we lose the convenience of a query language and database
optimisations for extracting (only) the relevant data.

In this paper, we instead propose a general, (mostly) declarative language that sup-
ports graph queralytics: tasks that combine querying and analytics on graphs, allowing
to interleave both arbitrarily. We coin the term “queralytics” to highlight that these
tasks raise new challenges and are not well-supported by existing languages and tools
that focus only on querying or analytics. Rather than extending a graph query language
with support for specific, built-in analytics, we rather propose to extend a graph query
language to be able to express any form of (computable) analytical task of interest to the
user. Specifically, we explore the addition of recursive features to the SPARQL query
language, proposing a concrete syntax and semantics for our language, showing exam-
ples of how it can combine querying and analytics for graphs. We call our language the
SPARQL Protocol and RDF Query & Analytics Language (SPARQAL). We study the
expressive power of SPARQAL with similar proposals found in the literature [9–12].
We then discuss the implementation of our language on top of a SPARQL query engine,
introducing different evaluation strategies for our procedures. We present experiments
to compare our proposed strategies on real-world datasets, for which we devise a set
of benchmark queralytics over Wikidata. Our results provide insights into the scale and
performance with which an existing SPARQL engine can perform standard graph ana-
lytics, showing that for queralytics wherein a selective sub-graph is extracted for anal-
ysis, interactive performance is feasible; on the other hand, the current implementation
struggles for larger-scale graphs, opening avenues for future research.

Example 1. Suppose that there is a concert close to Palermo metro station in Buenos
Aires; however, Line C of the metro is closed due to a strike. As mentioned in the
introduction, we would like to know from which metro stations we can still reach
Palermo. The data to answer this query are available on Wikidata [13]. We can express
this request in our SPARQL-based language, as shown in Fig. 1. Two adjacent sta-
tions are given by the property wdt:P197 and the metro line by wdt:P81; the enti-
ties wd:Q3296629 and wd:Q1157050 refer to Palermo metro station and Line C,
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Fig. 1. Procedure to find metro stations from which Palermo can be reached

respectively. From lines 1 to 5, we first define a solution variable called reachable

whose value is the result of computing all stations directly adjacent to Palermo that
are not on Line C. From lines 6 to 17 we have a loop that executes two instructions:
the first, starting at line 7, computes all stations directly adjacent to the current reach-
able stations not on Line C; here the QVALUES(reachable) clause is used to invoke
all solutions stored in variable reachable. The second, starting at line 12, adds the
new adjacent stations to the list of known reachable stations with a union. The loop is
finished when the set of solutions assigned to the variable reachable does not change
from one iteration to another (a fixpoint is thus reached). Finally, on line 18, we return
reachable stations. ��

2 Related Work

We now discuss frameworks for applying graph analytics, proposals for combining
graph querying and graph analytics, and recursive extensions of graph query languages.

Frameworks for Graph Analytics.Various frameworks have been proposed for perform-
ing graph analytics at large-scale, including GraphStep [14], Pregel [15], HipG [16],
PowerGraph [17], GraphX [3], Giraph [18], Signal/Collect [19], etc. These frameworks
operate on a computational model – sometimes called the systolic model [20], Gath-
er/Apply/Scatter (GAS) model [17], graph-parallel framework [3], etc. – whereby each
node in a graph recursively computes its state based on data available in its neigh-
bourhood. However, implementing queries on such frameworks, selecting custom sub-
graphs to be analysed, etc., is not straightforward. Datalog variants also offer an inter-
esting framework for graph analytics, especially when Datalog is extended with arith-
metic features, as in, e.g., [12,21–24]. As we discuss in Sect. 4, SPARQAL can be seen
as bridging existing RDF databases and SPARQL services with such frameworks.

Graph Queries and Analytics. Our work aims to combine graph queries and analytics
for RDF/SPARQL. Along these lines, Trinity.RDF [25] stores RDF in a native graph
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format where nodes store inward and outward adjacency lists, allowing to traverse
from a node to its neighbours without the need for index lookup; the system is then
implemented in a distributed in-memory index, with query processing and optimisa-
tion components provided for basic graph patterns. Although the authors discuss how
Trinity.RDF’s storage scheme can also be useful for graph algorithms based on random
walks, reachability, etc., experiments focus on SPARQL query evaluation from standard
benchmarks [25]. Later work used the same infrastructure in a system called Trinity
[26] to implement and perform experiments with respect to PageRank and Breadth-
First Search, this time rather focusing on graph analytics without performing queries.
Though such an infrastructure could be adapted to apply graph queralytics, the authors
do not discuss the combination of queries and analytics, nor do they propose languages.

Most modern graph query languages offer some built-in analytical features.
SPARQL 1.1 [5] introduced property paths [27] that allow for finding pairs of nodes
connected by some path matching a regular expression, and some extensions allow for
invoking specific extra analytical features [7]. The Cypher query language [6] (used by
Neo4j [28]) also allows for querying on paths with limited regular expressions; however,
it also supports shortest paths, returning paths, etc. The G-CORE query language [29]
also supports features relating to paths, allowing to store and label paths, find weighted
shortest paths, and more besides. In general, however, graph query languages tend to
only support analytics relating to path finding and reachability [30].

Gremlin [4] is an imperative scripting language that can express analytical tasks
through graph traversals. Per the Trinity.RDF system [25], graph traversals, when com-
bined with variables, can be used to express and evaluate, for example, basic graph
patterns [29]. Gremlin [4] also supports some standard query operators, such as union,
projection, negation, path expressions, and so forth, along with recursion, which allows
to capture general analytical tasks; in fact, the Gremlin language is Turing complete [4].
However, Gremlin is specifically designed to work under a property graph data model,
and more importantly is missing practical RDF-specific features of SPARQL such as
datatype ordering, built-in functions (e.g., langMatches, isIRI, year), named graphs,
federation, etc. Thus, using Gremlin in the context of RDF databases would require
porting these features between both systems, which is precisely what we want to avoid.

Recursive Graph Queries. Most graph query languages support recursively matching
path expressions; however, per Example 1, more powerful forms of recursion are needed
in order to support a more general class of analytics2. Later we will compare the expres-
sive power of our proposal to recursive graph query languages, such as those proposed
by Reutter et al. [9] for SPARQL, and by Urzua and Gutierrez [11] for G-CORE. We
also highlight the LDScript language as proposed by Corby et al. [10], which also relates
to our proposal, supporting the definition of functions using SPARQL expressions; local
variables that can store individual values, lists or the results of queries; and iteration over
lists of values using loops, as well as recursive function calls. We remark that LDScript
does not include support for arbitrary do–until iteration, where applying a fixed number
of iterations is insufficient for a broad range of analytical tasks.

2 Though more complex forms of “navigational patterns” have been proposed in the literature,
they are mostly limited to path-finding and reachability [30].
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Novelty. Unlike graph analytics frameworks, we propose a language for combining
queries and analytics on graphs. Unlike Gremlin and Datalog variants, we propose a
language designed to extend SPARQL, thus benefiting from its built-in support for RDF.
The closest proposals to ours are those that extend graph query languages with recur-
sive features [9–11]. In comparison with the proposal of Reutter et al. [9] and Urzua
and Gutierrez [11], we allow recursion over SELECT queries, which adds flexibility by
not requiring to maintain intermediate results as (RDF) graphs: for example, allowing
us to maintain multiple intermediate relations of arbitrary arity (without requiring some
form of reification); we further allow for terminating a loop based on a boolean con-
dition (an ASK query), which can more easily express termination conditions in cases
where an analytics task is infinitary and/or requires approximation (e.g., PageRank).
Unlike LDScript [10], our focus is on supporting graph analytics, adding features, such
as fixpoint and do–until loops, that are essential for many forms of graph analytics.

3 Language

Recursion stands out in the literature as a key feature for supporting graph analytics. Our
proposal – called SPARQAL – extends SPARQL (1.1) with recursion by allowing to
iteratively evaluate queries (optionally) joined with solution sequences of prior queries
until some condition is met. In order to support this form of iteration, we need two
key operators. First, we extend SPARQL with solution variables to which the results
of a SELECT query can be assigned, and which can then be used within other queries to
join solutions. Second, we extend SPARQL with do–until loops to support iteratively
repeating a sequence of SPARQL queries until some termination condition is met; this
condition may satisfy a fixed number of iterations, a boolean ASK query, or a fixpoint on
a solution variable (terminating when the set of solutions do not change).

We refer back to Example 1, which illustrates how our language can be used to
address a relatively simple queralytic task. We now present the syntax of our language,
and thereafter proceed to define the formal semantics. We finish the section with a
second, more involved example for computing the p-index of authors in an area.

Preliminaries: To formally define our language and give our examples we assume
familiarity with SPARQL and basic notions of graph analytics algorithms. We use the
standard syntax and semantics of SPARQL in terms of mappings [5]. We recall the
notion of a solution sequence, which is the result of a SPARQL query evaluated on a
graph (or dataset), listing zero-or-more solutions for which the query matches the data.
We assume use of the full SPARQL 1.1 query language as defined by the standard [5].

3.1 Syntax

SPARQAL aims to be a minimalistic extension of the SPARQL language that allows
to express queralytic tasks. Specifically, a task is defined as a procedure, which is a
sequence of statements. A statement can be an assignment, loop or return statement.
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Assignment: Assigns the solution sequence of a query to a solution variable. The
syntax of an assignment statement is LET var = (Q); where var is a variable name and Q

is a SPARQL SELECT query that may use constructs of the form QVALUES(var).

Loop: Executes a sequence of statements until a termination condition holds. The syn-
tax of a loop statement is DO (S) UNTIL (condition); where S is a sequence of statements
and condition is one of the following three forms of termination condition: (1) TIMES
t, where t is an integer greater than 0; (2) FIXPOINT (var), where var is a solution
variable; (3) AQ, an ASK query that may use QVALUES.

Return: Specifies the solution sequence to be returned by the procedure. The syntax
of a return statement is RETURN (var); where var is a solution variable.

Finally, a SPARQAL procedure is a sequence of statements satisfying the following
two conditions: (1) the last statement, and only the last statement, is a return statement;
(2) all solution variables used in QVALUES, FIXPOINT and RETURN have been assigned by
LET in a previous statement (or a nested statement thereof).

Example 2. Figure 1 illustrated a SPARQAL procedure with three statements: an
assignment statement (lines 1–5); a loop statement with a fixpoint termination condition
and two nested assignments (lines 6–17); and a final return statement (line 18). ��

3.2 Semantics

We now give the semantics of statements that form procedures in SPARQAL. More
formally, let P = s1; . . . ; sn be a sequence of statements, and let var 1, . . . , var k be
all variables mentioned in any statement in P (including in nested statements). For a
tuple val0 = (r1, . . . , rk) of initial assignments of (possibly empty) solution sequences
to variables var 1, . . . , var k, we will construct a sequence val0, . . . , valn of k-tuples,
where each vali represents the value of all variables after executing statement si.

The construction is done inductively. Assume that vali−1 = (r1, . . . , rk). The value
of vali depends on whether si is an assignment, loop or return statement.

First, if si is the assignment statement LET var j = (Q);, then tuple vali is constructed
as follows. Define SPARQL query Q[(var 1, . . . , var k) �→ (r1, . . . , rk)] as the result of
substituting each subquery {QVALUES(var j)} in Q for the solution sequence r j3, and let
r∗ be the result of evaluating this extended query over the database. Then, substituting
r j for r∗ in the tuple vali−1, we define vali = (r1, . . . , r j−1, r∗, r j+1, rk).

Next, if si is the loop statement DO (S) UNTIL (condition); the tuple vali is constructed
as follows. Assume that S is the sequence s′1, . . . , s

′
� and notice that (by definition) S

must use a subset of the k solution variables in P. Repeat the following steps until the
terminating condition is met:

1. Initialise val′0 � vali−1.
2. Compute the tuple val′� that represents the result of executing statements s′1, . . . , s

′
�.

3 A syntactic way of doing this is to use a VALUES command in SPARQL.
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3. If val′� does not satisfy the condition, set val
′
0 � val′� and repeat step 2 above.

4. Otherwise finish, and set vali � val′�.

To define when a tuple val′� over k variables satisfies a condition, we have three cases:

– If the condition is TIMES t, then the condition is met once the loop above has
repeated t times.

– If the condition is FIXPOINT (var j), then the condition is met when the j-th com-
ponent of val′� contains the same set of solutions as the j-th component of val′0.

– If the condition is AQ, then the condition is met when the ASK query
AQ[(var 1, . . . , var k) �→ val′�] evaluates to true.

Fig. 2. Procedure to compute the top author in terms of p-index for articles about the Zika virus

Finally, if si is the return statement RETURN(var j), then the program terminates and
returns the solution sequence r j that is the j-th component of vali.
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Note that we assume all solution variables to have a global scope as it makes the
semantics simpler to define; one could define local solution variables analogously.
Moreover, some SPARQAL statements may incur infinite loops; later we will dis-
cuss fragments for which every program can be shown to terminate (as in, e.g., Dat-
alog or recursive SPARQL). Currently we do not consider blank nodes when checking
FIXPOINT conditions; these could be supported in a future version using the labelling of
[31], which has been shown to be efficient for a wide variety of graphs.

Example 3. We recall Example 1, this time to illustrate the semantics of SPARQAL. In
the first LET statement, we assign the solution sequence of the given SPARQL query
to the variable reachable. Then the procedure enters a loop. We assign adjacent to
the results of a SPARQL query that embeds the current solutions of reachable as a
sub-query, leading to a join between current reachable stations and pairs of adjacent
stations not on Line C. We then update the reachable solutions, adding adjacent solu-
tions; here we can use reachable in the LET and QVALUES of the same statement since it
was assigned before (line 1). In each iteration the solutions for reachable will increase,
discovering new stations adjacent to previous ones, until a fixpoint. Finally, the RETURN

clause specifies the solutions to be given as a result of the procedure. ��

3.3 Example with PageRank

We now illustrate a procedure for a more complex queralytic.

Example 4. Suppose we have the citation network of articles on a topic of interest and,
we want to apply a centrality algorithm in order to know which articles of the network
are the most important. Thereafter we wish to use these scores to find the most promi-
nent authors in the area. We can express this task using SPARQAL. In this case we
will consider the citation network of all the articles about the Zika virus on Wikidata,
where we then encode and apply the PageRank algorithm over the citation network,
using the resulting article scores to compute p-indexes for the respective authors. We
show a procedure in our language for solving this task in Fig. 2.

In this procedure we start by defining a variable that contains a solution sequence
with pairs (?node, ?cite) such that both ?node and ?cite are instances of (P31) scien-
tific articles (Q13442814) about (P921) the Zika virus (Q202864) and ?node cites (P2860)
?cite. The solutions for this query are assigned to zika. We can think of this variable
as the representation of a directed subgraph extracted fromWikidata. We also define the
variables nodes with all nodes in the subgraph, n with the number of nodes, and degree

with the out-degree of all nodes in the graph (with some out-edge).
After extracting the graph and preparing some data structures for it, we then start

the process of computing PageRank. First we assign the variable rank with initial ranks
for all nodes of 1

n . We then start a loop where we will execute 10 iterations of PageRank.
In each iteration we will first compute and assign to rank edge the PageRank that each
node shares with its neighbours; here we assume a damping factor d = 0.85 as typical
for PageRank [32], denoting the ratio of rank that a node shares with its neighbours.
Next we compute and assign to unshared the total rank not shared with neighbours in
the previous step (this arises from nodes with no out-edges and the 1−d factor not used
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previously for other nodes). We conclude the iteration by allocating the unshared rank
to each node equally, updating the results for rank. The loop is applied 10 times.

Subsequently, we join the PageRank scores for articles with their authors, and use
aggregation to sum the scores for each author, applying ordering and a limit to select
the top author according to that sum, assigning the solution to p index top. Finally, the
procedure returns the solution for p index top denoting the top author. ��

3.4 Graph Updates

Although there is a straightforward way to implement our language on top of any engine
using the VALUES clause, this can generate long query strings that current engines strug-
gle to process. Hence we define a recursive algebra for graphs that can also express
queralytics. As a motivating example, consider the declaration of variables zika and
degree, in lines 1 and 15 respectively of Fig. 2. These statements initialise these vari-
ables, but we can view them as queries constructing two graphs. More precisely, we use
the graph ex:zika to store the result of the query:

1 CONSTRUCT { ?node ex:zikacites ?cite } WHERE {
2 ?node wdt:P31 wd:Q13442814; wdt:P921 wd:Q202864; wdt:P2860 ?cite .
3 ?cite wdt:P31 wd:Q13442814; wdt:P921 wd:Q202864 }

Thus, instead of storing pairs of values for <node> <cite> in a SPARQAL solution
variable zika, we store them as triples of the form <node> ex:zikacites <cite> in a
graph named ex:zika. Using this graph we can now store the result of degree in graph
ex:degree by means of the following query:

1 CONSTRUCT { ?node ex:zikadegree ?degree } WHERE {
2 SELECT ?node (COUNT(?cite) AS ?degree) WHERE {
3 GRAPH ex:zika {?node ?p ? cite} }
4 GROUP BY ?node }

We remark that a general solution would involve reifying any SPARQAL variable
using more than two SPARQL variables, possible generating new nodes.

Algebra of Updates. Let G = {(n1,G1), . . . , (nk,Gk)} be a set of named graphs with IRIs
{n1, . . . , nk} and RDF graphs {G1, . . . ,Gk} such that ni = n j if and only if i = j. Let Q
be a CONSTRUCT query. Given an IRI n, we use n ← Q to express the action of storing
the result G of Q(G) as the named graph (n,G) in G, overwriting the graph previously
named n if necessary. Our algebra of updates consists of (1) update expressions of the
form n ← Q, for n an IRI and Q a CONSTRUCT query that may reference any of the
existing graphs in G, (2) loop expressions of the form DO A UNTIL (condition) where
A is a sequence of expressions and (condition) is again one of TIMES t; FIXPOINT n,
where n is a graph name in G; or AQ, an ASK query that may reference graphs in G.

With respect to the semantics of this algebra, starting with the initial set G, an
expression modifies graphs in G as follows. An assignment expression n← Q removes
the graph (n,G) fromG (if it exists), and adds (n,Q(G)), where Q(G) denotes the evalua-
tion of Q over G. A loop expression DO A UNTIL (condition) applies iteration, evaluating
the sequence A: t times if condition is TIMES t, or until the named graph (n,G) ∈ G
did not change at the end of two subsequent iterations if condition is FIXPOINT n, or
until the evaluation of query AQ over G returns true if condition is AQ.
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Given an expression A dealing with graphs in G, we use A(G) to denote the result of
evaluating A over G. Looking at our motivating example, one sees that transforming our
procedural language into the graph algebra is not difficult, and neither is transforming
graph algebra expressions into our procedural language. The following proposition,
proven in an extended version of this paper available online [33], summarises the claim
that both languages have the same expressive power.

Proposition 1. Let P be a SPARQAL procedure, with v the solution variable returned
by P. Then one can construct an expression A in the algebra of updates mentioning a
set G of graphs, and a SELECT query Q, such that evaluating Q over A(G) yields the
same solutions as those stored by v after evaluating P over G. Likewise, for an algebra
expression A mentioning graphs G, and any named graph (n,G) ∈ G, one can construct
a SPARQAL procedure P returning a solution variable v overG, and a CONSTRUCT query
Q, such that evaluating Q over the solutions stored by v yields the graph G.

Thus, we now have two strategies for implementing SPARQAL procedures: we can
implement them directly by translating QVALUES clauses as VALUES statements while
running the procedures, or we can compile the procedure into an expression in our
algebra of updates and implement this directly. We will analyse these two possibilities
in Sect. 5.2, but first we study the expressive power of these formalisms.

4 Expressive Power

In this section we review the expressive power of procedures in SPARQAL. Our results
come in two flavours: first we focus on what the language can do, showing Turing-
completeness and complexity results, and then we turn to the comparison between our
language and other related query languages extended with recursion.

4.1 Turing-Completeness

Although do–until loops may appear to be just a mild extension to a query language, our
first result states that this is actually enough to achieve Turing-completeness. Formally,
we say that a query language L is Turing-complete if for every Turing machine M over
an alphabet Σ one can construct a query Q inL and define a computable function f that
takes a word in Σ∗ and produces an RDF graph, and such that a word w ∈ Σ∗ is accepted
by M if and only if the evaluation of Q over the graph f (w) produces a non-empty result.
Along these lines, we prove the following result:

Theorem 1. SPARQAL is Turing-complete

The proof of this theorem (presented in the extended version of this paper [33])
relies on the combination of do–until loops and the ability to create new values in the
base SPARQL language through BIND statements and algebraic functions [5]. Of course,
for the proof one must assume that there is no limit on the memory used by the evalua-
tion algorithm; however, the proof reveals a linear correspondence between the memory
used by the query and the number of cells visited by the machine M.
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Traditional theoretical results have tended to study languages assuming that the cre-
ation of new values is not possible, or, if possible, that there is a bound on the number of
values that are created. But this is not the case with SPARQAL procedures; for starters,
we can iterate and sum to create arbitrarily big numbers. However, for the purpose of
comparing SPARQAL procedures against other traditional database languages, we ask,
what would be its expressive power if one disallows the creation of new values? In fact,
do–until loops have been studied previously in the literature, especially in the context
of relational algebra (see e.g. [34]). In our context, we ask what happens if we disallow
the invention of new values in the procedure: more formally, we say that a procedure P
does not invent new values if for every graph G and every variable var defined in P, all
mappings in any solution sequence associated to var always binds variables to values
already present inG. In this case, there is a limit on the maximum number of mappings
in the solution sequence of any variable at any point in time during evaluation of the
procedure, and this limit depends polynomially on the size of the graph. This implies
that the evaluation of this procedure can be performed in PSPACE (in data complexity),
and we can also show that this bound is tight. To formally state this result, let P be a
SPARQAL procedure. The evaluation problem for P receives a graph as an input, and
asks whether the evaluation of P over G is not empty4. We can then state the following
(the proposition is proven in the extended version of this paper [33]):

Proposition 2. The evaluation problem for SPARQAL procedures that do not invent
new values is PSPACE-complete.

4.2 Comparison with Other Recursive Extensions to SPARQL

We base our comparison on the recursive extension proposed by Reutter et al. [9],
but these results apply to similar languages, such as the (with) recursive operator in
SQL. The first observation is that these languages only define semantics for monotone
queries. For example, recursive SPARQL uses CONSTRUCT queries of the form:

1 WITH RECURSIVE G AS {QCONSTRUCT}
2 QSELECT

whereG is an IRI used to denote a temporary graph, QCONSTRUCT is a CONSTRUCT SPARQL
query and QSELECT is a SELECT SPARQL query. The idea of this form of recursion is that
QCONSTRUCT defines a query meant to compute G in an iterative fashion (there may also
be references to the graph G inside this same query). In other words, we can view
QCONSTRUCT as an operator TQ(G) that – as a single step – takes as input an RDF graph
and produces as output an RDF graph. The final output graph then corresponds to the
least fixed point of the sequence TQ(∅), TQ(TQ(∅)), . . . . Such a fixed point is only guar-
anteed when QCONSTRUCT is monotone: where G ⊆ G′ implies that TQ(G) ⊆ TQ(G′).
To guarantee monotonicity, Reutter et al. [9] impose major syntactic restrictions on the
operands available for the QCONSTRUCT query, forbidding, for example, the use of BIND,
NOT EXISTS, MINUS, as well as OPTIONAL patterns that are not well designed [35].

4 This corresponds to boolean evaluation. This is without loss of generality because the problem
where one considers a tuple of values as an input can be simulated by means of filters.
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So how does our language compare with these recursive variants? The first obser-
vation is that all of these queries can actually be expressed as a SPARQAL procedure: a
query in the form above can be straightforwardly simulated by the following procedure:

1 DO ( LET graph = ( SELECT ?s ?p ?o WHERE P′CONSTRUCT ) ) UNTIL ( FIXPOINT (graph) );
2 LET result = Q′SELECT;
3 RETURN result;

Here P′CONSTRUCT is the graph pattern of the WHERE clause of QCONSTRUCT from the
recursive SPARQL query, but where we retrieve triples from QVALUES(graph) instead of
from the temporary graphG. Query Q′SELECT corresponds to QSELECT from the recursive
SPARQL query, but where again we use QVALUES(graph) instead of G.

In the other direction, can recursive SPARQL simulate SPARQAL procedures? This
depends on what sorts of queries we allow in QCONSTRUCT. If we take the language as
originally defined by Reutter et al., so that queries QCONSTRUCT must be monotone, then
we know that the evaluation for recursive SPARQL queries is in PTIME [9]. Together
with Proposition 2, this means that recursive SPARQL cannot simulate SPARQAL pro-
cedures unless PTIME = PSPACE, which is widely assumed to be false. A similar result
was shown for similar extensions to relational algebra: relational algebra equipped with
fixed point cannot simulate do–until queries unless PTIME = PSPACE [34].

Conversely, the semantics for recursive SPARQL is not defined when one allows
to use operands such as BIND clauses. The standard solution for this case is to assign a
partial fixed point semantics, which means that a query of the form above would retrieve
a graph G which is the fixed point of the sequence TQ(∅), TQ(TQ(∅)), . . . , if it exists, or
an empty graph otherwise (when the operator runs into an infinite loop). In this context,
and if we allow full SPARQL 1.1 in QCONSTRUCT, one can show that both languages
coincide, because recursive SPARQL becomes Turing-complete as well.

4.3 Comparison with the Datalog Framework

Our algebra of graph updates also gives us a way of comparing with Datalog variants
for analytics tasks that have been proposed in the literature (for this discussion we
assume familiarity with the Datalog language). Indeed, consider a set of named graphs
G = {(n1,G1), . . . , (nk,Gk)}, a sequence A of graph updates of the form n← Q, for n one
of n1, . . . , nk and Q a construct query over G. If we assume that each Q is monotone,
then an algebra expression DO A UNTIL FIXPOINT ni can be understood as a Datalog
program over k ternary predicates T1, . . . ,Tk, each interpreted as the triples in graphs
n1, . . . , nk, given by the rules←T1, . . . ,←Tk and a rule T j ← Q for each update n j ← Q
in A. We evaluate this program until the data for predicate Ti does not change.

Thus, for example, if we restrict queries in SPARQL so that they match the expres-
sive power of the SociaLite language by Seo et al. [12], then we end up precisely with
SociaLite. What SPARQAL adds on top of these Datalog variants is (1) native support
for SPARQL, since the right-hand side of rules are actually stated in SPARQL, and
(2) not having to depend on particular fixed point semantics5. As we remarked when
comparing to recursive SPARQL, this does come with an increase in expressive power.

5 Here we are not interested in languages with decidable containment, in part because we are
not addressing how to do reasoning within SPARQAL, but this is a fertile area for future work.
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5 Experiments

In this section we present our prototypical implementation of a queralytics engine based
on the SPARQAL language, along with experiments over different datasets to ascertain
its performance and limitations. The goals of this prototype are to demonstrate that the
language can be used, in practice, to express in-database analytics, and to ascertain the
performance achievable when operating over an off-the-shelf SPARQL query engine.
The target use-case for our prototype is – per the scenarios outlined in Examples 1 and
4 – to run queralytics (near-)interactively on small-to-medium graphs projected from a
larger graph using a query. Along these lines, the prototype was developed on top of
the Apache Jena Framework, version 3.10 (for our second set of tests we also provide
a version of the prototype mounted on top of Virtuoso). The implementation provides
the following core functionalities: (1) it parses a SPARQAL procedure into a sequence
of statements, which are evaluated according to their semantics by: (2a) maintaining a
map of solution variables to solution sequences; (2b) replacing variables used within a
QVALUES clause with a VALUES string with the respective solution sequence; (2c) evaluat-
ing SPARQL queries, and (2d) in order to handle FIXPOINT conditions, keeping the pre-
vious solution sequence of the respective variable in-memory to track changes. We also
provide an initial prototype for the algebraic strategy defined in Sect. 3.4; this prototype
creates the new graphs using CONSTRUCT statements, and deletes/adds new graphs using
the native functionalities provided by SPARQL systems.

Table 1. Number of nodes and edges in graphs considered

Q1 Q2 Q3 Q4 Q5 Q6

Nodes 93 3, 057 480 266 7,194 627

Edges 172 38, 738 766 211 8,719 996

Experiments were tested on a MacBook Pro with a 3.1GHz Intel I5 processor and
16GB of RAM. For our motivating scenarios, Example 1 took just 1.3 s to return 16
stations from which Palermo can be reached without using Line C, and Example 4 –
running 10 iterations of PageRank on a graph of 38,738 edges (citations) and 3,057
nodes (articles) – took 53.1 seconds to find the top author (from 2,214 authors) by p-
index in the citation network, which we consider to be reasonable, but improvable6.

To further test our implementation, we design a benchmark based on Wikidata for
running analytical tasks on sub-graphs extracted through queries. Finally, we stress-test
our prototype for a graph analytics benchmark at a larger scale. In particular, we show
that the algebraic approach may be better suited for handling large datasets.7

5.1 Wikidata: Queralytics Benchmark

To the best of our knowledge, there is no existing benchmark for queralytics along the
lines discussed in this paper. This led us to design a novel benchmark for queralyt-
6 For reference, the top such author is George Dick, with a p-index of 0.124.
7 All sources and datasets are available at https://adriansoto.cl/files/SPARQAL.zip.

https://adriansoto.cl/files/SPARQAL.zip
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ics over the Wikidata knowledge graph. We took the “truthy” RDF dump of Wikidata
as our benchmark graph [36]. Designing the queralytic tasks required collecting and
combining two elements: queries that return results corresponding to graphs, and graph
algorithms to apply analytics on these graphs. In terms of the queries returning graphs,
we revised the list of use-case queries for the Wikidata Query Service8. From this list,
we identified the following six queries returning graphs:

Q1 A graph of adjacent metro stations in Buenos Aires
Q2 A graph of citations for articles about the Zika virus
Q3 A graph of characters in the Marvel universe and the groups they belong to
Q4 A graph of firearm cartridges and the cartridges they are based on
Q5 A graph of horses and their lineage
Q6 A graph of drug–disease interactions on infectious diseases

These queries provide a mix of connected graphs, disconnected graphs, bipartite graphs,
trees, DAGs, near-DAGs, and so forth. We provide the sizes of these graphs in Table 1.

Next we must define the analytics that we would like to apply on these graphs. For
this, we adopted five of the six algorithms from the Graphalytics Benchmark [37]:

BFS Breadth-First Search PR PageRank
LCC Local Clustering Coefficient WCC Weakly Connected Components
SSSP Single-Source Shortest Path

We do not include the Community Detection through Label Propagation CDLP as it
assumes data with initial labels. We implement these five algorithms as procedures in
the SPARQAL language, prefixing each with the six different Wikidata graph queries,
stored as solution variables. The result is a benchmark of 6 × 5 = 30 queralytic tasks.

In Fig. 3, we show the results for these 30 tasks using our in-memory implementa-
tion. First we remark that the Weakly Connected Components (WCC) algorithm timed-
out in the case of the Zika graph after 10min. While the cheapest algorithm in general
was BFS, the most expensive was WCC. Although some of these tasks took over a

Fig. 3. Results for Wikidata queralytic benchmark

8 https://www.wikidata.org/wiki/Wikidata:SPARQL query service/queries/examples.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
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minute in the case of graphs with thousands or tens of thousands of nodes (Zika/Q1 and
Horses/Q5), those with fewer than a thousand nodes/edges ran in under a second, and
thus would be compatible with interactive use.

5.2 Graphalytics: Stress Test

The scale of the previous graphs is quite low and uses (mostly) the in-memory algo-
rithm. Hence we use the Graphalytics Benchmark [37] to perform stress tests for our
prototype at larger scale with the goal of identifying the choke points of the current
implementation. We adopt the cit-Patents dataset: a directed graph with 3,774,768
vertices and 16,518,947 edges. We implement both alternatives for evaluating SPAR-
QAL procedures: using VALUES and using Graph Updates. In order to try a different
backend, we also implemented the Graph Updates alternative on top of Virtuoso.

The results of the Graphalytics benchmark are shown in Table 2. For the VALUES

implementation, we identify two key choke points. An obvious choke-point is presented
by the fact that solution sequences are stored in memory: this puts an upper-bound
on scalability, leading to oom errors for complex queralytics on larger graphs (with
millions of nodes and tens of millions of edges). The other choke-point is the handling
of QVALUES clauses using a VALUES clause with large solution sequences, yielding queries
that are inefficient for Apache Jena. We view a number of possibilities for addressing
these choke points in future work. Keeping with the in-database analytics scenario, the
first choke point could be alleviated with compression and indexing techniques, while
both choke points could be addressed by batch-at-a-time processing of QVALUES clauses.

The performance issues of the VALUES implementation are alleviated, to some extent,
when we switch to the implementation based on graph updates. Intermediate graphs are
stored in memory, but their sizes tend to be smaller than the size of solution sequences,
as one avoids replication. Here, the main choke-point is the fact that constructed graphs
are not currently indexed, and thus queries over them run slower. When comparing
the Jena/Updates implementation against the one using Virtuoso, we see several dif-
ferences. Both implementations handle BFS much better. We speculate that Virtuoso is
better at SSSP because it is more efficient when dealing with strings representing paths.
On the other hand, all of LCC, WCC and PR require large update operations on temporary
graphs, something that transactional databases like Virtuoso are not designed for.

Looking to the future, we speculate that implementing lightweight indexes in con-
structed graphs would provide even faster times for our Updates implementation.
Another in-database alternative would be using GPU-acceleration for parallelising

Table 2. Execution time (min) for Graphalytics benchmark. Here oom is for out-of-memory error.

Algorithm BFS LCC PR SSSP WCC

SPARQAL/Jena–Values 11 oom 250 300 oom

SPARQAL/Jena–Updates 2 26 112 127 13

SPARQAL/Virtuoso–Updates 1 timeout 244 5 310
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batches. In general, however, in order to process larger graphs, an in-database solu-
tion may not be feasible, but rather SPARQAL procedures would need to be translated
to tasks that can run on graph processing or Datalog frameworks, as discussed in Sect. 2.

6 Conclusion

We believe that the combination of graph queries and analytics is a natural one, in
the sense that tasks of interest to users often involve interleaving both paradigms. The
SPARQAL language provides a way to express such tasks, and makes initial steps
towards a system to support them. We see this language as being useful for combin-
ing querying and analytical tasks specifically in an RDF/SPARQL setting.

We hope that our proposal ignites discussion on different ways for enriching
SPARQL with graph analytics, and the best architecture to support them (see [38] for a
related discussion). A key research challenge relates to the optimisation of SPARQAL
procedures. We have investigated batch-at-a-time and also compilation into algebraic-
like statements for evaluation within the database, but we still need support for indexing
temporary graphs (perhaps as in [39]), and looking at whether or not traditional database
optimisation tasks are likewise suitable for optimising SPARQAL procedures.
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Abstract. The hyponym-hypernym relation is an essential element in
the semantic network. Identifying the hypernym from a definition is an
important task in natural language processing and semantic analysis.
While a public dictionary such as WordNet works for common words,
its application in domain-specific scenarios is limited. Existing tools for
hypernym extraction either rely on specific semantic patterns or focus on
the word representation, which all demonstrate certain limitations. Here
we propose a method by combining both the syntactic structure in def-
initions given by the word’s part of speech, and the bidirectional gated
recurrent unit network as the learning kernel. The output can be fur-
ther tuned by including other features such as a word’s centrality in the
hypernym co-occurrence network. The method is tested in the corpus
from Wikipedia featuring definition with high regularity, and the cor-
pus from Stack-Overflow whose definition is usually irregular. It shows
enhanced performance compared with other tools in both corpora. Taken
together, our work not only provides a useful tool for hypernym extrac-
tion but also gives an example of utilizing syntactic structures to learn
semantic relationships (Source code and data available at https://github.
com/Res-Tan/Hypernym-Extraction).

Keywords: Hypernym extraction · Syntactic structure · Word
representation · Part of speech · Gated recurrent units

1 Introduction

Hypernym, sometimes also known as hyperonym, is the term in linguistics refer-
ring to a word or a phrase whose semantic field covers that of its hyponym. The
most common relationship between a hypernym and a hyponym is an “is-a” rela-
tionship. For example, “red is a color” provides the relationship between “red”
and “color”, where “color” is the hypernym of “red”.

The hypernym-hyponym relation is an essential element in the seman-
tic network and corresponding tasks related to semantic network analysis [1].
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J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 529–546, 2020.
https://doi.org/10.1007/978-3-030-62419-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62419-4_30&domain=pdf
http://orcid.org/0000-0001-6620-3562
http://orcid.org/0000-0002-7591-0127
http://orcid.org/0000-0002-2337-2857
https://github.com/Res-Tan/Hypernym-Extraction
https://github.com/Res-Tan/Hypernym-Extraction
https://doi.org/10.1007/978-3-030-62419-4_30


530 Y. Tan et al.

The hypernym graph built on a collection of hyponym-hypernym relations can
enhance the accuracy of taxonomy induction [2,3]. The linkage between the
hyponym and the hypernym can be used to improve the performance of link
prediction and network completion in the knowledge graph or semantic network
[4,5]. In natural language processing (NLP), the hyponym-hypernym relation
can help the named entity recognition [6], and the question-answering tasks for
“what is” or “is a” [7,8]. The data mining, information search and retrieval can
also benefit from the hyponym-hypernym relation [9,10].

Given the role and application of the hypernym-hyponym relation, it is essen-
tial to explore an automatic method to extract such the relation between two
entities, which presents an important task in knowledge-driven NLP [11]. Follow-
ing the landmark work focusing on lexico-syntactic patterns [12], several pattern-
based methods are developed for hypernym extraction [8,13]. Then the feature-
based classification methods are introduced [14,15], which applies machine learn-
ing tools to enhance the recall rate. Recently, distributional methods and hybrid
distributional models are successfully applied to learn the embedding of words,
based on which the hypernym-hyponym relation can be inferred [16–18]. The
deep learning approach is also effective in many sequence labeling tasks includ-
ing hypernym extraction [19,20].

While the extraction of hyponym-hypernym relation can be done in many dif-
ferent environments, in this work we focus on the hypernym extraction from defi-
nitions. More specifically, the definition refers to a short statement or description
of a word. Take the word “red” as an example, whose definition on Wikipedia1

is “Red is the color at the end of the visible spectrum of light, next to orange
and opposite violet.” The aim is to identify the word “color” as the hypernym
of “red” from all the nouns in the definition. Intuitively, this task can be solved
by general resources such as WordNet dictionary [21] or Wikipedia. But given
a word’s different meanings in different contexts, these resources can not suffi-
ciently complete this task. As an example, the term “LDA” in Wikipedia denotes
“Linear Discriminant Analysis” in machine learning, “Low dose allergens” in
medicine, and “Landing distance available” in aviation. The combination of gen-
eral resources and context identification would also fail in some domain-specific
applications where the general resources do not cover the special or technical
terms in that area. Moreover, existing technical approaches also demonstrate
certain limitations in the task of hypernym extraction from definitions, which
we summarize as follows:

1) Hypernym and hyponym are connected in many different ways. Even the
“is a” pattern, which is usually considered typical, has many variations such
as “is/was/are/were + a/an/the”. It is impossible that one enumerates all
different patterns. Consequently, despite high precision, the pattern selection
method usually gives a low recall value.

2) The traditional feature-based classification method relies on manually
selected features and the statistical machine learning models. It may work

1 https://www.wikipedia.org/.

https://www.wikipedia.org/
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well in a class of formats, but in general, the performance can not be guar-
anteed once the data or the environment changes.

3) The distributional method, which relies on the similarity measure between two
words to gauge the semantic relationship, is usually less precise in detecting a
specific semantic relation like hypernym. Moreover, it needs a large training
corpus to accurately learn the representation of words from their heteroge-
neous co-occurrence frequencies. In definitions, however, the appearance fre-
quency of a word is usually low and the size of data is relatively small. The
distributional method may not be directly applicable to this scenario.

4) The deep learning method, such as the recurrent neural network (RNN), can
be used to process word sequences, which does not rely on particular features
selected. To a great extent, it overcomes the limitation 2). However, current
approaches usually take the word sequence as the input, or focus on the
modification of RNN structures. Other features of the word, such as its part
of speech, are not fully explored.

To briefly illustrate the difficulty, let us consider a definition from the Stack-
Overflow2 with an irregular format: “fetch-api: the fetch API is an improved
replacement for XHR”. The term “fetch-api” is not included in any common
dictionary. While the definition has the “is an” pattern, it does not connect
to the hypernym. The definition is very short and every distinct word in this
definition appears just once, which makes it difficult to accurately learn the word
representation. Overall, it is challenging to find a method that would accurately
identify “API” as the correct hypernym.

The definition of a word represents a certain type of knowledge extracted
and collected from disordered data. Indeed, there are tools capable of extracting
definitions from the corpora with good accuracy [14,15,19,20,22]. Nevertheless,
tools to extract hypernym from definitions remain limited. To cope with this
issue, we propose a recurrent network method using syntactic features. Because
the definition directly points to a noun, the hyponym is already given. Therefore,
the hypernym extraction is to identify the correct hypernym from all words in
the definition sentence. This task can be considered as a binary classification, in
which the classifier judges if a candidate noun is a hypernym or not. In order
to better learn the syntactic feature, we transfer the definition sentence into the
part of speech (PoS) sequence after labeling the PoS of each word by a standard
tool (Stanford-NLP [23]). The syntactic structure surrounding the candidate is
learned by a bidirectional gated recurrent units (GRU) based model. To further
fine tune the results, we use a set of features including the centrality of the word
in the hypernym co-occurrence network. We use two corpora to evaluate our
method. One is Wikipedia, featuring definitions with canonical syntax structure
and intensively used by previous studies. The other is from Stack-Overflow,
whose definition is domain-specific and usually with the irregular format. Our
method is compared with several existing ones. Overall, it outperforms all others
in both corpora, which demonstrates the advantage of combing both the tool of
RNN and the PoS information in the task of hypernym extraction.
2 https://stackoverflow.com/.

https://stackoverflow.com/
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This paper is organized as follows. We review related works in Sect. 2 and
introduce details of the method in Sect. 3. Experiments and evaluations of the
proposed model are presented in Sect. 4. After that, we draw a conclusion about
this research in Sect. 5.

2 Related Work

The existing methods in hypernym extraction generally fall into one of the follow-
ing four categories: pattern-based method, feature-based classification method,
distributional method and deep learning method.

2.1 Pattern-Based Method

The pattern-based method directly uses the syntactic patterns in definitions,
such as “is-a”, “is called”, “is defined as” and more. This method is commonly
applied in early works due to its simplicity and intuitiveness. The majority of
these approaches apply the symbolic method that depends on lexico-syntactic
patterns or features [12], which are manually crafted or semi-automatically
learned. However, because only a small fraction of syntactic patterns can be
included, these methods usually have a low recall value. In order to cover more
patterns, [24] considers PoS tags instead of simple word sequences, which raises
the recall rate. To improve the generalization of the pattern-based method, [8]
starts to model the pattern matching as a probabilistic process that generates
token sequences. Moreover, [22] proposes the three-step use of directed acyclic
graphs, called Word-Class Lattices (WCLs), to classify definitions on Wikipedia.
To better cluster definition sentences, the low-frequency words are replaced by
their PoS. For a simple example, definitions that “Red is a color” and “English
is a language” are in the same class that is characterized by a pattern “noun is
a noun”. In this way, more patterns can be characterized to identify the hyper-
nym. In recent years, much research pay attention to extracting hypernyms from
larger data resources via the high precise of pattern-based methods. [25] extract
hypernymy relations from the CommonCrawl web corpus using lexico-syntactic
patterns. In order to address the low recall of pattern-based method in large
data resources, [18,26] integrate distributional methods and patterns to detect
hypernym relations from several existing datasets.

Nevertheless, the pure pattern-based approaches are generally inefficient,
given the fact that syntactic patterns are either noisy by nature or domain-
specific. It is very difficult to further improve the performance in this direction.

2.2 Feature-Based Classification Method

To overcome the issue of generalization in the pattern-based method, the feature-
based classification method is introduced. [27] proposes a method to learn the
generalized lexico-syntactic pattern and assign scores to candidate hypernyms.
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The scores are used to identify the true hypernym out of others. [28] uses condi-
tional random fields to identify scientific terms and their accompanying defini-
tions. Moreover, [14] uses the role of syntactic dependencies as the input feature
for a support vector machine (SVM) based classifier. [15] explores the features
in the dependency tree analysis.

These feature-based classification approaches heavily rely on manually speci-
fied features. Patterns learned from sentences or features analyzed from the NLP
tools may not fully represent the syntactic structure. In addition, the NLP tools
like dependency tree analysis are often time-consuming, and error at early steps
may propagate which eventually leads to inaccurate final results.

2.3 Distributional Method

The distributional method is based on the Distributional Inclusion Hypothe-
sis which suggests that a hypernym tends to have a broader context than its
hyponyms [29,30]. If the similarity between two words can be accurately mea-
sured, then a hypernym should be associated with a similar but larger set of
words than its hyponyms [30–32], [33] tests the Distributional Inclusion Hypothe-
sis and find that hypothesis only holds when it is applied to relevant dimensions.
Because word embedding can reflect the corresponding semantic relationship,
[16] constructs semantic hierarchies based on the notion of word embedding.
[34] uses linear classifiers to represent the target words by two vectors concate-
nation. [35] introduces a simple-to-implement unsupervised method to discover
hypernym via per-word non-negative vector embeddings. [36] proposes a novel
representation learning framework, which generates a term pair feature vectors
based on bidirectional residuals of projections, reaches a state of the art perfor-
mance in general resources.

Nevertheless, the application of the distributional method relies on a very
large corpus to learn the word representation. Moreover, the Distributional Inclu-
sion Hypothesis may not be always hold. In the task discussed in this paper,
because many terminologies occur infrequently and the length of a definition is
usually short, it can be very inefficient to learn word representation.

2.4 Deep Learning Method

The recurrent neural networks (RNN) [37] have been applied to handle many
sequential prediction tasks. By taking a sentence as a sequence of tokens, RNN
also works in a variety of NLP problems, such as spoken language understand-
ing and machine translation. It is applied in hypernym extraction as well. [19]
converts the task of definition extraction to sequence labeling. Using a top-N
strategy (same as [22]), the infrequently appeared words are replaced by their
corresponding PoS. The sequence mixed with words and PoS elements is fed
to the long short-term memory (LSTM) [38] RNN to predict the definition.
More recently, [20] proposes a two-phase neural network model with yields an
enhanced performance compared with [19]. The first phase is constructed by a
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bi-directional LSTM to learn the sequence information. Then a CRF and a logis-
tic regression are used to refine the classification results. Both of the two works
focus on words. Although [19] considers the PoS information, the purpose is only
to reduce the total number of words by grouping less frequent words together
according to their PoS property. While they demonstrate improved performance
compared with other methods, they are only tested in Wikipedia corpus, where
the definition usually has a very regular format. The performance on other irreg-
ular definitions remains unknown.

3 Method

In our approach, a definition sentence is split into words. The words are further
labeled according to their grammatical properties, which form a PoS sequence
representing the syntactic structure of the definition. The nouns are selected as
hypernym candidates which need to be classified. An illustration of this proce-
dure is shown in Fig. 1. We particularly focus on the syntactic structure surround-
ing a noun. This feature is learned from the training set that helps the hypernym
recognition in the testing set. Our model contains three phases (Fig. 2): syntactic
feature representation, syntactic feature learning, and hypernym identification
refinement.

Fig. 1. An example of a hypernym-hyponym pair in a definition: “sql is a language for
querying databases”. The definition is split into units (words and the corresponding
PoS) for analysis. The word “language” and “databases” are two hypernym candidates.
The PoS elements surround “language” and “databases” are different. Our model learns
such features and identifies “language” as the hypernym of “sql”.

3.1 Syntactic Feature Representation

In the first phase of hypernym extraction, a definition sentence is converted into
a context segment sequence which captures syntactic features of the definition.
The context segment sequence is used as the input of the RNN at the second
phase.

A definition sentence can be considered as a word sequence of N ele-
ments W = [w1, ..., wi, ..., wN ], which further gives a PoS sequence Q =
[q1, ..., qi, ..., qN ]. Assume that there are T nouns in the definition which are
the hypernym candidates. These T nouns can be recorded as C = {cji}, where
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i is the position of the noun in the word sequence and j is its order in the T
nouns. We use a window to extract the local syntactic feature around a noun
from the PoS sequence Q, yielding T context segments as

sji = [qi−L, ..., qi−1, qi+1, ..., qi+L], (1)

where L is the window size which also determines the length of each context
segment. To make each context segment equal length, we extend the sequence
Q by adding the null element on its two ends when needed, i.e. qi = ∅ for i < 1
and i > N .

Because the number of PoS types is limited and small, we can represent each
qi as a one-hot vector Xi, where the corresponding PoS type has the value 1 and
others are with value 0. More specifically, in this work, we consider 15 PoS types
and one null element ∅. Consequently, each qi is represented by a 16-dimensional
vector Xi and sji is represented by Eq. 2, which is a 16 by 2L matrix.

sji = [Xi−L, ...,Xi−1,Xi+1, ...,Xi+L], (2)

3.2 Syntactic Feature Learning

We use the RNN to learn the local syntactic features. Because the original
RNN model cannot effectively use the long sequential information due to the
vanishing gradient problem [39], the long short-term memory (LSTM) architec-
ture is proposed to solve this issue. In our input, a context segment sji can be
divided into two parts: the pre-sequence [Xi−L, ...,Xi−1] and the post-sequence
[Xi+1, ...,Xi+L]. Naturally, we adopt the gated recurrent unit (GRU) [40] archi-
tecture, which is a variant of LSTM, but simpler, and faster in training than
LSTM. We use a bi-directional structure (Fig. 2(2)) containing a positive GRU
and a negative GRU to learn the pre- and post-syntactic features separately from
the above two sequences. The intermediate results Y1 and Y2 obtained through
the two GRU modules are merged into Y = [Y1;Y2] and fed into a feedforward

Fig. 2. The architecture of our model includes three phases: (1) syntactic feature rep-
resentation (2) syntactic feature learning and (3) hypernym refinement.
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neural network. The softmax layer outputs the probability P j
init that cji is the

hypernym. P j
init can be expressed as

P j
init = p(cji |sji ) = p(cji |Xi−L, ...,Xi−1,Xi+1, ...,Xi+L) (3)

3.3 Hypernym Refinement

The initial probability P j
init obtained through the above steps can be used

directly to identify the hypernym. Nevertheless, some other features of the words
can be used to improve accuracy. The P j

init and the selected features are fed into
another feedforward neural network to compute the final probability P j , which
is presumably more optimal. The candidate with the maximum probability is
selected as the hypernym of the target definition.

Features that can be included in this phase include a word’s position in
the sentence, whether it is capitalized, the frequency of usage, and so on. We
encode these as a refinement feature vector [F1, F2, ..., Fn]. Besides these com-
monly known features, we also consider the degree centrality (DC) of a candidate
in the hypernym co-occurrence network, following the intuition that a concept
with higher centrality in a semantic network is more likely to be a hypernym. In
the folksonomy, such as Stack-Overflow and Twitter, an item may be tagged by
multiple labels [41]. A scientific paper may also be labeled with multiple keywords
or other tags [42]. The fact that multiple entities simultaneously occur together
tells some hidden relationship between them. To make use of this feature, we first
extract the co-occurrence of hyponyms from the data, where multiple hyponyms
are used as notations of a question or a statement. Using the hyponym-hypernym
relationship in the training set, we further obtain the co-occurrence of the hyper-
nym, based on which the hypernym co-occurrence network is built. Figure 3 gives
an example of the hypernym co-occurrence network construction. The feature
DC, which counts how many neighbors a hypernym has, can help identify hyper-
nyms in several tricky cases. For example, the definition “fetch-api: the fetch API
is an improved replacement for XHR, ...”, Pinit would predict “replacement” as
the hypernym. The real hypernym “API” can only be revealed after taking the
DC feature into consideration.

Fig. 3. A simple example of the hypernym graph construction process. (1): terms of
co-occurrence are replaced by their corresponding hypernyms from the training set. (2):
hypernym co-occurrence network is built based on the co-occurrence of the hypernym.
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4 Experiment

We test and evaluate our method with both Wikipedia and Stack-Overflow data
sets. Before the experiment, some details about data are introduced to explain
the basis of feature selection. Then, we compare the performance of our method
with other existing ones. Finally, we perform extended tests to confirm the advan-
tage of using syntactic features and the RNN in hypernym extraction.

4.1 Dataset

Table 1. Details of annotation datasets from Wikipedia and Stack-Overflow.

Dataset Definitons Invalid-definitions Total words Total sentences Average length

Wikipedia 1871 2847 21843 4718 12.05

Stack-Overflow 3750 1036 9921 4786 14.29

Two corpora are selected to train and test our method. One is the public
Wikipedia corpus [27] and the other is the corpus from Stack-Overflow. The
definition syntax in Wikipedia is very standardized. Hence the Wikipedia cor-
pus is used in most existing works. However, besides common concepts, domain-
specific concepts or terms are emerging from different fields. One typical example

Table 2. 15 PoS and their corresponding abbreviations in our experiment.

Abbreviation PoS

DT Determiner

EX Existential there

IN Preposition or subordinating conjunction

NN Noun (singular or plural), Proper Noun (singular or plural)

TO to

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb
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is computer science. In the online community Stack-Overflow, massive technical
terms are discussed and organized, providing a rich body of definition corpus. In
this work, we collect about 36,000 definitions from Stack-Overflow. The details
of annotation datasets are shown in Table 1.

Some data pre-processing is performed. First, we use the definition extrac-
tion method [20] to filter out invalid definitions. Second, we remove words in
the parentheses because they are usually used for explanations and no likely to
contain the hypernym. For example, the sentence “Javascript (not be confused
with Java) is a programming language ...” is simplified to “Javascript is a pro-
gramming language ...”. In addition, we remove some PoS such as adjectives and
adverbs after PoS Tagging, which would not affect the meaning of a text. The
15 PoS types used in our methods are shown in Table 2.

4.2 PoS Position Comparison

To demonstrate that the syntactic structure captured by the PoS elements is
a suitable feature for hypernym identification, we show the probability that a
PoS element appears around a hypernym and a non-hypernym (Table 3). For
simplicity, we only consider the closest word before and after the hypernym and
the non-hypernym (equivalently window size L = 1 in our model). For non-
hypernyms, except for WDT and DT, a PoS element appears on either side with
roughly the same probability. In contrast, the appearance of the PoS element
around the hypernym is very polarized. For example, for more than 99% of
the time, a preposition appears after the hypernym. The clear difference in the
syntactic structure surrounding the hypernym and non-hypernym provides a
good basis for the classification task.

Table 3. The probability that a PoS element appears before (P1) and after (P2)
a target. The probability is conditioned on the appearance of the PoS element hence
P1+P2 = 1. N represents the cases that the target is not a hypernym and H represents
that the target is a hypernym.

PoS P1(N) P2(N) P1(H) P2(H)

WDT 0.065 0.935 0 1

IN 0.571 0.429 0.008 0.992

TO 0.540 0.460 0.028 0.972

VBP 0.539 0.461 0.033 0.967

VBZ 0.404 0.596 0.044 0.956

VBN 0.385 0.614 0.071 0.929

VBG 0.647 0.353 0.428 0.572

NN 0.416 0.584 0.963 0.037

DT 0.933 0.067 0.970 0.030
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4.3 Method Comparison and Evaluation

Baseline Methods. To illustrate that the PoS based feature is more effective
than the word-based feature, we separately take the one-hot code of PoS and
the embedding of the word as input. The two models with different inputs are
denoted by ModelPoS and ModelWord. We also consider other existing methods
for comparison, including (1) WCLs: An algorithm that learns a generaliza-
tion of word-class lattices for modeling textual definitions and hypernym [22].
(2) Dependencies: A method that only uses syntactic dependencies features
extracted from a syntactic parser to fed into the classifier and extract definitions
and hypernyms [15]. (3) Grammar: A feature engineering model for hypernym
extraction, using 8 handcrafted features which contain linguistic features, defini-
tional features and graph-based features [15]. (4) Two-Phase: A deep learning
model for sequence labeling hypernym extraction based on bidirectional LSTM
and CRF [20].

Experimental Settings. (1) We use 80% of the total sample as the train-
ing set and another 20% as the testing set. (2) The performance of a method
is measured by precision (P), recall (R), and F1-Score (F1) metric. (3) Extra-
features for refinement including a word’s position, capitalized, usage frequency,
and degree centrality. (4) In ModelWord, we use the embedding layer to convert
each word into a vector representation by looking up the embedding matrix
Wword ∈ R

dw|V |, where V is a fixed-sized vocabulary, and dw is the 100-
dimensional embedding size. The matrix Wword is a parameter to be learned.

Table 4. Hypernym Extraction in Wikipedia corpus and Stack-Overflow corpus: the
best results are shown in black bold and ModelWord is used as comparison.

Dataset Method P % R % F1 %

Wikipedia WCLs [22] 78.6 60.7 68.6

Dependencies [14] 83.1 68.6 75.2

Grammar [15] 84.0 76.1 79.9

Two-Phase [20] 83.8 83.4 83.5

ModelWord 82.1 76.8 79.4

ModelPoS 94.4 88.3 91.3

Stack-Overflow WCLs [22] 75.2 58.6 65.9

Dependencies [14] 81.7 66.2 73.1

Grammar [15] 82.8 71.4 76.7

Two-Phase [20] 86.3 78.4 82.2

ModelWord 76.1 72.9 74.5

ModelPoS 94.7 90.2 92.4
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We transform a word wi into its word embedding ei by using the matrix-vector
product:

ei = Wwordvi, (4)

where vi is a vector of size |V | which has value 1 at index ei and 0 in all other
positions. (5) To prevent neural networks from over fitting, a dropout layer [43]
is used. (6) The objective formulation is defined by Cross-Entropy, and the root
mean square prop (RMSProp) [44] algorithm is used to train our model.

Empirical Results. The results (Table 4) show that the proposed method out-
performs all existing ones. The different performance between ModelPoS and
ModelWord confirms the advantage of using PoS feature in the hypernym extrac-
tion over the use of word embedding. It is noteworthy that the accuracy in PoS
tagging would significantly affect the final outcome, given the role of PoS in
our method. As an example, depending on the context, the word “control” can
either be a verb or a noun. Therefore, for the definition “gridview: a control for
displaying and manipulating data from ...”, incorrectly tagging “control” as a
verb will yield incorrect hypernym. For simplicity, the task of PoS tagging in
our work is carried out by the Stanford-NLP tool. But its accuracy still has
the potential for further improvement, which can eventually enhance the final
performance of our method.

Hyper-Parameters Sensitivity. We show the Precision, Recall and F1-Score
of our model with different hyper-parameters to analyze the model’s sensitivity
(Fig. 4). In general, the choice of hyper-parameters does not significantly affect
the performance of our model.

Fig. 4. The model performance (the Precision, Recall and F1-Score in the y-axis) with
varying window sizes (a), neuron number in the hidden layer (b) and the ratio of
training samples (c).

4.4 Word Feature and Learning Kernel Ablation

Hybrid Representation Strategy for Word Feature Ablation. The fact
that the ModelPoS outperforms the ModelWord confirms the advantage of using
PoS as the input feature. This, however, gives rise to another question: could
the performance improve if the model combines both the PoS feature and word
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embedding? Indeed, the hybrid representation strategy was successfully applied
in previous studies [19,22] to reach improved extraction results. For this reason,
we analyze the performance of the hybrid strategy. For a definition sentence
W = [w1, w2, ..., wN ], we convert the word wi into token ti as follows:

ti =

{
wi wi ∈ Wtop

PoS(wi) wi /∈ Wtop

(5)

where Wtop is a set of top-K words of appearance. In this way, a word wi is left
unchanged if it occurs frequently in the training corpus, or it is converted into
its PoS. Eventually, we obtain a generalized definition W ′ = [t1, t2, ..., tN ] with
a mixture of words and PoS terms.

Table 5. The performance of our model after using the TOP-K strategy. In this table,
K represents the hyper-parameter of TOP-K strategy, W represents the Wikipedia
corpus and S represents the Stack-Overflow corpus. The best results are shown in
black bold.

Representation K W (F1%) S (F1%)

Word embeddings 25 88.3 89.6

50 88.6 89.5

100 89.0 91.0

200 89.0 88.8

400 89.7 89.1

800 90.2 85.8

2000 85.6 78.8

4000 81.4 76.3

8000 80.5 75.7

One-hot 10 82.7 83.8

20 77.8 80.1

30 72.4 77.9

40 67.7 74.8

50 61.9 69.3

ModelPoS 91.2 92.4

The W ′ is used to replace the PoS sequence Q in our method (Fig. 2) which
further gives the context segment sji . We consider two strategies to convert the
token ti into a high dimensional vector. One is to use the embedding layer to
convert each term into a vector with dimension 100. The other is to use the one-
hot vector to convert a top-K word into a vector with dimension K + 16. The
sji is then fed into the same GRU kernel as that in our model. The results are
shown in Table 5. Overall, word embedding is more suitable for this mixed feature
representation. The performance varies on the choice of top-K values and the
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best parameters differ in different data sets. Nevertheless, the best performance
of the hybrid strategy is not as good as our original method, which further
confirms the advantage of directly using only PoS information.

Table 6. The performances of hypernym extraction methods, which contain traditional
classifiers using PoS distributional features and deep learning models using word and
PoS representation. The best results are shown in black bold.

Dataset Method P % R % F1 %

Wikipedia Naive bayes 85.8 81.7 83.7

LDA 87.4 83.3 85.3

Softmax regression 88.4 84.1 86.2

SVM 87.3 83.2 85.2

Decision tree 83.1 79.2 81.1

Random forest 87.9 83.8 85.8

CRF 88.9 77.0 82.5

ModelWord 82.1 76.8 79.4

TransformerWord 86.6 81.9 84.2

BertWord 87.3 83.6 85.4

ModelPoS 94.4 88.3 91.3

TransformerPoS 94.8 88.7 91.6

BertPoS 95.2 89.1 92.0

Stack-Overflow Naive bayes 84.8 78.4 81.5

LDA 86.0 81.9 83.9

Softmax regression 87.2 82.3 84.7

SVM 87.7 83.6 85.6

Decision tree 83.2 78.2 80.6

Random forest 88.4 83.7 86.0

CRF 84.1 80.6 82.3

ModelWord 76.1 72.9 74.5

TransformerWord 80.6 74.3 77.3

BertWord 76.1 71.9 74.8

ModelPoS 94.7 90.2 92.4

TransformerPoS 95.1 90.6 92.8

BertPoS 95.5 91.0 93.2

Learning Kernel Ablation. While the RNN model adequately solves the
problem, it is not the most up-to-date tool in sequence labeling. The recent pre-
training language models such as Bert [45], which is based on the Transformer
structure [46], has led to significant performance gains in many NLP applications
[47]. Hence, it is of interest to analyze to what extend the final performance
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can be improved if the learning kernel is replaced by Transformer or by Bert.
For this reason, we perform a learning kernel ablation experiment by applying
the Transformer encoder and Bert encoder kernels in our model. We use the
same input of word embedding and PoS feature as these used in ModelWord

and ModelPoS. Correspondingly, the results are recorded as TransformerWord,
TransformerPoS, BertWord and BertPoS.

In addition, to bring some insights on extent that our results benefit from
the deep learning kernels, we apply some traditional classifiers and compare the
results with deep learning kernels. For the traditional classifiers, we focus on
the PoS feature captured by the context segment sji which is extracted from
the PoS sequence Q = [q1, ..., qi, ..., qN ]. In our RNN based method, each PoS
element qi is converted to a one-hot vector. Consequently, sji becomes a 16 by
2L matrix where the number 16 corresponds to the 15 PoS elements and a and
a null element ∅. To make the input compatible with traditional classifiers,
we consider a slightly different representation of sji . We use an integer Iq from
1 to 16 to represent each of the 16 possible values of q. To distinguish the
complementary relationship that an element is before the noun and after the
noun, we represent the pre-sequence [qi−L, ..., qi−1] as [Iqi−L

, ..., Iqi−1 ] and the
post-sequence [qi+1, ..., qi+L] as [33 − Iqi+1 , ..., 33 − Iqi+L

]. In addition, we insert
the same set of features [F1, ..., Fn] used in the refinement phase to the end of
the sequence sji . In this way, the sji is converted into a one-dimensional vector
as [Iqi−L

, ..., Iqi−1 , 33 − Iqi+1 ..., 33 − Iqi+L
,DC, F1, ..., Fn].

The results by different deep learning kernels and traditional classifiers are
shown in Table 6. When fixing the PoS feature as the input, the use of RNN
at least improves the F1 score by about 6 percentiles compared to traditional
classifiers. The improvement by Transformer and Bert over RNN is relatively
marginal, which is roughly 1 percentile. It is somewhat expected that Trans-
former and Bert will give better results, as these two kernels are more sophis-
ticated. The magnitude of the improvement, however, implies that RNN might
be a better balance between the performance and the computational complic-
ity. Furthermore, the comparison between results by different types of input
clearly demonstrates the advantage of using the PoS feature. Indeed, random
forest, a very simple classifier but with PoS feature as the input, can easily out-
perform the deep learning kernels with the word embedding input (ModelWord,
TransformerWord and BertWord) in both data sets. While the word representa-
tion is almost the by-default approach in related studies, the results presented
in Table 6 shows that using the right choice of input can sometimes be more
efficient than optimizing the architecture of the learning kernel.

5 Conclusion and Future Work

The hyponym-hypernym relationship plays an important role in many NLP
tasks. Despite intensive studies on this topic, tools that can accurately extract
hypernym from a definition is limited. The definition, representing a special
type of summarized knowledge, is commonly observed, not only because some
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corpora such as Wikipedia or GitHub directly give the definition of a term, but
also because there are tools capable of extracting definitions with good accuracy.
Hence, it is useful to develop a capable tool for this task. Here we construct a
bidirectional GRU model for patterns learning. We use the PoS tags of words sur-
rounding the hypernym as the feature. Our model outperforms existing methods
in both the general corpus (Wikipedia) and the domain-specific corpus (Stack-
Overflow). It also demonstrates a good balance between the performance and
complexity, if compared with the kernels by Transformer or Bert. More impor-
tantly, by the feature and kernel ablation, we show that the PoS feature is indeed
the key element that guarantees the final performance.

The application of the tool we proposed in Stack-Overflow would help us
understand the evolution of technology, group users for social network study, and
build the semantic network in the domain of computer science. The performance
of the tool is limited by the accuracy of PoS tagging. Hence, it would be useful to
try or develop other methods other than the Stanford-NLP tool. The use of PoS
feature may also have potential in other text sequence labeling tasks, which may
have advantages over the word embedding. All these problems will be addressed
in future studies.
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Abstract. The Web provides a plethora of contents about diseases,
symptoms and treatments. Most notably, users turn to health forums to
seek advice from doctors and from peers with similar cases. However, the
benefit of forums mostly lies in community QA and browsing. Expressive
querying for patient-centric needs is poorly supported by search engines.
This paper overcomes this issue by enriching user queries with judiciously
chosen entities and classes from a large knowledge graph. Candidate enti-
ties are extracted from the full text of user posts. To counter topical
drift that would arise from picking all entities, we devise ECO, a novel
method that computes a focused entity core for query expansion. Exper-
iments with contents from health forums and clinical trials demonstrate
substantial gains that ECO achieves over state-of-the-art baselines.

1 Introduction

Motivation. The Internet provides a wealth of online content about health
topics, including linked open data about drugs and diseases (e.g., drugbank.ca and

disease-ontology.org), scientific articles about biomedical research in PubMed1,
online portals with encyclopedic entries to inform doctors and patients (e.g.,
mayoclinic.org and patient.info/health), all the way to online health communities
(e.g., patient.info/forums and healthboards.com). All these contents are indexed by
search engines, but the query result quality is fairly poor (compared to queries
about music, movies, games etc.); it is often a tedious process to find relevant
answers [1].

Advances on health search and QA [24] have mostly focused on specific
kinds of information needs and content sources: short consumer queries that
can tap health portals on topics such as “Alzheimer’s treatments” or “Aricept
side effects” (e.g., [18,46]), expert queries on scientific articles (e.g., [36,41]) such
as “pancreatic cancer risk with DPP4 inhibitors”, and specialized retrieval over
electronic patient records or clinical notes (e.g., [7,25,44]). In contrast, patient-
centric needs focusing on queries about individual health situations posed by
patients themselves of general physicians on their behalf, have received little-to-
no attention.
1 https://pubmed.ncbi.nlm.nih.gov/.

c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 547–564, 2020.
https://doi.org/10.1007/978-3-030-62419-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62419-4_31&domain=pdf
http://orcid.org/0000-0003-3886-0682
http://www.drugbank.ca
http://www.disease-ontology.org
http://www.mayoclinic.org
http://www.patient.info/health
http://www.patient.info/forums
http://www.healthboards.com
https://pubmed.ncbi.nlm.nih.gov/
https://doi.org/10.1007/978-3-030-62419-4_31


548 E. Terolli et al.

Fig. 1. Example of user post from forum.alzheimers.org.uk.

Example. Consider someone with Alzheimer’s Disease who has taken specific
drugs for years (e.g., Aricept or Risperidone) but starts to suffer from various
forms of confusion. Looking up portal pages about Alzheimer’s or Aricept, it is
tiresome to find advice for the individual user’s case, and searching PubMed is
not useful either. The best source rather would be online health forums, where
patients share experiences and doctors offer advice. The user has several options:

i) Post a question in the forum. Figure 1 shows an example with a post title
and a description in the post body. Then, the user would wait for good
replies by doctors or other patients in the QA community.

ii) Browse the forum, navigating over posts and topical links. This is tedious
and time-consuming, but may eventually lead to helpful results such as the
one shown in Fig. 2.

iii) Fill the forum’s search box to query posts of other users. This faces the
problem that the user’s individual needs are not easily cast into a crisp set
of keywords. Using the post title alone is too unspecific. Using the full post
body leads to a long, verbose and diffuse query.

A general physician (GP) who searches on behalf of the patient may con-
sider also tapping clinical trials: empirical studies of patient cohorts (e.g.,
clinicaltrials.gov). However, the GP would also struggle with the limitations of the
search engine. The goal here is to find information that is individually relevant
for the patient, taking into account the specific description in the user’s post or
the doctor’s initial assessment.

Fig. 2. Example of reply from forum.alzheimers.org.uk.

http://www.forum.alzheimers.org.uk
http://www.clinicaltrials.gov
http://www.forum.alzheimers.org.uk
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Problem. This paper addresses the case of patient-centric information needs
over online contents of patient experiences. The primary source for this purpose
is online health communities. Users are patients who are unhappy with their
current treatment, because they have non-standard symptoms and the diagno-
sis is unclear, or because they suffer from adverse side effects of their thera-
pies. The goal is to find, for an individual case, similar patients and specifically
related advice by doctors. For the example post of Fig. 1, we aim to automatically
retrieve the post of Fig. 2 as a highly related and useful result.

In addition to health forums, we also consider searching clinical trials for
patient-centric needs, expecting that studies with similar cohorts can be helpful.

Design Space and Approach. We aim to aid users and doctors by automat-
ically generating user-specific and coherent queries from the description that a
user puts in a forum post. To this end, a number of design choices could be
pursued.

An Information Retrieval (IR)-style approach would employ query expansion
[6], by combining the user question with the terms in the full text of the post
body, with term weights derived from forum statistics. However, this will lead
to broad and noisy queries. A machine-learning approach could learn to classify
relevant posts, with training data based on “thank you” indicators in the forum’s
threads. However, the training data will be scarce and noisy, and the approach
would not work for highly individualized needs. A Semantic-Web approach could
identify named entities in the user posts and link them to entries in a knowledge
graph and other Linked-Data resources. The question could then be translated
into a crisp entity-aware query (e.g., [38]). However, this provides no guarantee
that the query keeps its focus, as user posts often contain cues for remotely
related entities.

The design choice put forward in this paper is a combination of the IR
and Semantic-Web paradigms. We build on query expansion, and use extracted
named entities and a knowledge graph to generate expanded queries.

Contribution. To counter the dilution from adding too many entities, we devise
a novel method to identify an entity core for each query, which is a compact sub-
graph of the knowledge graph. We utilize KnowLife2 [12,13] which integrates
various Semantic-Web resources like UMLS, DrugBank etc. Entities qualify for
query expansion if and only if 1) they are highly relevant for the user post and
2) they are coherent with each other so that jointly they have a clear focus.

In the Alzheimer’s example provided earlier, the list would include memory
loss, aricept, feeling sick, hallucination, death, aggression, confusion, poisoning,
and many more. Some of these are merely peripheral and misleading. A coherent
core should focus on the key entities and classes: aricept, hallucination, dementia,
and a few more. Our method, called ECO (for Entity Cores), computes this
entity core (EC) using advanced graph algorithms [17,20] and harnesses the EC
for judicious query expansion.

2 http://knowlife.mpi-inf.mpg.de/.

http://knowlife.mpi-inf.mpg.de/
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ECO is designed for patient-centric search over health contents, but can be
carried over to other domains.

The salient contributions of this work are:

• A novel method for query expansion, by computing entity cores that identify
the most relevant and coherent terms for focused expansion.

• Experimental studies with model patients for 20 different diseases, studying
two cases: search over health forums and search over clinical trials. The results
show the superiority of the ECO method over baselines of entity-aware query
expansion.

• Data and code are accessible at: http://eco.mpi-inf.mpg.de/.

2 Related Work

Health Search. Early work on health search (e.g., [31,32]) focused on query
rewriting based on the MeSH ontology and interactive user support for better
recall and result diversification. Recent works (see the tutorial [24] and references
therein) have mostly shifted the attention to clinical texts and leveraging domain
knowledge for expert search. A major exception is [46] on consumer health search
over general Web pages, which aims to bridge end-user and clinical vocabularies
via knowledge bases like UMLS and dictionaries like CHV (Consumer Health
Vocabulary).

Search over health forums has been addressed in few projects (e.g., [12,34]),
with basic methods for retrieval and ranking. The demo paper [14] presented
a system architecture for personalized search, but merely sketched a high-level
methodology without technical detail. [43] analyzed health-related queries in
large search engine logs. [21] investigated the quality of community-QA responses
from health forums, finding that they are more useful than results from Web
search. Studies on health forums investigated dimensions like misinformation or
emotions (e.g., [22,33]). The work of [10] tackled the task of detecting narra-
tive patient posts in health forums, by means of a supervised classifier. Topical
classification for health content in Reddit discussion threads was investigated by
[5], proposing word-embedding-based clustering methods. None of these works
addresses the search problem.

Benchmark competitions like CLEF Consumer Health Search Task [42] and
TREC Precision Medicine Track [36] focus on broad queries over general web
pages and specialized search over scientific publications, respectively. Neither
considers online health communities. CLEF addresses general queries such as
“infectious disease prevention”; one of the tasks is personalization, but this is
with regard to the user’s level of expertise and comprehension of search results,
not regarding the user’s individual health situation.

Query Expansion. Query expansion is a classical IR topic (see, e.g., [6]).
As sources for expansion terms, most works considered either initial search
results assuming pseudo relevance feedback or background corpora for comput-
ing semantic relatedness measures between terms (see, e.g., [15,16]). A recent

http://eco.mpi-inf.mpg.de/
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trend is to incorporate latent embeddings learned from large text collections into
the relatedness scores for query expansion (e.g., [27,28]). The works of [9,40,45]
studied query reformulation for medical search over clinical trials, health records
and scientific articles. None of these considers the user’s individual health situa-
tion. Recently, health-specific language embeddings, like Bio-BERT, and neural
learning have been utilized to advance question answering over scientific PubMed
articles [2,19,29].

Semantic Web and Knowledge Graphs. Semantic-Web research on health
data has mostly addressed the horizontal integration of structured data. The
iASiS project [26] pursues the goal of semantic data integration towards person-
alized precision medicine. The Horus.AI project [11] builds services for patient
monitoring on specific conditions (e.g., diabetes). The Thalia project [41] pro-
vides a semantic search engine for PubMed articles, to support biomedical
experts. SemEHR [44] harnesses semantic background knowledge to enhance
search over clinical notes. In these and further projects of similar kind, online
health communities are out of scope, and layperson queries is not an issue either.

Knowledge graphs (KGs) have been leveraged as a source of relevant entities
and types for query expansion or query translation. A major focus here is on
bridging the gap between user vocabulary, such as “high blood sugar”, and
biomedical terminology, such as “hyperglycemia” [24,35].

Entity-aware Query Expansion. Query expansion by including (appropri-
ately weighted) terms from entities and types in general-purpose KGs, such as
Freebase or Wikipedia-derived, has been investigated by [3,8,30,35,38] and oth-
ers. Especially for entity-seeking queries [4] this has proven to be a powerful
asset, in broad domains like searching for companies, products or entertainment
works.

For health search, these approaches have been pursued to a lesser extent.
Notable works, where the KG is constituted by domain-specific knowledge from
MeSH, UMLS, CHS or health-centric parts of Wikipedia, include [12,23,46]. For
consumer health search with short keyword queries, [46] conducted a systematic
experimental study with a large variety of KG configurations. One of their find-
ings is that it is crucial to configure all details properly for good performance,
and identifying such good configurations is a difficult task by itself.

In our previously unexplored setting with forum contents and patient-centric
queries, we expect these difficulties to be even more pronounced. In particular,
unrestricted KG-based expansion with a large number of query-related entities
and types as additional search terms, does not work at all. Even when term
weights are carefully tuned, the expanded queries tend to be diluted and suffer
from topical drifts. This is a key motivation for our approach of focused expansion
using entity cores. In our experiments, we consider the prior works on KG-based
expansion as baselines.
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3 The ECO Method for Coherent Query Enrichment

3.1 Overview

ECO aims to answer patient-centric information needs consisting of

• an informational search query: a short phrase or few keywords, e.g., mention-
ing a disease or side effect;

• a patient-specific case description: free text about the user’s individual health
situation and anamnesis.

The post title “Aricept has made my mum worse” together with the case descrip-
tion in the post body, which are shown in Fig. 1, are a good example how a online
forum post can cover such information needs comprehensively. Given such infor-
mation, our approach is able to generate coherent queries, which are tailored
to the information needs of the user. The generated queries are executed over
health-forum contents or, alternatively, clinical trials. Figure 3 gives an overview
of the ECO architecture. In the following, we discuss its key components.

Fig. 3. ECO overview.

Health Corpus & Index. We retrieve search results from a corpus consisting
of 1 million crawled and indexed forum threads and 100k clinical trials. A forum
thread is a discussion starting with an initial post, having a short informational
post title and an elaborate post body which contains a description of the user’s
individual situation (as shown in Fig. 1). We leverage such posts as starting point
for generating queries, since they extensively cover patient-centric information
needs as aforementioned. This post is followed by a sequence of replies by other
users. Each thread belongs to a topical sub-forum. For instance, for the health
forums we considered in Sect. 4.2, such sub-forums contain threads for a specific
(family of) disease(s) or drug(s). For example, on healthboards.com most of the
Thyroid-centered posts can be found in the Endocrine > Thyroid Disorders and
Endocrine > Hormone Problems sub-forums. Even though this categorization is
descriptive, relevant posts are often spread out across sub-forums, which can be
inter-related.

http://www.healthboards.com
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Clinical trials are taken from clinicaltrials.gov and are semi-structured study
records, which obey a fixed schema. This schema represents a broad-spectrum
of patient-specific information in the form of semantic structures, such as medi-
cal conditions, genders and age-ranges considered within the trial and free-text
fields, such as study description and summary.

All documents are semantically enriched by the components described in
Sect. 3.2. In order to execute search queries, we store and index all free-texts
and various semantic assets, such as extracted entities and categories, using
ElasticSearch3.

Knowledge Graph. We use the KnowLife resource as our knowledge graph
(KG), comprising:

• entities from UMLS (Unified Medical Language System4, together with
basic relations from its source vocabularies (e.g. mereological properties over
anatomical concepts or dosage forms of drugs),

• subject-property-object triples for relational statements compiled by KnowL-
ife [13] from a variety of sources, capturing symptoms, treatments of diseases,
side effects of drugs, etc.,

• types from the DeepLife project [12], containing general categories (e.g.,
endocrine system disorders subsuming thyroid disease among others) as well
as categories derived form facts (e.g. risk factors for thyroid disease).

In total, the KG contains 3.2 million entities, 323,862 types, 2,170,660 property
triples and is stored as RDF triples in a Neo4J graph database.

Query Processing. Given a patient-centric information in the form of initial
forum posts, ECO starts with the few keywords stated in the post title and
enriches it in two stages, by leveraging the knowledge graph as follows:

• Expansion: Information extraction is performed on the provided case
descriptions, i.e. the body of health forum post, to identify entities in the
KG that are specific for the medical situation of the patient. These entities
are added to the query.

• Focusing: The expanded query is often too broad, with the risk of drifting
away from the user’s intent and needs. Therefore, we refocus the query by
computing a coherent core of most relevant entities. This way, the expanded
query is reduced into a more concise form, to ensure that query answers are
focused on the user’s individual needs.

The focused query, comprising the gathered information (i.e. keywords, entities
and semantic categories), is executed on ElasticSearch using a custom scoring
function to compute the final search result ranking as explained in Sect. 3.4.

3 https://www.elastic.co.
4 https://www.nlm.nih.gov/research/umls/.

http://www.clinicaltrials.gov
https://www.elastic.co
https://www.nlm.nih.gov/research/umls/
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3.2 Query Expansion

A case description usually contains crucial information which tailors a general
medical condition to a individual situation. For instance, while the post title in
Fig. 1 is about a patient’s bad reaction to drug Aricept, the corresponding post
body substantiates this medical condition with situation-specific symptoms, such
as confusion, hallucination, etc. We incorporate such information by inferring the
most important medical entities as follows:

Named Entity Recognition (NER). To extract entities we pre-process texts
with StanfordCoreNLP5 for tokenization and part-of-speech tagging, and then
run the OpenNLP Chunker6 to generate an initial set of noun phrase candidates.
This set is extended by applying a small number of rules, like splitting or merging
prepositional phrases, conjunctions, and proper/common nouns.

Named Entity Disambiguation (NED). To prune the set of candidates and
link them to the KG, we use the algorithm proposed by [39]. This NED method
is based on Locality Sensitive Hashing (LSH) with min-wise independent permu-
tations for matching candidate phrases against entity names and their semantic
types. We leverage type information from the KG to disambiguate between mul-
tiple entity candidates that match the same noun phrase. Whenever multiple
entities have high matching scores, we pick the one with the more specific type.
As the KG provides a ranked list of entities for each exactly-matching name
(using information from UMLS), we further disambiguate by picking the highest
ranked entity. If two entities share the same rank, the entity with the highest
number of occurrences in different UMLS vocabularies is preferred.

Using the type hierarchy of the KG we prune out abstract entities of unin-
formative types such as physical objects or concepts, constraining the entity set
to symptoms, diseases, medical findings, and pharmacological substances.

Category Expansion. For each entity in the expanded query, we retrieve its
semantic categories from the KG. The categories do not only encode type infor-
mation (e.g., the pharmacological class of a drug), but also relational facts har-
vested by KnowLife from large text corpora such as PubMed, Wikipedia articles,
MayoClinic pages and more (e.g., the diseases for which a certain drug is pre-
scribed). For instance, for Alzheimer we retrieve the categories Mental or Behav-
ioral Dysfunction (a type category) and also causes of memory impairment (a
fact category) among many others.

3.3 Query Focusing

Often, patient case descriptions are all but precise. They contain relevant infor-
mation as well as peripheral or general information that digresses from the actual
health issue. Therefore, the key focus is often buried under a substantial amount
of secondary or irrelevant points. The expansion step alone cannot resolve this

5 https://stanfordnlp.github.io/CoreNLP/.
6 https://opennlp.apache.org/.

https://stanfordnlp.github.io/CoreNLP/
https://opennlp.apache.org/
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concern. This calls for a second step to re-focus the expanded query. In the sec-
ond stage, we exploit the KG by considering the relationships between entities,
this way enforcing:

• the coherence between entities in the query to counter topical drift, and
• the conciseness of the query itself by removing entities that are not in the

core of the query intent.

This step does not only filter out irrelevant entities, but also produces a more
comprehensive query. It discovers relevant semantic background knowledge for
the patient’s medical condition by exploring neighboring entities related to enti-
ties mentioned in the case description. We model this task as a graph-algorithmic
problem. First, the KG excerpt under consideration defines a Query Graph as
follows:

Definition 1. A Query Graph, denoted by QG = (V,E), is a directed graph
with labeled vertices V and labeled edges E. V consists of the entities that appear
in a patient’s question’s title and the full text of the corresponding post. E consists
of the relational statements that exist between entities of V in the underlying
knowledge graph.

Our goal is to extract the most informative and focused sub-graph from the
QG. This resembles the task of graph summarization, where summaries take
the form of dense subgraphs, aiming to represent the gist of the query. On one
hand, such a graph should be as comprehensive as possible, but on the other
hand we also need to factor in the varying degrees of informativeness of the
included entities. To incorporate these two requirements, the ECO method maps
the task into a Prize Collecting Steiner Tree (PCST) problem [20]. The PCST
problem is a generalization of Steiner Trees, which considers both edge and node
weights and relaxes the requirement that all terminal nodes are included in the
resulting subgraph. Our method for computing Entity Cores is based on a PCST
algorithm.

Definition 2. For a given query q posted in sub-forum S, let QG = (V,E) be
the Query Graph constructed from q, enhanced with node rewards r(u) and edge
costs c(u, v) where u and v are nodes in QG as follows:

• r(u) = term-frequency (u, S) / #sub-forums containing u
• c(u, v) = 1 − PMI2 (eu, ev) where PMI2 is the squared pointwise mutual

information between two entities [37].

The Entity Core (EC) for this query is a connected subgraph T ′ = (V ′, E′)
of QG that maximizes f(T ′) =

∑
v∈V ′ r(v) − ∑

u,v∈V ′ c(u, v) and satisfies the
condition that T ′ contains the node for sub-forum S.

An EC could be a general subgraph, but the nature of the objective function
guarantees that only trees can be optimal. This is because including additional
paths between already included nodes only increases the cost without improving
the reward.
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Fig. 4. Query Graph with Entity-Core Nodes Depicted in Green Color (Color figure
online)

The output of ECO’s focusing step is the Entity Core (EC). The final query
consists of three parts: all terms from the original user question, entities in the
EC, and their semantic categories.

Approximation Algorithm. Not surprisingly, computing EC’s is NP-hard,
but greedy methods are good approximations in many settings. We adopt the
framework of [17], which consists of an iterative clustering method that groups
nodes in the graph by merging existing clusters. More specifically, the algorithm
can be divided in two stages: 1) growth and 2) pruning. During the growth stage,
a set of active clusters and their respective spanning trees is maintained. The
algorithm proceeds by iteratively merging or deactivating clusters until a desired
number of active clusters is reached. In the pruning stage, unnecessary nodes
are removed from the spanning trees of the last active clusters. This algorithm
runs in nearly-linear time (O(n logk n) with constant k) and has a factor-2
approximation guarantee.

As an illustration, Fig. 4 depicts a Query Graph for the example post in
Fig. 1, with the computed Entity-Core nodes colored in green. As we can see,
the EC reduces the overly broad Query Graph into a coherent and concise set
of query terms.

3.4 Scoring and Ranking of Query Answers

Our scoring function for ranking query answers is based on a weighted linear
combination of TF-IDF scores (tf = term frequency, idf = inverse document
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frequency). Weights are derived from corpus statistics, and hyper-parameters are
determined using a withheld validation set. A query Q is a triple Q = (T,E,C),
where T is the set of keywords, E is the set of extracted entities, and C is the
set of semantic categories for E. Correspondingly, all documents D are divided
into three fields (Dt,De,Dc), i.e free-text, entities, and categories, which are
indexed separately. With these representations we compute a ranking score s for
a document and query as:

score(D,Q) = λT

∑

t∈T

idf(t)2 ∗ tf(t,Dt)√
DT

+ λC

∑

c∈C

idf(c)2 ∗ tf(c,Dc)√
DC

+ λE

∑

e∈E

idf(e)2 ∗ tf(e,De)√
DE

where
√

D{T,E,C} is a field-length normalization factor. Appropriate values for
the hyper-parameters λ{T,E,C} are obtained by grid search (see Sect. 4.2).

Table 1. Health forum corpus

Source Subforums Users Threads Posts

healthboards.com 236 316,658 751,304 1,213,383

ehealthforum.com 285 338,079 297,356 4,251,533

patient.co.uk 800 18,326 44,618 151,583

4 Experimental Studies

To study the performance of the ECO method and compare it with state-of-the-
art baselines, we conduct experiments with two different kinds of online contents:
health forums and clinical trials. For the evaluation of the retrieved results, we
use two kinds of assessments:

• relevance judgements by crowdsourcing workers
• authoritative judgements by two medical doctors, for a sub-set of the results.

The assessments by medical professionals primarily serve to validate the sound-
ness of the crowdsourcing results. In addition, they reflect different perspec-
tives for health forums where lay users and doctors may have different views on
whether a reply is useful or not (not a point for clinical trials, though). Hence,
we report on both settings separately.

http://www.healthboards.com
http://www.ehealthforum.com
http://www.patient.co.uk
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4.1 Setup

Competitors. We compare a suite of strategies for generating queries:

– Baseline - Title: using all terms present in the post title, that is, in the user-
question itself.

– Baseline - Title+Post: using all terms present in the title and full text of the
post.

– Baseline - Entity Expansion: expanding the title-based query with biomedical
entities from the full user post.

– Baseline - Entity+Type Expansion: expanding the title-based query with
biomedical entities and their semantic types.

– Baseline - Steiner Tree Expansion: refining the title-based query with terms
for all entities present in the Steiner Tree, computed over the Query Graph.

– Entity Core Expansion (ECO): enriching the title-based query with all entities
present in the Entity Core as in Definition 2.

Note that the Steiner-Tree-based expansion is not really a prior-works baseline,
as it already makes use of our KG-based query graph construction. However, it
is simpler than ECO, hence considered as another point of comparison.

We evaluated the rankings of query results by Top-k Precision (PRE@k),
Top-k Mean Average Precision (MAP@k), and Normalized Discounted Cumu-
lative Gain (NDCG@k).

Hyper-Parameters. We perform grid search to set the hyper-parameters
λT,E,C of the answering scoring of Sect. 3.4, using a small validation set of 10
withheld queries. The resulting values are λT = 1.0, λE = 0.6 and λC = 0.1.

Crowdsourcing Assessments. For gathering human judgements, we con-
ducted crowdsourcing tasks over the appen.com platform to assess the retrieval
quality of the different query formulation strategies. To this end, crowd workers
were asked to judge if a retrieved forum thread is relevant for a particular query
along with the full user post (i.e., reflecting the individual health situation of
the user whose post the query was derived from). The retrieved answer threads
were presented to the worker as a combination of the root post that initiates
the thread and the post with the highest word overlap measured by Jaccard
similarity with the query post.

For quality assurance, we designed a set of test cases intermingled with the
actual assessment tasks, and we cross-checked the workers’ answers with our
gold-standard results. The gold-standard set consisted of a set of 10 questions,
that were evaluated by at least two experts that had perfect agreement between
them for the relevance labels of the test cases. Poorly performing workers (2237
out of 14437) who failed to answer correctly the test question assigned to them
were eliminated. We obtained 3 judgments for each query and paid 2.5 cent for
each assessment. On average, trusted annotators needed 2.5 min to finish a task
of 4 items. Overall, the inter-annotator agreement measured by Krippendorff’s
Alpha is 0.46.

http://www.appen.com
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Professional Assessments. To validate the relevance data obtained by crowd-
sourcing and to have authoritative judgements for evaluating our approach, we
asked two professionals, both medical doctors, to label the results. A result is
considered to be relevant, if both doctors label it as relevant. Due to the limited
availability of the annotators, we reduce the evaluation set by randomly selecting
15 queries out of our 100 test queries.

4.2 Health Forums

Data. Our experimental data is obtained by crawling multiple health forums
with a total of 1,048,428 discussion threads, from three main sources as given in
Table 1. The forums are organized into sub-forums on more than 100 diseases,
syndromes and drugs, from which we selected the following 20 topics with high
coverage: Depression, Eating Disorders, Skin Cancer, Alzheimer Disease, Acid
Reflux, Arthritis, Asthma, Back Pain, Carpal Tunnel Syndrome, Crohn Disease,
Diabetes, Fibromyalgia, High Blood Pressure and Hypertension, Insect Bites,
Low Blood Pressure and Hypotension, Meningitis, Multiple Sclerosis, Pancreas
Disorders, Sinusitis, Vision and Eye Disorders. For each of these disorders, we
identified 5 typical user posts which serve as queries in our experiments. As such,
our test workload consists of 100 individual queries. To make our experiments
transparent and reproducible for third parties, we release the datasets on both
the forum-search and clinical-trials experiments at: http://eco.mpi-inf.mpg.de/.

Expansion Strategies. Table 2 compares the Title and Title+Post baselines
with straightforward expansion strategies using Entities and Entities+Types.
The first observation is that a simple expansion using Title+Post baseline
degrades the results compared to Title only. This illustrates the difficulty of
generating queries that capture specific user’s situation yet stay focused and
concise. Entity expansion outperforms the baseline in all evaluation metrics,
where all results have statistical significance (with a p-value ≤ 0.01 for a paired
t-test). Expansion with types and categories (in addition to entities), is signifi-
cantly better than the baseline (with p-value ≤ 0.01) but does not improve over
expanding merely with entities. Overall, we conclude that incorporating enti-
ties from the full text of user posts is crucial and significantly improves search
result quality. The additional incorporation of entity types does not give notable
benefits.

Focusing Strategies. For comparing ECO against the expansion-only strate-
gies, we focus on the best-performing baselines using solely entities. Table 3
compares the results of two focusing strategies against the best expansion-only
strategy Entity Expansion. The table clearly shows that focusing with Steiner
Trees cannot improve the results, and actually loses against expansion-only by
all metrics (with p-value<0.01). In contrast, the ECO method yields additional
benefits in retrieval performance with significant gains. This underlines the need
for judiciously re-focusing the expanded query, where Entity Cores turn out to

http://eco.mpi-inf.mpg.de/
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Table 2. Crowdsourcing evaluation of expansion baselines for health forums.

Approach PRE MAP NDCG

@5 @10 @5 @10 @5 @10

Title 0.59 0.59 0.72 0.67 0.80 0.80

Title + Post 0.49 0.46 0.72 0.67 0.8 0.79

Entity expansion 0.68 0.67 0.8 0.76 0.86 0.87

Entity + Type expansion 0.66 0.64 0.79 0.75 0.86 0.87

Table 3. Crowdsourcing evaluation of focusing strategies for health forums.

Approach PRE MAP NDCG

@5 @10 @5 @10 @5 @10

Entity expansion 0.68 0.67 0.8 0.76 0.86 0.87

Ex + ST 0.59 0.58 0.73 0.69 0.8 0.81

ECO 0.75 0.74 0.81 0.79 0.87 0.88

be much better than Steiner Trees. The superiority of ECO is confirmed also
in the evaluation by medical professionals, as shown in Table 4. Here, too, ECO
significantly outperforms both baselines.

Retrieval Time. Generating and executing focused expanded queries with
ECO takes 1 to 5 s (μ = 1.86, σ = 0.97). The analysis of posts for detecting
entities takes 5 to 60 s, with high variance, as it is approximately proportional
to the post length. Both entity markup and query processing could be sped up
by more engineering.

4.3 Clinical Trials

To demonstrate the versatility of our approach, we also test its applicability for
clinical trials, where doctors would search on behalf of a patient. Our experi-
mental data consists of 97,390 clinical trials from clinicaltrials.gov. We evaluate
ECO on the 15 randomly selected queries.

The crowdsourcing results in Table 5 demonstrate that ECO is able to achieve
large performance gains across all metrics compared to the previously best base-
line. The inter-annotator agreement between crowd workers is 0.49, far from
perfect but remarkably high.

Since clinical trials are difficult to interpret for lay users, we also evaluate
the results with judgements by medical professionals. Even though the doctors’
assessments of relevance and utility tend to be more conservative than the crowd-
sourcing judgements, the ECO method significantly outperforms the baselines
for all metrics (with p-value<0.01) as shown in Table 6. This shows that the judi-
ciously re-focused use of KG entities and categories does successfully bridge the

http://www.clinicaltrials.gov
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Table 4. Medical doctor evaluation for health forums.

Approach PRE MAP NDCG

@1 @5 @1 @5 @1 @5

Title 0.33 0.28 0.33 0.49 0.33 0.56

Entity expansion 0.33 0.31 0.33 0.54 0.33 0.63

ECO 0.40 0.39 0.40 0.62 0.40 0.69

Table 5. Crowdsourcing evaluation for clinical trials

Approach PRE MAP NDCG

@1 @5 @1 @5 @1 @5

Title 0.67 0.63 0.67 0.79 0.67 0.86

Entity expansion 0.87 0.64 0.87 0.82 0.87 0.90

ECO 0.93 0.87 0.93 0.91 0.93 0.95

terminologies of users (in post titles as queries) and medical experts (in result
documents). Altogether, this confirms that ECO is able to achieve large gains
over the baselines also under the meticulous examination by professionals.

Table 6. Evaluation by medical professionals for clinical trials

Approach PRE MAP NDCG

@1 @5 @1 @5 @1 @5

Title 0.40 0.40 0.40 0.50 0.40 0.53

Entity expansion 0.40 0.41 0.40 0.55 0.40 0.60

ECO 0.60 0.69 0.60 0.74 0.60 0.81

5 Conclusion

This work addressed the under-explored topic of supporting patient-centric infor-
mation needs by search over health contents. Our experiments, with evaluation
by both crowdsourcing users and medical professionals, demonstrated the viabil-
ity of our ECO method. In comparison to state-of-the-art baselines with query
expansion by entities and classes from a KG, the experimental results clearly
showed that the re-focusing step, based on entity cores, is crucial for the supe-
rior performance of ECO.

We focused on two kinds of health contents: forums of online communities
and reports on clinical trials, as these are the best sources on patient experiences.
Nevertheless, we plan to explore the suitability of our approach for other kinds
of health documents, such as PubMed articles or health news.
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In this work, we have focused on searching health forums and clinical trials,
as health is by itself an important domain with high impact. In general, our
methodology can be adapted to other domains as well, such as finance, food or
travel. For example, we could address a travel discussion forum where people
ask about and exchange experiences about visa issues, sightseeing beaten paths,
local food and culture, etc. These are subject to individual preferences, so that
ranking answers by personal relevance is important. We would use travel-centric
KGs, and use ECO for focused query expansion. This is left for future work.
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Abstract. Ontology matching aims at making different ontologies inter-
operable. While most approaches have addressed the generation of simple
correspondences, more expressiveness is required to better address the
different kinds of ontology heterogeneities. This paper presents an app-
roach for generating complex correspondences that relies on the notion of
competency questions for alignment (CQA). A CQA expresses the user
knowledge needs in terms of alignment and aims at reducing the align-
ment scope. The approach takes as input a set of CQAs as SPARQL
queries over the source ontology. The generation of correspondences is
performed by matching the subgraph from the source CQA to the lex-
ically similar surroundings of the instances from the target ontology.
Evaluation of the approach has been carried out on both synthetically
generated and real-word datasets.

1 Introduction

Ontology matching aims at enabling interoperability between knowledge
expressed in different ontologies. It is an active area with different solutions
been proposed from various disciplines, e.g., databases, statistical, natural lan-
guage processing, and machine learning. The matching process can be seen as
the task of generating a set of correspondences (i.e., an alignment) between
the entities of different ontologies, usually one source and one target ontologies
[5]. Despite the variety of proposals, most of the matching approaches are still
dedicated to the generation of simple correspondences (i.e., those linking one
single entity of a source ontology to one single entity of a target ontology). This
kind of correspondence is however not expressive enough for fully covering the
different kinds of ontology heterogeneities (lexical, semantic, conceptual). Com-
plex correspondences (i.e., those involving logical constructors or transformation
functions) are rather required [27]. For example, the piece of knowledge express-
ing an accepted paper can be represented as a class IRI (e.g., Accepted Paper)
in a source ontology, or as a class expression representing the papers having
acceptance as decision of type in a target ontology (e.g., Paper � ∃ hasDeci-
sion.Acceptance). Expressive correspondences are required for expressing these
different representations. For citing some applications and domains requiring
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 565–583, 2020.
https://doi.org/10.1007/978-3-030-62419-4_32
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such kind of correspondences, in the cultural heritage domain, the need for com-
plex correspondences has been identified for data integration or data translation
applications [15]. In the agronomic domain, complex alignments help cross-query
linked open data repositories [24]. In the biomedical domain, complex alignments
have also been used to build a consensual model from heterogeneous terminolo-
gies [11].

While the matching space for generating complex correspondences is higher
than O(2mn) (m and n being respectively the number of entities of the source
and target ontologies), a space reduction strategy can be based upon on an
assumption that, in practical, it may be the case that the user does not need
the alignment to cover the full scope of the ontologies. This assumption goes in
opposite to the existing complex alignment generation approaches which intend
to cover the full common scope of the aligned ontologies. This has the side effect
of neglecting the user needs. This also impacts the matching performance, in
particular when dealing with large knowledge bases.

This paper presents an approach for generating complex correspondences
that relies on competency questions for alignment (CQAs) as a way of expressing
user knowledge needs in terms of alignment. This approach is based on the
following hypothesis: (i) users are able to express their needs in terms of SPARQL
queries; and (ii) for each knowledge need, the knowledge bases share at least one
common instance.

Based on these hypothesis, the approach takes as input a set of CQAs trans-
lated into SPARQL queries over the source ontology. Each answer is a set of
instances retrieved from a knowledge base described by the source ontology. At
least one instance is common with respect to the target knowledge base. The
generation of the correspondence is then performed by matching the subgraph
from the source CQA to the lexically similar surroundings of the target instances.

The main contributions of this paper can be summarised as follows: (i) a
novel notion of competency question for alignment is introduced as a way for
reducing the matching scope (this notion can hence be applied on the generation
of simple correspondences); (ii) a CQA based matching approach able to generate
complex correspondences involving logical constructions1; (iii) a comparison of
the proposed approach to state-of-the-art ones; and (iv) a discussion of their
strengths and weaknesses.

The rest of the paper is organised as follows. Next section introduces ontol-
ogy matching and CQA (Sect. 2), followed by the presentation of the approach
(Sect. 3). The evaluation is presented (Sect. 4), followed by a discussion on the
related work (Sect. 5). Finally, the conclusions and future work end the paper
(Sect. 6).

1 Complex correspondences with transformations functions are out of the scope of this
paper.
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2 Foundations

2.1 Complex Ontology Alignment

Ontology matching (as in [5]) is defined as the process of generating an alignment
A between two ontologies: a source ontology o1 and a target ontology o2. A is
a set of correspondences 〈e1, e2, r, n〉. Each correspondence expresses a relation
r (e.g., equivalence (≡), subsumption (�, �)) between two members e1 and e2,
and n expresses its level of confidence [0..1]. A member can be a single ontology
entity (class, object property, data property, individual) of respectively o1 and
o2 or a complex construction which is composed of entities using constructors.
Two kinds of correspondences are considered depending on the type of their
members:

– a correspondence is simple if both e1 and e2 are single entities (IRIs):
〈o1:Paper, o2:Paper, ≡, 1〉

– a correspondence is complex if at least one of e1 or e2 involves a constructor:
〈o1:Accepted Paper, ∃o2:hasDecision.o2:Acceptance, ≡, 1〉
A simple correspondence is usually noted (s:s), and a complex correspondence

can be (s:c) if its source member is a single entity, (c:s) if its target member
is a single entity or (c:c) if both members are complex entities. An approach
which generates complex correspondences is referred as “complex approach” or
“complex matcher” in the remainder of this paper.

2.2 Competency Questions for Alignment (CQAs)

In ontology authoring, in order to formalise the knowledge needs of an ontology,
competency questions (CQs) have been introduced as ontology’s requirements
in the form of questions the ontology must be able to answer [8]. A competency
question for alignment (CQA) is a competency question which should (in the
best case) be covered by two or more ontologies, i.e., it expresses the knowledge
that an alignment should cover in the best case (if both ontologies’ scopes can
answer the CQA). The first difference between CQA and CQ is that the scope
of the CQA is limited by the intersection of its source and target ontologies’
scopes. The second difference is that this maximal and ideal alignment’s scope
is not known a priori (as it is the purpose of the alignment). As the ontology
authoring competency questions (CQs) [19], a CQA can be expressed in natural
language or as SPARQL queries. Inspired [19], the notion of question arity,
which represents the arity of the expected answers to a CQA is introduced:

– A unary question expects a set of instances, e.g., “Which are the accepted
papers?” (paper1), (paper2).

– A binary question expects a set of instances or value pairs, e.g., “What is the
decision on a paper?” (paper1, accept), (paper2, reject).

– A n-ary question expects a tuple of size ≥ 3, e.g., “What is the decision
associated with the review of a given paper?” (paper1, review1, weak accept),
(paper1, review2, reject).
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CQAs for the approach are limited to unary and binary questions, of select
type, and no modifier. This is a limitation in the sense that we do not deal with
specific kinds of SPARQL queries, as the ones involving CONSTRUCT and ASK.
The approach does not deal with transformation functions or filters inside the
SPARQL queries and only accepts queries with one or two variables. However,
as classes and properties are unary and binary predicates, these limitations still
allow the approach to cover ontology expressiveness.

3 Matching Approach

The proposed approach takes as input a set of CQAs in the form of SPARQL
SELECT queries over the source ontology. It requires that the source and target
ontologies have an Abox with at least one common instance for each CQA. The
answer to each input query is a set of instances, which are matched with those of
a knowledge base described by the target ontology. The matching is performed
by finding the surroundings of the target instances which are lexically similar to
the CQA. The idea behind the approach is to rely on a few examples (answers)
to find a generic rule which describes more instances. The overall approach is
articulated in 11 steps (Fig. 1). It is based on subgraphs which are a set
of triples for a unary CQA and a property path for a binary CQA. The
implementation of the approach is publicly available2.

Fig. 1. Schema of the general approach.

In the remainder of the paper, the examples consider the knowledge bases in
Fig. 2. They share common instances: o1:person1 and o2:person1 , o1:paper1 and
o2:paper1 . Ontology o1 represents the concept of accepted paper as a class while
o2 models the same knowledge with a has decision property. The property paper
written by is represented by a single property in o1 while in o2, the property
writes links a person to a document. A criticism to this example could be that
2 https://framagit.org/IRIT UT2J/ComplexAlignmentGenerator.

https://framagit.org/IRIT_UT2J/ComplexAlignmentGenerator
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Fig. 2. Source and target knowledge bases.

two knowledge bases may not represent the same conference, therefore they may
not share common paper instances. However, these bases may have a different
but overlapping scope. For example o1 could focus on the event organisation
part of a conference and o2 on reviewer management. Before detailing the main
steps of the approach, we instantiate the overall approach to deal with unary
and binary queries.

3.1 Approach over a Unary CQA

We instanciate Fig. 1 for a unary CQA. The SPARQL CQA is that of Fig. 3.

Fig. 3. SPARQL SELECT query with one variable.
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1 Represent the CQA as a DL formula es (e.g., o1:AcceptedPaper) (Sect. 3.3).
2 Extract lexical information from the CQA, Ls set labels of entities from the

CQA (e.g., “accepted paper”).
3 Retrieve source answers anss of the CQA (e.g., o1:paper1 ).
4 Find equivalent or similar target answers anst to the source instances anss

(e.g. o1:paper1 ∼ o2:paper1 ) (Sect. 3.4).
5 Extract the subgraphs of target answers (Sect. 3.5): for a unary query, this

is the set of triples in which the target instances appear as well as the types
(classes) of the subject or object of the triple (e.g. in DL, the description
of o2:paper1 would contain 〈 o2:paper1 , o2:hasDecision , o2:decision1 〉,
〈 o2:decision1 , rdf:type , o2:Decision 〉 and 〈 o2:decision1 , rdf:type ,
o2:Acceptance 〉.

6 For each subgraph, retrieve Lt the labels of its entities (e.g., o2:hasDecision
→ “decision”, o2:decision1 → “decision for paper1”, o2:Decision → “deci-
sion”).

7 Compare Ls and Lt (using an edit distance metric).
8 Select the subgraphs parts with the best similarity score, transform them

into DL formulae (Sect. 3.5) and aggregate them (Sect. 3.6). In this exam-
ple, the part of the subgraph which is the most similar to the CQA (in
terms of label similarity) is o2:Acceptance. The DL formula is therefore
∃o2:hasDecision.o2:Acceptance.

9 Reassess the similarity of each DL formula based on their counter-examples
(Sect. 3.7 and Sect. 3.8). The counter-examples are common instances of
the two knowledge bases which are described by the target DL formula but
not by the original CQA.

10 Filter the DL formulae based on their similarity score (if their similarity
score is higher than a threshold) (Sect. 3.9).

11 Put the DL formulae es and et together to form a correspondence (e.g.,
〈 o1:AcceptedPaper , ∃ o2:hasDecision.o2:Acceptance , ≡ 〉) and express this
correspondence in a reusable format (e.g., EDOAL). The confidence assigned
to a correspondence is the similarity score of the DL formula computed.

3.2 Approach over a Binary CQA

The main difference with the case of unary CQAs is in Step 4 because the two
instances of the pair answer are matched instead of one, Step 5 and Step 8
which deal with the subgraph extraction and pruning.

Fig. 4. SPARQL SELECT query with two variables.
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1 Extract source DL formula es (e.g., o1:paperWrittenBy) from SPARQL CQA
(Fig. 4).

2 Extract lexical information from the CQA, Ls set labels of atoms from the
DL formula (e.g., “paper written by”).

3 Extract source answers anss of the CQA (e.g., a pair of instances (o1:paper1,
o1:person1).

4 Find equivalent or similar target answers anst to the source instances anss
(e.g. o1:paper1 ∼ o2:paper1 and o1:person1 ∼ o2:person1 ).

5 Retrieve the subgraphs of target answers: for a binary query, it is the set
of paths between two answer instances as well as the types of the instances
appearing in the path (e.g., a path of length 1 is found between o2:paper1
and o2:person1 ). The path is composed of only one property and there are no
other instances than o2:paper1 and o2:person1 in this path. Their respective
types are retrieved: (o2:Paper,o2:Document) for o2:paper1 and (o2:Person)
for o2:person1 .

6 For each subgraph, retrieve Lt the labels of its entities (e.g., o2:writes →
“writes”, o2:Person → “person”, o2:Paper → “paper”, etc.).

7 Compare Ls and Lt.
8 Select the subgraph parts with the best score, transform them into DL

formulae. Keep the best path variable types if their similarity is higher
than a threshold. (e.g., the best type for the instance o2:paper1 is o2:Paper
because its similarity with the CQA labels is higher than the similarity of
o2:Document).

9 Reassess the similarity of each DL formula based on their counter-examples.
10 Filter the DL formulae based on their similarity score (if their similarity

score is higher than a threshold).
11 Put the DL formulae es and et together to form a correspondence (e.g.,

〈 o1:paperWrittenBy , dom(o2:Paper) � o2:writes− , ≡ 〉 and express this
correspondence in a reusable format (e.g., EDOAL). The confidence assigned
to a correspondence is the similarity score of the DL formula computed.

3.3 Translating SPARQL CQAs into DL Formulae

In Step 1 , in order to translate a SPARQL query into a DL formula, the query
is translated into a FOL formula and then transformed it into a DL formula.
Here, a SPARQL SELECT query is composed of a SELECT clause containing
variable names and a basic graph pattern, i.e., a set of triples with variables
sometimes with constructors (such as UNION or MINUS). First, the variables
in the SELECT clause become the quantified variables of the formula. In unary
CQAs, the SELECT clause contains one variable. In binary CQAs, the SELECT
clause contains two variables. For instance, the SPARQL query of Fig. 3, ?x
becomes the quantified variable of our formula: ∀x . Then, the basic graph pattern
is parsed in order to find what predicates apply to the quantified variables and
add them to the formula. Each triple of the basic graph pattern is either a unary
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or a binary predicate. If new variables are added, an existential quantifier is
used for them. In the example, the triple is find 〈 ?x , o2:hasDecision , ?y 〉. The
FOL formula becomes ∀x, ∃y, o2:hasDecision(x,y). It is then recursively keeping
on exploring the basic graph pattern for each new variable introduced. After
exploring the basic graph pattern for the variable ?y, the FOL formula becomes
∀x, ∃y, o2:hasDecision(x,y) ∧ o2:Acceptance(y). At the end of the process, the
basic graph pattern is transformed into a DL formula (also translated into an
EDOAL3): ∀x, ∃ y, o2:hasDecision(x,y) ∧ o2:Acceptance(y) becomes in DL: ∃
o2:hasDecision.o2:Acceptance. The FOL to DL equivalence is done as in [3].

3.4 Instance Matching

In Step 4 , the answers of the CQA over the source knowledge base which have
been retrieved are matched with the instances of the target knowledge base. This
instance matching phase relies on existing links (owl:sameAs, skos:exactMatch,
skos:closeMatch, etc.) if they exist. If no such link exists, an exact label match is
performed. With binary CQAs, whose results are an instance-literal value pair,
the instance is matched as before (existing links or exact labels), the literal value
will be matched with an identical value in the path finding step, detailed next.

3.5 Retrieving and Pruning Subgraphs

The whole approach relies on subgraphs, which are sets of triples from a knowl-
edge base. In Step 5 , these subgraphs are found and then pruned and trans-
formed into DL formulae in Step 8 . The type of subgraphs is inspired from
[33], which proposes an approach to find equivalent subgraphs within the same
knowledge base.

A unary CQA expects a set of single instances as answer. The subgraph of a
single instance is composed of a triple in which the instance is either the subject
or the object, and the types (classes) of the object or subject of this triple.
For example, o2:paper1 is the subject of the triple o2:paper1 o2:hasDecision
o2:decision1 and o2:decision1 has types (classes) o2:Acceptance and o2:Decision.
A subgraph of o2:paper1 is therefore composed of the following triples:

1. 〈 o2:paper1 , o2:hasDecision , o2:decision1 〉
2. 〈 o2:decision1 , rdf:type , o2:Acceptance 〉
3. 〈 o2:decision1 , rdf:type , o2:Decision 〉

When comparing the subgraph with the CQA labels, if the most similar
object (resp. subject) type is more similar than the object (resp. subject) itself,
the type is kept. Considering the accepted paper CQA, the most similar type
of the triple of the object is o2:Acceptance. Therefore, triple 3 is pruned. The
object of triple 1 is o2:decision1 and the most similar object type to the CQA

3 http://alignapi.gforge.inria.fr/edoal.html.

http://alignapi.gforge.inria.fr/edoal.html
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is o2:Acceptance. o2:Acceptance is more similar to the CQA than o2:decision1 .
o2:decision1 becomes a variable and triple 2 stays in the subgraph.

In order to translate, a subgraph into a DL formula, firstly this subgraph is
translated into a SPARQL query:

– The answer is transformed into a variable and put in the SELECT clause.
In this example, o2:paper1 becomes a variable ?x in the SELECT clause:
SELECT ?x WHERE.

– The instances of the subgraphs which are not kept are transformed into vari-
ables. In the example, o2:decision1 becomes a variable ?y.

– These transformations are applied to the selected triples of the subgraph
which become the basic graph pattern of the SPARQL query. In this example,
the SPARQL query is the one in Fig. 3.

Finally, the SPARQL query is transformed into a DL formula by using the same
process as that described in Sect. 3.3: ∃o2:hasDecision.o2:Acceptance.

A binary CQA expects a set of pairs of instances (or pairs of instance-literal
value) as answer. Finding a subgraph for a pair of instances consists in find-
ing a path between the two instances. The shortest paths are considered more
accurate. Because finding the shortest path between two entities is a complex
problem, paths of length below a threshold are sought. First, paths of length 1
are sought, then if no path of length 1 is found, paths of length 2 are sought, etc.
If more than one path of the same length are found, all of them go through the
following process. When a path is found, the types of the instances forming the
path are retrieved. If the similarity of the most similar type to the CQA is above
a threshold, this type is kept in the final subgraph. For example, for a “paper
written by” CQA with the answer (o2:paper1 ,o2:person1 ) in the target knowl-
edge (Fig. 2), a subgraph containing the following triples is found: 〈 o2:person1 ,
o2:writes , o2:paper1 〉, 〈 o2:paper1 , rdf:type , o2:Paper 〉, 〈 o2:paper1 , rdf:type ,
o2:Document 〉, 〈 o2:person1 , rdf:type , o2:Person 〉.

The most similar type of o2:person1 is o2:Person, which is below the sim-
ilarity threshold. The triple 4 is then removed from the subgraph. The most
similar type of o2:paper1 is o2:Paper . The triple 3 is therefore removed from the
subgraph. o2:Paper ’s similarity is above the similarity threshold: triple 2 stays
in the subgraph. The translation of a subgraph into a SPARQL query is the
same for binary and unary CQAs. Therefore, the subgraph will be transformed
into a SPARQL query and saved as the following DL formula: dom(o2:Paper)4

� o2:writes−.

3.6 DL Formula Aggregation

In Step 8 , when dealing with unary CQA, the DL formulae can be aggre-
gated. It consists in transforming one or more formulae with a common pred-
icate into a more generic formula. This aggregation only applies to formulae

4 dom is introduced here for denoting the domain of a property.
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which contain an instance or a literal value and which were kept in the sub-
graph selection step. For example, this step would apply for a formula such as ∃
o2:hasDecision.{o2:accept}.

In a first step, a first aggregated formula is created, called the extension
formula. It consists in merging the instances or literal values of the formulae
with the same predicate into one set of values. Considering that through various
answers to a CQA (e.g., o2:paper1 , o2:paper2 , etc.), the following formulae is
extracted:

∃o2:hasDecision.{o2:accept},∃o2:hasDecision.{o2:strongAccept},
∃o2:hasDecision.{o2:weakAccept}.

The extension formula of these formulae is:
∃o2:hasDecision.{o2:accept,o2:strongAccept,o2:weakAccept}.

The extension formula of a formula which does not share its predicate with
any other is the formula itself. Then, an intension formula can be computed by
replacing the set of values by the top class �. It allows for fully abstracting the
formula. The intension formula of the example formulae is: ∃ o2:hasDecision.�.
Finally, a choice is made between the extension or intension formulae based on
the predicate similarity to the CQA. If the predicate is more similar than the
values, the intension formula is kept. Otherwise, the extension formula is kept.
Applied to the examples of Table 1, o2:accept , o2:strongAccept and o2:weakAccept
are more similar to the CQA than o2:hasDecision. The extension form is chosen.

3.7 Calculating Counter-Examples

In Step 9 , the DL formula similarity score is refined by looking for counterex-
amples (details on the similarity score are given in Sect. 3.8). A counterexam-
ple is a common instance of the source and target ontologies which is described
by the DL formula found by the approach in the target ontology but which is
not described by the CQA in the source ontology.

For example, assuming that the target formula et is o2:Paper for the
“accepted paper” CQA. From the target ontology, the answers o2:paper1,
o2:paper2, o2:paper3 and o2:paper4 are retrieved from et and matched to the
source instances respectively o1:paper1, o1:paper2, o1:paper3 and o1:paper4 .
However, only o1:paper1 and o1:paper2 are accepted papers (and are described
by the CQA) in the source ontology, then o1:paper3 and o1:paper4 are coun-
terexamples.

The percentage of counterexamples is computed as follows. The answers ansett
described by the target subgraph (et) are retrieved from the target knowledge.
These answers are matched to source instances: ansets . The percentage of coun-
terexamples is the proportion of common instances ansets which are not answers
to the CQA (¬(anscqas )). The equation for the percentage of counterexamples is
therefore:

percCounterExamples =
|ansets � ¬(anscqas )|

|ansets | (1)

In the example, the percentage is 2
4 = 50%.
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3.8 DL Formula Similarity

In Step 10 , the formulae are filtered based on their similarity score with the
CQA. The similarity score is a combination of:

Label similarity labelSim is the sum of the label similarity of each entity of
the formula with the CQA.

Structural similarity structSim. This similarity was introduced to enhance
some structural aspects in a formula. In the implementation of the approach,
this value is set to 0.5 for a path between the two instances of the answer,
and 0 for a unary CQA subgraph. Indeed, if the label similarity of the path
is 0, the structural similarity hints that the fact that a path was found is a
clue in favour of the resulting DL formula.

Percentage of counterexamples percCounterExamples which is computed
in Step 9 and detailed Sect. 3.7.

The similarity score is as following:

sim = (labelSim + strucSim) × (1 − percCounterExamples) (2)

In the example above, the similarity of ∃o2:hasDecision.o2:Acceptance with
the unary CQA “accepted paper” is calculated as follows:

– labelSim = 0.8 + 0.0 because
• sim(labels(CQA), labels(o2:hasDecision)) = 0.0
• sim(labels(CQA), labels(o2:Acceptance)) = 0.8

– strucSim = 0.0 because it is a unary CQA
– percCounterExamples = 0.0

The similarity of this DL formula is sim = (0.8 + 0.0) × (1 − 0) = 0.8.

3.9 DL Formula Filtering

In Step 10 , the formulae are filtered. Only the DL formulae with a similarity
higher than a threshold are put in a correspondence with the CQA DL formula.
If for a given CQA, there is no DL formula with a similarity higher than the
threshold, only the best DL formulae with a non-zero similarity are put in the
correspondence. The best DL formulae are the formulae with the highest simi-
larity score. When putting the DL formula in a correspondence, if its similarity
score is greater than 1, the correspondence confidence value is set to 1.

4 Experiments

4.1 Dataset and Metrics

Two evaluation settings have been considered here. First, an automatic evalu-
ation was performed on the populated version of the OAEI Conference bench-
mark [28]. This dataset is composed of 5 ontologies, with 100 manually generated
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CQAs. This evaluation measured the impact of various parameters on the app-
roach. Second, a manual evaluation was carried out on the Taxon dataset about
plant taxonomy, composed of 4 large populated ontologies: AgronomicTaxon [23],
AgroVoc [4], DBpedia [2] and TaxRef-LD [13]. 6 CQAs from AgronomicTaxon
have been manually generated. These two datasets are the populated ones used
in the first OAEI complex track [25].

Table 1. Initial, extension, intension and final (in bold) formulae. The CQA considered
is “accepted papers”.

Initial formulae Extension Intension

∃o2:hasDecision.{o2:accept} ∃o2:hasDecision.{o2:accept,
o2:strongAccept, o2:weakAccept}

∃o2:hasDecision.�
∃o2:hasDecision.{o2:strongAccept}
∃o2:hasDecision.{o2:weakAccept}

The evaluation metrics used here are the ones adopted in the OAEI 2019
campaign5. These metrics are based on the comparison of instance sets. The
generated alignment is used to rewrite a set of reference source CQAs whose
results (set of instances) are compared to the ones returned by the corresponding
target reference CQA. This metric shows the overall coverage of the alignment
with respect to the knowledge needs and the best rewritten query6. A balancing
strategy consists in calculating the intrinsic alignment precision based on com-
mon instances. Given an alignment Aeval to be evaluated, a set of CQA reference
pairs cqapairs (composed of source cqas and target cqat), kbs the source knowl-
edge base, kbt a target knowledge base, and f an instance set (I) comparison
function:

coverage(Aeval, cqapairs, kbs, kbt, f) = average
〈cqas,cqat〉∈cqapairs

f(Ikbtcqat
, Ikbtbestqt

) (3)

Different functions f can be used for comparing instance sets (over-
lap, precision-oriented, recall-oriented etc.). Here, coverage is based on the
queryFmeasure (also used for selecting the best rewritten query). This is moti-
vated by the fact that it better balances precision and recall. Given a reference
instance set Iref and an evaluated instance set Ieval:

QP =
|Ieval ∩ Iref |

|Ieval| QR =
|Ieval ∩ Iref |

|Iref | (4)

queryFmeasure(Iref , Ieval) = 2 × QR × QP

QR + QP
(5)

bestqt = argmax
qt∈rewrite(cqas,Aeval,kbs)

queryFmeasure(Ikbtcqat
, Ikbtqt ) (6)

5 http://oaei.ontologymatching.org/2019/complex/index.html.
6 The description of rewriting systems is out of the scope of this paper.

http://oaei.ontologymatching.org/2019/complex/index.html
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Balancing coverage, precision is based on classical (i.e., scoring 1 for same
instance sets or 0 otherwise) or non-disjoint functions f :

precision(Aeval, kbs, kbt, f) = average
〈e1,e2〉∈Aeval

f(Ikbse1 , Ikbte2 ) (7)

Such metrics have been used in the automatic evaluation on the controlled pop-
ulated version of the Conference dataset. Given the uneven population of Taxon
(i.e., a same piece of knowledge can be represented in various ways within the
same ontology and that all instances are not described identically), a manual
evaluation has been carried out instead in order to avoid entailing noise in the
instance-based comparison. The tool and evaluation have been executed on an
Ubuntu 16.04 machine configured with 16 GB of RAM running under an i7-
4790K118 CPU 4.00GHzx8 processors. The runtimes are given for a single run.

4.2 Results and Discussion

Impact of Parameters. The impact of the different matching parameters
(Table 2) has been measured on the Conference dataset (for sake of space, only
the results varying the CQAs and counterexamples are presented in Table 3). The
Levenshtein edit distance has been used as similarity metric, with a path max
length of 3 properties (empirically chosen) and formula filtering threshold con-
fidence value of 0.6 or best formulae. The higher the Levenshtein threshold, the
more formulae have been filtered out. When Levenshtein threshold increases, we
observe: stagnation of runtime, decrease of number of correspondences, increase
of precision, and decrease of coverage. The higher the number of support answers,
more accidental correspondences appear, with satisfying results with 1 support
answer. When the number of support answers increases: increase of runtime,
increase of number of correspondences, decrease of precision, stagnation of cov-
erage. With respect to impact of CQAs with respect to automatically generated
queries, overall better results with CQAs both in terms of coverage and precision,
as a higher number of correspondences are generated by using the queries (intro-
ducing noise). Finally, computing counterexamples increases precision (reducing
the number of generated correspondences), keeping the coverage. However, the
runtime increases considerably (from 2 h up to 46 h).

Comparison with Existing Approaches. The alignments generated by the pro-
posed approach have been compared to the following ones (Table 4)7: (i) query
rewriting (Rew), the query rewriting oriented alignment set from [26] - 10 pairs
of ontologies; (ii) ontology merging (Mer), the ontology merging oriented align-
ment set from [26] - 10 pairs of ontologies; (iii) ra1, the reference simple alignment
from the OAEI conference dataset - 10 pairs of ontologies; (iv) Ritze, the output
alignment8 from [21] - complex correspondences found on 4 pairs of ontologies;
and (v) AMLC, the output alignment9 from [6] - output alignments between 10
7 The choice of these alignments was based on the fact that they were the publicly

available complex matchers at the time of running the experiments.
8 https://code.google.com/archive/p/generatingcomplexalignments/downloads/.
9 http://oaei.ontologymatching.org/2018/results/complex/conference/.

https://code.google.com/archive/p/generatingcomplexalignments/downloads/
http://oaei.ontologymatching.org/2018/results/complex/conference/
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Table 2. Variation of parameters.

Variant Nb ans Levesthein threshold Counterexamples CQAs

Baseline 10 0.4
√

Levenshtein 10 0.0–1.0
√

Support answers 1–100 0.4
√

Query 10 0.4

Counterexamples 10 0.4
√ √

Table 3. Results with the variation of parameters.

Impact CQA Impact counterexamples

CQAs queries no counterexamples counterexamples

Runtime 2 h 2 h 2 h 46 h

Number of correspondences 1,699 3,098 1,699 1,320

Precision 0.63 0.47 0.63 0.74

Coverage 0.76 0.64 0.76 0.76

pairs of ontologies. Our approach is the only one able to generate more expres-
sive (c:c) correspondences. Overall our approach obtains the best coverage scores
comparing to the all other approaches. With respect to precision, with classical
instance comparison function, we obtain the worst results (0.4 with counterex-
amples). However, precision results should be considered carefully. First, the
relation of the correspondence is not considered in this score. Merg. and Rew.
alignments contain many correspondences with a subsumption relation, so their
classical precision score is lower than the percentage of correct correspondences
it contains. Second, the precision of the alignments is considered to be between
the classical precision and the percentage of correspondences whose members are
either overlapping or both empty (not disjoint) due to the way the ontologies
were populated. In order to compensate these errors, we use the non-disjoint
scoring metrics in the precision evaluation. The score for a correspondence is 1
when the members are overlapping or both empty, and 0 otherwise. With the
non-disjoint precision, we outperform Ritze and AMLC, with equivalent values
for ra1, Mer. and Rew. Comparing the systems between them, the Rew. align-
ment outperforms the Merg. in terms of CQA Coverage. In fact, in the Merg.
alignments, unions of properties were separated into individual subsumptions
which were usable by the rewriting system. Ritze only outputs equivalent or
disjoint correspondences. Its precision score is therefore the same for all met-
rics. AMLC achieves a better classical precision than our baseline approach but
contains a high number of disjoint correspondences. Overall, as expected, the
precision scores of the reference alignments are higher than those output by
the matchers. Moreover, Ritze and AMLC both rely on correspondence patterns
which limit the types of correspondences they can generate.
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Table 4. Comparative results. CQA is calculated with query Fmeasure and precision
with classical and not disjoint instance comparison set functions (noted classical-non
disjoint in the results).

baseline counterexamples Ritze AMLC ra1 Mer Rew

Correspondence type (c:c) (c:c) (s:c) (s:c) (s:s) (s:c) (s:c)

Runtime 2 h 46 h 1 h 0 h03

Number of correspondences 1,699 1,320 360 441 348 628 842

Precision 0.3–1 0.4–1 0.8 0.4–0.6 0.6–1 0.4–1 0.4–1

Coverage 0.8 0.8 0.4 0.5 0.4 0.6 0.7

Table 5. Evaluation on the Taxon dataset.

v1 v10

Runtime 28 h 32 h

Number of correspondences 134 328

Precision 0.3–1 0.3–1

Coverage 0.3–0.7 0.5-0.8

Manual Evaluation. A manual evaluation has been carried out on the Taxon
dataset (Table 5). The baseline has been declined in two versions, using coun-
terexamples: v1 with 1 support and v10 with 10 supports. In the lack of
owl:sameAs links, then the links have been generated by a exact match on
the instance labels. In this dataset, given the uneven population, more support
instances entail a better coverage.

5 Related Work

Comparison to Other Matching Approaches. Earlier works in the ontology
matching field have introduced the need for complex ontology alignments [12,30],
and different approaches for generating them have been proposed in the literature
afterwards (the reader can refer to [27] for a survey on them). These approaches
involve different techniques such as relying on templates of correspondences
(called patterns) and/or instance evidence. The approaches in [20,21] apply a set
of matching conditions (label similarity, datatype compatibility, etc.) to detect
correspondences that fit certain patterns. The approach of [22] uses the linguistic
frames defined in FrameBase to find correspondences between object properties
and the frames. KAOM [10] relies on knowledge rules which can be interpreted
as probable axioms. The approaches in [16,17,31] use statistical information
based on the linked instances to find correspondences fitting a given pattern.
The approach in [14] uses genetic programming on instances to find correspon-
dences with value transformation functions between two knowledge bases. The
one in [18] uses a path-finding algorithm to find correspondences between two
knowledge bases with common instances. The one in [9] iteratively constructs
correspondences based on the information gain from matched instances between
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the two knowledge-bases. More recently, [6] relies on lexical similarity and struc-
tural conditions to detect correspondence patterns, close to [20]. Comparing our
proposal to those described above, none of the complex approaches involve the
user before or during the matching process. Like the ones in [9,16–18,31], we rely
on the hypothesis that the knowledge bases contain common instances. Further-
more, as for the matching processing in general, in particular for the complex
matching approaches in [20,21], we rely on the hypothesis that the ontologies in
the knowledge base have a relevant lexical layer. Differently from most of them,
the proposed does not rely on correspondence patterns. Finally, competency
questions have not been adapted nor used for ontology matching.

SPARQL CQA. In our approach, CQA are used as basic pieces of information
which will be transformed as source members of correspondences. Their formula-
tion in a SPARQL query over the source ontology is a limitation of the approach
as a user would need to be familiar with SPARQL and the source ontology. How-
ever, in the scenario where someone wants to publish and link a knowledge base
he or she created on the LOD cloud, this person is already familiar with the
source ontology and can reuse the CQ of their own ontology. In other cases, one
could rely on question answering systems which generate a SPARQL query from
a question in natural language. This kind of system is evaluated in the QALD
open challenge [29].

Generalisation Process. Ontology matching approaches relying on the Abox of
ontologies infer general statements from the instances, i.e., they perform a gen-
eralisation10. This is the principle of machine learning in general and methods
such as Formal Concept Analysis [7] or association rule mining [1]. These gener-
alisation processes however require a considerable amount of data (or instances).
Approaches such as the ones from [9,16,17,31] rely on large amounts of com-
mon ontology instances for finding complex correspondences. Few exceptions in
ontology matching rely on few examples. For instance, the matcher of [32] relies
on example instances given by a user. With this information, the generalisation
can be performed on few examples. The idea behind our approach is to rely on
a few examples to find general rules which would apply to more instances. In
particular, the generalisation phase of our approach is guided by the CQA labels.
Thanks to that, only one instance is sufficient for finding a correspondence. This
would apply to knowledge bases which represent different contexts or points of
view but whose ontologies are overlapping.

6 Conclusions and Future Work

This paper has presented a complex alignment generation approach based on
CQAs. The CQA define the knowledge needs of a user over two or more ontolo-
gies. The use of CQAs is both a strength of the approach as it allows for a
10 ‘They infer general statements or concepts from specific cases’ (Oxford Dictionary,

“Generalisation” Retrieved June 3 2019 from https://en.oxforddictionaries.com/
definition/generalization.

https://en.oxforddictionaries.com/definition/generalization
https://en.oxforddictionaries.com/definition/generalization
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generalisation over few instances and a limitation as it requires users to be able
to express her or his needs as SPARQL queries in terms of the source vocabu-
lary (this is however the only manual effort required for the user). The approach
depends as well on the quality of the instance matches. The approach can be
extended in several directions: one could consider exploring more sophisticated
instance-based matching approaches and, alternatively, conditional or link keys
(systems generating keys could also benefit from complex correspondences to
improve their results); designing a purely T-Box strategy based on both linguis-
tic and semantic properties of the ontologies and CQAs; taking into account
specialization/generalization relations; or still dividing the problem in sub-tasks
through ontology partitioning (given the inherent high search space in this task).
Last but not least, incoherence resolution systems for complex alignments are
scarce.
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LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35176-1 27

18. Meersman, R., Tari, Z. (eds.): OTM 2007. LNCS, vol. 4803. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76848-7

19. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 752–767. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07443-6 50

20. Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.: A pattern-based
ontology matching approach for detecting complex correspondences. In: OM Work-
shop (2009)
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Abstract. Short text categorization is an important task in many NLP
applications, such as sentiment analysis, news feed categorization, etc.
Due to the sparsity and shortness of the text, many traditional clas-
sification models perform poorly if they are directly applied to short
text. Moreover, supervised approaches require large amounts of manu-
ally labeled data, which is a costly, labor intensive, and time-consuming
task. This paper proposes a weakly supervised short text categorization
approach, which does not require any manually labeled data. The pro-
posed model consists of two main modules: (1) a data labeling module,
which leverages an external Knowledge Base (KB) to compute probabilis-
tic labels for a given unlabeled training data set, and (2) a classification
model based on a Wide & Deep learning approach. The effectiveness of
the proposed method is validated via evaluation on multiple datasets.
The experimental results show that the proposed approach outperforms
unsupervised state-of-the-art classification approaches and achieves com-
parable performance to supervised approaches.

Keywords: Short text categorization · Weakly supervised short text
categorization · Wide & Deep model

1 Introduction

Due to rapid growth of the Web content, short text data such as search snippets,
news feeds, short messages, etc. is drastically multiplying online [3]. Hence, short
text categorization has become a crucial task for a wide range of applications
including sentiment analysis and news feed categorization [14]. While conven-
tional text classification methods such as Support Vector Machines (SVMs) have
demonstrated their success in classifying long and well structured text, as e.g.,
news articles, in case of short text they seem to have a substandard performance
[33]. Moreover, due to the main characteristics of short text, i.e., limited context,
sparsity and ambiguity, the traditional classification methods based on Bag of
Words (BOW) [31] or approaches that utilize word embeddings perform poorly
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if directly applied to short text. Besides, such approaches often lead to inaccu-
rate results on new and rare words. Thus, to overcome these challenges, it is
indispensable to use external sources such as Knowledge Bases (KBs) to enrich
and obtain more advanced text representations [30].

Recently, several deep learning approaches have been proposed for short text
classification, which demonstrated remarkable performance in this task [4,15].
The two main advantages of these models for the classification task are that
minimum effort is required for feature engineering and their classification per-
formance is better in comparison to traditional text classification approaches
[16]. However, the requirement of large amounts of labeled data remains the
main bottleneck for neural network based approaches [16]. Acquiring labeled
data for the classification task is costly and time-consuming. Especially, if the
data to be labeled is of a specific domain then only a limited number of domain
experts are able to label them correctly, which makes it a labor intensive task.

To overcome this bottleneck several dataless [9,12], semi supervised [19,32],
and weakly supervised [16,17] classification algorithms have been proposed. The
dataless classification algorithms do not require any labeled data to perform
text categorization. Instead, they project each predefined label and document
into a common vector space by exploiting the words present in the labels and the
documents. As a second step, based on the vector similarity a label is assigned
to each document. However, the most prominent dataless classification meth-
ods are designed for long text, e.g., news article classification [12]. In addition,
for addressing the labeled data scarcity problem, semi supervised text classi-
fication algorithms have been proposed. However, they also require some set
of labeled data. Yet, generating small training sets for semi supervised meth-
ods still remains an expensive process due to the diversity of the documents in
many applications. Furthermore, there has been a considerable amount of stud-
ies in weakly supervised text classification approaches. Most of these methods
require user-given weak supervision sources such as some labeled documents,
class related keywords, etc. for the classification task. Besides, existing weakly
supervised text classification solutions mostly rely on hard-coded heuristics, such
as looking for specific keywords or syntactical patterns in text, which still requires
domain expertise and is especially prone to noise. Moreover, the most well-known
weakly supervised methods are designed for long text classification.

Motivated by the aforementioned challenges, this paper proposes a novel
model for Weakly Supervised Short Text Categorization using World Knowl-
edge1 (WESSTEC). The proposed approach does not require any labeled data
for short text categorization. It exploits Knowledge Bases and embedding mod-
els such as Doc2Vec [10], LINE [26], Word2Vec [18] etc. as weak supervision
sources without requiring any manual effort. Instead, given a list of labels and
unlabeled short text documents, the proposed method first associates each text
with its relevant concepts in a KB to enhance the semantic representation of
short texts and then generates labels for each document by utilizing the afore-
mentioned embedding models. In the second step, words and concepts from the

1 https://github.com/ISE-FIZKarlsruhe/WESSTEC.

https://github.com/ISE-FIZKarlsruhe/WESSTEC
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labeled documents are exploited for training a Wide & Deep learning based clas-
sification model [5]. Finally, the trained model is used to categorize new short
text documents. Overall, the main contributions of the paper are as follows:

– a new paradigm for short text categorization, based on a knowledge based
weak supervision;

– a method to combine weak supervision sources to generate labeled data which
can be used for any arbitrary classification model;

– adaptation of a Wide & Deep model for weakly supervised short text catego-
rization;

– utilizing multiple features, i.e., both words and entities present in a given
short text and their combination for the Wide & Deep model;

– an experimental evaluation using four different standard datasets for short
text categorization.

The rest of this paper is structured as follows: Sect. 2 provides a review of
the related work. In Sect. 3, the proposed approach for short text categorization
is explained. Section 4 presents the experimental setup for the evaluation of the
proposed approach and the discussion of the achieved results. Finally, Section 5
concludes the paper with open issues and future work.

2 Related Work

The aim of this study is to categorize short text documents under a weak super-
vision setting without requiring any manually labeled data. Hence, this section
presents prior related studies on Short Text Classification, Weakly Supervised
Text Classification as well as Dataless Text Classification.

Short Text Classification. Recent works [2,30,31] have proposed deep neu-
ral network based models to overcome the problem of data sparsity that arises
when dealing with short text classification. The main characteristic of short text
is the insufficient text length, which is no longer than 200 characters [24]. While
[2,13,30] utilize an external knowledge to enrich the representation of short text,
[31] exploits word embedding models and Convolutional Neural Network (CNN)
to expand the information contained in short text. On the other hand, instead
of focusing on expanding the representation of short text, [33] proposes topic
memory networks which aim to encode latent topic representation of class labels
for short text classification. In addition, recently, more sophisticated deep neu-
ral network based short text classification methods [4,15] have been proposed
for sentiment analysis. Although the aforementioned approaches have demon-
strated superior performance in text classification, they require huge amounts
of labeled data. Conversely, the proposed method in this study does not require
any manually labeled data for short text categorization.

Weakly Supervised Text Classification. There has been a considerable
amount of studies related to weakly supervised text classification to address the
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problem of missing labeled data [16,17,21]. Most of these methods require user-
given weak supervision sources such as class related key words, small amount of
labeled data, etc. Hence, the requirement of domain expertise is still inevitable.
On the contrary, the proposed approach does not require such manually designed
weak supervision sources for the categorization task. Instead, it utilizes unsu-
pervised embedding models such as Word2Vec, Doc2Vec and LINE as weak
supervision sources.

Dataless Text Classification. To address the problem of missing labeled data,
[1] introduced a dataless text classification method by representing documents
and labels into a common semantic space. Then, the classification is performed by
considering the vector similarity between the documents and the labels. The most
prominent dataless classification methods [1,9,12] utilize only words present in
documents for the classification task and they ignore the entities. However, enti-
ties carry much more information than the words. Moreover, aforementioned
studies are designed for the classification of long and well structured documents
such as news articles. Such methods use traditional supervised approaches i.e.,
Naive Bayes (NB), Support Vector Machine (SVM), etc. with the features cal-
culated based on the term frequency and the inverse document frequency to
perform classification. In contrast to these studies, the proposed approach aims
to categorize short text documents without requiring any labeled data and it
utilizes entities as well as words present in documents for the classification task.
Further, our approach exploits the Wide & Deep model for short text classifi-
cation in the dataless scenario. The Wide & Deep model has been proposed by
[5] for Recommendation Systems with the goal of jointly training a wide linear
model (for memorization) alongside a deep neural network (for generalization).

The most recent work related with ours is Knowledge-Based Short Text Cat-
egorization (KBSTC) [29], which is a probabilistic model and does not require
any labeled training data to perform short text categorization. Instead, the cat-
egory of the given text is derived based on the semantic similarity between the
entities present in the text and the set of predefined categories. KBSTC utilizes
only entities and ignores the words. However, WESSTEC exploits words as well
as entities. In addition, the proposed model leverages both textual information
(in Doc2Vec model) and structural information (in LINE model) from KBs to
better capture the semantic representation of entities, however, KBSTC uses
only structural information of entities. Further, while KBSTC labels the input
text only based on the heuristics of semantic similarity, WESSTEC adapts an
additional classification model using Wide & Deep learning.

Last but not least, all previous approaches rely on a single model (e.g., [1]
utilizes only word2vec, [29] utilizes only entity-and-category embedding) to cat-
egorize text data, while WESSTEC combines different embedding models to
increase the accuracy and coverage.
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Fig. 1. The workflow of WESSTEC

3 Weakly Supervised Short Text Categorization

This section provides a formal definition of the short text classification task,
followed by the description of the proposed approach.

Problem Formulation. Given an input short text t and n predefined labels
L = {l1, l2, .., ln}, the output is the most relevant label li ∈ L for the given short
text t, i.e., we compute the label function flab(t) = li, where li ∈ L.

Method Overview. The general workflow of WESSTEC is shown in Fig. 1.
Given a list of labels and a set of unlabeled short text documents, the Labeled
Data Generation module is responsible for generating probabilistic training labels
for each document. In other words, it utilizes three different embedding models,
i.e., LINE [26], Doc2Vec [10] and Word2Vec [18] to estimate the probability of
each predefined label for a given document. This module generates documents
with probabilistic labels as training data.

The second main module of the workflow is a Wide & Deep learning based
classification model [5], which utilizes the documents with the probabilistic labels
for training. Several different feature sets are extracted from the documents to
train the Wide & Deep model. Note that in this work we have utilized Wikipedia
as a KB.

Section 3.1 and Sect. 3.2 provide a detailed description of each module and
the feature sets that have been utilized by each module.

3.1 Labeled Data Generation

The aim of this module is to generate labeled documents from a given label
list and unlabeled set of documents (see Fig. 1). In other words, given a short
text t and n labels L = {l1, l2, .., ln}, the goal of this module is to produce a
probabilistic label for t as yt = [p1, p2, ..., pn] where pi ∈ [0, 1], and pi is the
corresponding probability of li for t. To this end, this module utilizes three
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different embedding models, namely, LINE, Doc2Vec and pre-trained Word2Vec
to capture the semantic correlations between the predefined labels and the words
as well as entities present in a short text. First, each document and label is
projected into common vector spaces, then the probabilistic labels of given texts
are calculated based on the cosine similarity between documents and the set of
predefined labels.

LINE is a network embedding model, which is designed to learn embed-
ding of arbitrary types of large-scale networks (weighted, directed, undirected,
etc.). The model has been trained by utilizing Wikipedia hyperlink structure to
obtain a vector representation of each entity from Wikipedia. In other words,
from Wikipedia hyperlink structure, an entity-network has been constructed to
be utilized by this model. More technical details about the construction of the
entity-network can be found in [29]. To obtain a document vector with the help of
LINE, we simply take the average of entity vectors present in that document. To
extract entities from a document an anchor text dictionary [27–29] is used. The
anchor text dictionary is constructed by leveraging the anchor texts of hyper-
links of Wikipedia, which are pointing to any article in Wikipedia. The anchor
texts are considered as entity mentions and the links refer to the corresponding
entities.

Doc2Vec creates the distributed representation of documents by utilizing
the context words present in the corresponding documents. This model has been
trained on Wikipedia articles and contains a vector representation of each entity
of Wikipedia. Note that we consider each Wikipedia article page as an entity. To
form a document vector for a given text, the average of entity vectors present in
that text is considered.

Word2Vec learns the low dimensional distributed representation of words.
We use the pre-trained Word2Vec model2 for our approach. To create document
vectors with Word2Vec, the average of the word vectors in that document is
considered.

Moreover, each given label is also mapped to its corresponding vector in the
respective vector space, e.g., the label Music is mapped to the word vector of
Music from Word2Vec and it is also mapped to the entity vector of Music from
Doc2Vec and LINE.

After embedding each text and label into common vector spaces, each embed-
ding model assigns the most similar label to each text based on the vector simi-
larity between the text and the labels. As there are three embedding models, for
each given text three labels are generated. These labels can overlap or conflict.
Then, the goal of the remaining process of this module is to convert the outputs
of the embedding measures into probabilistic training labels. In order to achieve
that a heuristic approach has been employed.

Based on outputs of each embedding measure for all texts, the heuristic
approach estimates the confidence of each embedding model by considering the
output label agreement and disagreement rates. The confidence of an embedding
model EMi is defined as follows:

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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CEMi
=

AggEMi
+ noneAgg

TotalAgg + noneAgg
, (1)

where AggEMi
is the number of documents, on which the model EMi agreed

for a label with at least one of the other embeddings, noneAgg is the number
of documents, on which none of the embedding models agreed for the assigned
label and TotalAgg is the number of documents which at least two embedding
models agreed on their labels (i.e., TotalAgg = #TotalDocuments−noneAgg).

The confidence values are exploited to convert the generated labels into prob-
abilistic training labels yt. For each text, the preferred label from each embed-
ding measure will be weighted using its confidence and then all three weighted
labels are combined together, which could result in three probabilistic labels
when three measures disagree with each other or two probabilistic labels when
two measures agree or one label when all agree on it. Finally, these values are
normalized to produce the probabilistic training labels yt.

Given a short text t and n labels L = {l1, l2, .., ln}, let yt = [p1, p2, ..., pn]
denote t’s probabilistic training labels, where pi ∈ [0, 1]. To calculate the prob-
ability pi of the label li for t, we define the following formula:

pi(t) =

∑e
j=1 CEMj

IiEMj
(t)

∑n
k=1

∑e
j=1 CEMj

IkEMj
(t)

, (2)

where e is the total number of embedding models that are utilized in labeled data
generation module, CEMj

is the confidence of embedding model EMj , n is the
total number of predefined labels and IiEMj

is defined as

IiEMj
(t) =

{
1 if EMj assigns li to t ,

0 otherwise .
(3)

3.2 Wide and Deep Model for Short Text Categorization

The second main module of our workflow is a Wide & Deep learning based
classification model which was proposed in [5] for Recommender Systems. We
adapt this approach for the short text categorization task. To the best of our
knowledge, this is the first attempt of utilizing the Wide & Deep model for short
text categorization.

The model consists of two main components i.e., Wide Component and Deep
Component. Moreover, the model has the ability of memorizing feature inter-
actions and generalizing feature combinations by jointly training the wide and
deep components as shown in Fig. 1 (right).

In the following, we first introduce the Wide model and Deep model sepa-
rately and then present the joint Wide & Deep model.

Wide Model: The wide part has the ability of memorizing feature interac-
tions. In other words, it is able to learn the frequent co-occurrence of features.



Weakly Supervised Short Text Categorization Using World Knowledge 591

Hence, we design this model to be able to capture the correlation between the
co-occurrence of features and the target labels. In our approach, Entity co-
occurrence information of each document is used as a feature for the wide part
(see Fig. 1). Given a short text t let xt = [x1, x2, x3, ..., xm] denote the m entities
present in t. To construct the d dimensional Entity co-occurrence feature vector
we apply cross-product transformation [5] as:

φk(xt) =
m∏

i=1

xcki
i cki ∈ {0, 1}, (4)

where cki is a boolean variable that is 1 if the i -th feature is part of the k -th
transformation φk, and 0 otherwise. The wide part is a model of the form as:

P (Y = li|t) = softmax(wT
i φ(xt) + bi), (5)

where t is a given short text, φ(xt) = [φ1(xt), φ2(xt), ..., φd(xt)] is the cross prod-
uct transformations of xt, wi = [w1, w2, ..., wd] and bi are the model parameters
corresponding to the i-th label li. The softmax function is defined as:

softmax(zi) =
ezi

∑
zj∈z ezj

, (6)

for i = 1, 2, .., n and z = (z1, z2, ..., zn) ∈ R
n.

We give the following example to illustrate how an Entity co-occurrence fea-
ture vector can be formed. Given a short text “Motorola and HP in Linux tie-
up”, the extracted entities are E′ = {Motorola,HP,Linux} and the possible
entity pairs are E′

p = {(Motorola,HP ), (Motorola, Linux), (HP,Linux)}. The
dimension of the vector is the number of all the possible entity pairs of the
dataset and each dimension corresponds to an entity pair. For each entity pair
epi

∈ E′
p, the value of the corresponding dimension of the vector would be 1 and

the rest would be 0.

Deep Model: The deep part is a neural network, which is capable of gener-
alization of feature combinations through low-dimensional dense embeddings.
In our approach, three different embedding vectors, i.e., Entity Embedding ,
Category Embedding and Text Embedding are utilized as an input to the
deep part (see Fig. 1).

To construct each feature vector, different embedding models are utilized,
i.e., for Entity Embedding LINE, for Category Embedding the joint entity and
category embedding model [29] and for Text Embedding Word2Vec. The joint
entity and category embedding model has been proposed by [29] to capture the
semantic relations between entities and categories from a KB. This model first
constructs a weighted network of entities and categories, and then jointly learns
their embeddings from the network.

In order to form an Entity Embedding vector for a given text, entities present
in the document are extracted with the help of a prefabricated Anchor-Text
dictionary [29] and then the average of the vector representations of these entities
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is taken. For the Category Embedding feature vector, all the categories that are
directly associated with the entities appearing in the text are collected from
Wikipedia, then the average of the category vector representations is taken.
Finally, for a given text a Text Embedding feature vector is constructed by taking
the average of the word vector representations in that document.

The deep part is a feed forward neural network, which takes low-dimensional
embedding vectors as an input i.e., [eet , e

c
t , e

t
t], where eet is the entity embedding,

ect is the category embedding and ett is the text embedding.
The deep part is the model of the form as:

P (Y = li|t) = softmax(wT
i a(lf) + b), (7)

where wi are the weights that are applied on the final activation a(lf) for the i-th
label li, l is the layer number and f is the activation function which is ReLU.

We have built 3-layer feed forward neural network for the deep part and each
hidden layer of this model performs the following computation [5]:

a(l+1) = f(W (l)a(l) + b(l)), (8)

a(l) is activations, b(l) is bias and W (l) is model weights at l-th layer.

Wide & Deep Model: The wide and the deep components are combined
for joint training by back propagating the gradients from the output of both
wide and deep parts simultaneously. The combined model is illustrated in Fig. 1
(right). For a given short text t the prediction of Wide & Deep model is:

P (Y = li|t) = softmax(wT
wideiφ(xt) + wT

deepi
a(lf) + bi). (9)

In order to deal with the probabilistic training labels, we configure our model
to train with a noise-aware loss function, i.e., cross-entropy between the prob-
ability of each training label and the output of the softmax function, which is
defined as:

H(p, q) = −
∑

n

pi(t) ∗ log(P (Y = li|t)) (10)

Note that the reason of exploiting different feature sets in Labeled Data Gen-
eration and Wide & Deep modules is mainly two-fold: (1) Combining different
features into Labeled Data Generation module requires much more feature engi-
neering efforts. In other words, the Wide & Deep model can automatically learn
the weights of the feature sets, however, it is not the same case with the pro-
posed heuristic model designed for labeled data generation. (2) There are some
features (e.g., entity co-occurrence) that cannot be straightforwardly integrated
into heuristic algorithms to help calculate semantic similarity between input text
and labels and do the labeling. However, such “non-heuristic” features can be
transferred into the final classification model trained on labeled data generated
by the heuristic algorithms using other features. Overall, we expect the trained
model to provide performance gains over the heuristics that it is trained on
both by applying to “non-heuristic” features (e.g., entity co-occurrence), and
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by learning to generalize beyond heuristics, i.e., putting weights on more subtle
features that each individual heuristic algorithm cannot cover.

4 Experimental Results

This section provides a description of the datasets and the baselines, followed
by the experimental results and a comparison to the state-of-the-art text cate-
gorization approaches.

4.1 Datasets

Four different real-world datasets have been used to evaluate the performance
of the proposed approach: AG News [34], which contains the title and a short
description of the news articles, Snippets [20], which contains short snippets
from Google search results, DBpedia Ontology classification dataset [11],
which is constructed by selecting 14 non-overlapping classes from DBpedia 2014
and Twitter3 topic categorization dataset contains tweets belong to 6 differ-
ent categories. The Twitter dataset is preprocessed, in other words, the dataset
does not contain hash symbols, emoticons, user mentions, etc. Besides, the spe-
cial characters and numbers present in each dataset have been removed, further,
each sample has been converted to lower case. Table 1 shows the distribution of
the datasets, the average number of entities and words as well as the standard
deviation of entities and words per text in each dataset.

Furthermore, as WESSTEC does not require any labeled training data, the
training datasets of AG News, Snippets, DBpedia and Twitter have been used
without their labels. In other words, the training set of each dataset without
their labels have been utilized as an input to Labeled Data Generation module
of the WESSTEC framework (see Fig. 1) to generate the training labels.

Table 1. Statistics for the short text datasets

Dataset #Category #Train #Test Avg. #Ent Avg. #Word SD Ent SD Word

AG News 4 120,000 7,600 11.83 38.65 3.80 9.8

Snippets 8 10,060 2,280 8.90 17.97 3.56 4.84

DBpedia 14 560,000 70,000 15.30 46.49 6.9 21.57

Twitter 6 9,879 3,697 4.31 12.36 2.29 5.13

3 https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/master/
data.

https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/master/data
https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/master/data
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4.2 Baseline Approaches

To demonstrate the performance of the proposed approach, the following models
have been selected as baselines:

– Dataless ESA and Dataless Word2Vec: Two variants of the state-of-
the-art dataless approach [25] are considered as baselines, which are based
on different methods to compute word similarity, i.e., ESA [8] and Word2Vec
[18].

– KBSTC [29]: Knowledge-based short text categorization, which does not
require any labeled data for short text categorization. Instead it relies on
the semantic similarity between the given short text and predefined labels to
categorize a given short text.

– SVM+tf-idf: In this model, the term frequency-inverse document frequency
(tf-idf) is calculated as features for a subsequent Support Vector Machine
(SVM) classifier.

– CNN [35]+Word2Vec, CNN+Ent and CNN+Category: A Convolu-
tional Neural Network (CNN) is applied on text, entity and category matrices
separately. These matrices are constructed by using Word2Vec, LINE, joint
entity and category embedding model [29] respectively.

– LSTM: The standard LSTM model is composed of a single LSTM layer
followed by a dense output layer.

– charCNN [34]: This model learns character embeddings using “one-hot”
encoding. Subsequently, CNN is applied for the classification process.

– BERT [6]: The state-of-the-art language representation model4 have been
commonly leveraged to derive sentence embeddings. To produce BERT
embeddings, first, each sentence has been passed through pre-trained BERT,
then the outputs of the model have been averaged, which is the most common
way of obtaining sentence embeddings from BERT [23]. In the experiments,
the BERT embeddings have been generated as features for the subsequent
3-layer feed forward neural network.

4.3 Feature Sets

This section describes the feature sets that have been extracted from the Doc-
uments with Probabilistic Labels (see Fig. 1) and utilized to train the Wide &
Deep model. To construct feature sets, words and entities present in texts as
well as parent categories of entities from Wikipedia have been leveraged.

As shown in Fig. 1, the wide part exploits the Entity Co-occurrence (Ent
Co) information as a feature and the deep part utilizes three different feature
sets, namely, Text Embedding (Text), Entity Embedding (Entity) and
Category Embedding (Category) vectors as well as their combinations, such
as Text+Entity (see Table 2) refers to the concatenation of text embeddings and
entity embeddings. The detailed construction of the feature sets is explained in
Sect. 3.2.
4 https://github.com/google-research/bert.

https://github.com/google-research/bert
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Table 2. The classification accuracy of different models with different features

Model Feature AG News Snippets DBpedia Twitter

Wide Entity Co-occurance (Ent Co) 0.561 0.447 0.499 0.278

Deep Text 0.802 0.795 0.786 0.555

Entity 0.790 0.764 0.775 0.521

Category 0.773 0.698 0.754 0.444

Text+Entity 0.793 0.785 0.779 0.524

Text+Category 0.801 0.794 0.786 0.554

Entity+Category 0.792 0.771 0.771 0.534

Text+Entity+Category 0.792 0.786 0.785 0.529

Wide & Deep Ent Co+Text 0.807 0.792 0.786 0.556

Ent Co+Entity 0.791 0.774 0.768 0.520

Ent Co+Category 0.792 0.693 0.774 0.446

Ent Co+Text+Entity 0.787 0.802 0.776 0.53

Ent Co+Text+Category 0.814 0.803 0.792 0.581

Ent Co+Entity+Category 0.791 0.770 0.766 0.544

Ent Co+Text+Entity+Category 0.790 0.805 0.778 0.572

4.4 Evaluation of WESSTEC

Table 2 depicts the classification accuracy of the Wide & Deep model of
WESSTEC, in comparison to individual Wide-only and Deep-only models with
different features on AG News, Snippets, DBpedia and Twitter datasets.

It has been observed that the jointly trained Wide & Deep model outperforms
the individual Wide-only and Deep-only models on each datasets. The reason
here can be attributed to the benefit of utilizing the Wide & Deep model to
achieve both memorization and generalization of features for short text classifi-
cation. In addition, we have observed that some of the wrongly classified samples
with the Deep part, have been correctly classified after combining the Wide part
and jointly training the model.

Wide model performs best on the AG News dataset. This dataset has the
least number of categories and the length of the samples are not as limited as
Twitter dataset, therefore, it is easier for the Wide model to handle this dataset
in comparison to other datasets. The reason of the general low accuracy of the
Wide model (in comparison to the Deep model and Wide & Deep model) is
that a very sparse set of features have been used to train the model. It is a well
known fact that the Deep Neural Networks (DNNs) can be much more powerful
than the linear models. Therefore, the Deep model always outperforms the Wide
model on each dataset. Similar to the Wide model, with the Deep model the best
classification accuracy has been obtained on the AG news.

On the other hand, despite the specific properties of Tweets (e.g., out-
of-vocabulary words) WESSTEC can still obtain reasonable accuracy on the
Twitter dataset. To illustrate the difficulty of categorizing tweets, we give the
following tweet from the Twitter dataset as an example: “BSE NSE Stock
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Tip HINDUSZI”, which is labeled as “Business”. The categorization of such
tweets is rather difficult for many standard categorization models, which rely
on only words. However, WESSTEC enriches text representations by leverag-
ing entities present in texts and their associated categories with the help of a
KB. For the given example the detected entities are Bombay Stock Exchange,
National Stock Exchange of India and Stock, which capture very useful
information for categorization of the tweet. Further, even for out-of-vocabulary
words such as “BSE”, WESSTEC can still detect entities, which are crucial for
the categorization task.

This study has also investigated the impact of each feature combination on
the classification performance. The Deep model performs the best when utilizing
only words. Whereas, the Wide & Deep model enjoys the combination of the fea-
ture sets. However, it has been observed that using entity features in both wide
and deep parts could result in a bias of the whole model towards entity infor-
mation, which might not reflect the entire semantics of text, especially when the
text is longer such that there could be some more words that cannot be detected
as entities (e.g., in AG News and DBpedia). This suggests that our Wide & Deep
model (Ent-Co+Text+Category) using Entity Co-occurrence (Ent-Co) as a fea-
ture in the wide part as well as Text Embedding (Text) and Category Embedding
(Category) as features in the deep part could be the most promising combina-
tion. The results in Table 2 also shows that (Ent-Co+Text+Category) clearly
yields best results on AG News, DBpedia and Twitter datasets and performs
only slightly worse than (Ent-Co+Text+Entity+Category) on Snippets dataset
(with the difference of 0.002 for accuracy).

Overall, the experiments show that, firstly, it is possible to perform short text
categorization with a high accuracy in the complete absence of labeled data with
our proposed approach and secondly, the Wide & Deep model can be successfully
applied for the short text categorization problem.

Since WESSTEC achieves almost the best performance with the combina-
tion of Ent-Co+Text+Category features, we use the results of this model for
the comparison between WESSTEC and other approaches in the rest of the
experiments.

4.5 Comparison of WESSTEC with the Unsupervised Approaches

Table 3 presents the classification accuracy of WESSTEC in comparison to the
text classification approaches that do not require any labeled data.

It is observed that the proposed approach based on the Wide & Deep model
considerably outperforms the dataless approaches as well as KBSTC. Although
the dataless approaches achieved promising results in case of longer news articles
in [25], they cannot perform well on short text due to the data sparsity problem.

KBSTC is a probabilistic model which does not require any training phase
and it utilizes entities and categories from a KB for the categorization process.
Whereas, WESSTEC first generates documents with probabilistic labels from a
given unlabeled document set, then it utilizes those documents to train a Wide
& Deep model to classify new documents. Moreover, WESSTEC exploits words
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present in text as well as entities and their directly associated categories from
a KB for categorization. Hence, the proposed model is much more sophisticated
and utilizes more features than the KBSTC model. Therefore, as expected the
classification performance has been improved with the proposed approach.

Table 3. The classification accuracy against the unsupervised baselines

Model AG News Snippets DBpedia Twitter

Dataless ESA [25] 0.641 0.485 0.551 0.317

Dataless Word2Vec [25] 0.527 0.524 0.679 0.5

KBSTC [29] 0.805 0.720 0.460 0.359

WESSTEC 0.814 0.803 0.792 0.581

4.6 Comparison of WESSTEC with the Supervised Approaches

In order to show the effectiveness of the Wide & Deep Module (see Sect. 3.2), its
performance has been compared with the supervised baselines. The generated
training sets of respective datasets (see Sect. 3.1) have been utilized to train Wide
& Deep as well as the baseline models. The respective original test datasets have
been used for evaluating the trained models. Table 4 reports the classification
performance.

The results show that the proposed Wide & Deep model can yield better
accuracy in comparison to the baselines. This is due to the fact that in contrast to
other approaches, the Wide & Deep model is capable of both memorization and
generalization of features and thus it performs the best among all the approaches.
Moreover, especially on the Snippets dataset, Wide & Deep model significantly
outperforms all the baselines. The reason here can be attributed to the different
characteristics of this dataset. The Snippets dataset has less average number
of entities, words per text and the size of the training set is much smaller in
comparison to AG News and DBpedia (see Table 1). In contrast to baselines, the
proposed Wide & Deep model utilizes different resources from a KB to enrich
the semantic representations of texts. Thus, it is capable of categorizing of such
a dataset with a high accuracy.

Another advantage of the Wide & Deep model over the baselines is different
feature combinations (e.g., entity co-occurrence, text embedding, entity embed-
ding, etc.) can be easily exploited by the model for the categorization task.

Furthermore, a statistical significance test, namely, the 5 × 2cv paired t-test
[7] has been also performed to compare the results of Wide & Deep and BERT.
This test has been proposed to overcome the drawbacks of other significance
tests (e.g., resampled paired t-test) and it is based on five iterations of two-fold
cross validation. According to 5× 2cv paired t-test, the experimental results are
significantly different at 95% level of significance with 5 degrees of freedom.

Overall, the obtained results in Table 4 suggest that in comparison to the
baselines the Wide & Deep model is better suited for the short text categorization
task by utilizing the generated labeled data for training.
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Table 4. The classification accuracy against the supervised baselines. The baselines
have been trained with the generated training sets (see Sect. 3.1) of respective datasets.

Model AG Snippets DBpedia Twitter

SVM+tf-idf 0.808 0.696 0.784 0.513

CNN+W2V 0.796 0.787 0.784 0.542

CNN+Ent 0.794 0.703 78.24 0.456

CNN+Category 0.779 0.656 0.762 0.449

LSTM 0.786 0.693 0.796 0.473

charCNN 0.773 0.497 0.760 0.472

BERT 0.806 0.801 0.804 0.560

Wide & Deep 0.814 0.803 0.792 0.581

4.7 Evaluation of the Generated Labeled Data

To evaluate the performance of each embedding model, i.e., Word2Vec, Doc2Vec
and LINE in the context of labeling the training data, we have conducted a set
of experiments. First, each of the unlabeled documents and predefined labels
has been projected into common vector spaces. Then each embedding model has
assigned the most similar label to the documents based on the vector similarity.
Additionally, by considering a simple majority vote of all the embedding mod-
els each document has also been labeled. The accuracy of labeled datasets has
been calculated by comparing them with the original hand-labeled data. Table 5
presents the accuracy of the labeled training data based on the individual embed-
ding models and the majority vote. The results suggest that considering all the
embedding models for the labeling task can help in assigning more accurate
labels. Therefore, to estimate the probabilistic labels for each training sample,
all the embedding models have been used in the Labeled Data Generation module
(see Sect. 3.1).

Further experiments have been conducted to asses the performance of the
Wide & Deep model when it is trained on the training samples that are labeled
based on majority vote. Table 6 presents the classification accuracy. The results
show that using probabilistic labels in WESSTEC leads to higher-quality super-
vision for training the end classification model.

Table 5. The accuracy of generated training data based on the embedding models

Model AG News Snippets DBpedia Twitter

Vector Similarity LINE 0.776 0.657 0.708 0.536

Vector Similarity Doc2Vec 0.651 0.644 0.672 0.479

Vector Similarity Word2Vec 0.612 0.692 0.702 0.527

Vector Similarity (Majority) 0.778 0.709 0.757 0.555
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Table 6. The classification accuracy of WESSTEC against the Wide & Deep model
trained on majority vote based training set

Model AG News Snippets DBpedia Twitter

Wide & Deep (Majority) 0.812 0.799 0.772 0.559

WESSTEC 0.814 0.803 0.792 0.581

5 Conclusion and Future Work

In this study we have proposed WESSTEC, a new paradigm for weakly super-
vised short text categorization using world knowledge. The proposed model does
not require any labeled data for categorizing documents. Instead, it first gen-
erates labeled training data from unlabeled documents by utilizing three dif-
ferent embedding models, i.e., Word2Vec, LINE, Doc2Vec. Several features are
extracted from the labeled documents to train the Wide & Deep classification
model. Finally, the new documents are classified with the help of this model.
The experimental results have proven that WESSTEC is capable of categoriz-
ing short text documents with a high accuracy without requiring any labeled
data and it significantly outperforms the classification approaches which do not
require any labeled data. As for future work, we aim to (1) improve the labeled
data generation process by exploiting advanced weak supervision approaches
such as Snorkel [22]; (2) adopt WESSTEC with different KBs; (3) evaluate the
performance of WESSTEC on more text classification benchmarks.
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Abstract. While learning new technical material, a user faces difficulty
encountering new concepts for which she does not have the necessary pre-
requisite knowledge. Determining the right set of prerequisites is chal-
lenging because it involves multiple searches on the web. Although a
number of techniques have been proposed to retrieve prerequisites, none
of them consider grouping prerequisites into interesting facets. To address
this issue, we have developed a system called PreFace that (i) automat-
ically determines interesting facets for a given concept of interest, and,
(ii) determines prerequisites for the concept and facet. The key compo-
nent of PreFace is a retrieval model that balances the trade-off between
the relevance of the facets and their diversity. We achieve this by repre-
senting each facet as a language model estimated using a domain-specific
knowledge base and a large corpus of research papers, and ranking them
using a risk-minimization framework. Our evaluation of the results over
a benchmark set of queries shows that PreFace retrieves better facets
and prerequisites than state-of-the-art facet extraction techniques.

Keywords: Facets · Prerequisite · Knowledge base

1 Introduction

When reading new technical material, a common problem faced by readers
is encountering new and unknown concepts, to understand which the reader
does not have the required prerequisite knowledge. A prerequisite for a con-
cept a is another concept b that can be suggested for study before a for better
understanding of a. For example, to understand artificial neural network, one
needs to have a prerequisite knowledge of perceptron and activation function.
Also, a knowledge of a programming language, such as matlab, will help the
user in implementing artificial neural network, and a knowledge of phoneme

will help her understand applications of artificial neural network, because
phoneme recognition is an application of artificial neural network. So, a pre-
requisite also includes concepts that help the user understand the multiple factes
of a queried concept. Identifying the right set of prerequisite concepts is chal-
lenging because retrieval systems only return relevant documents that may or
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 601–618, 2020.
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Table 1. Example of 4 facets and prerequisites retrieved by PreFace for
artificial neural network

Facets

neural network, perceptron

binary classification, medical classification, phoneme

backpropagation, optimization algorithm, gradient descent,

octave, matlab

may not contain prerequisites in them. Even if they do, the user may need to
further refer to the prerequisite’s prerequisite. This leads to a chain of searches
and is time-consuming for the user. It would be helpful to have a retrieval system
that, given an input concept, returns exactly the prerequisite concepts required
to understand it. A number of techniques to determine prerequisites for a con-
cept have been proposed over the years. Most of them address this problem by
constructing prerequisite functions that take in a pair of concepts and determine
whether one is a prerequisite of the other [21,22,28] or by constructing prerequi-
site graphs [39], [31,41]. These techniques have typically relied on features from
textual sources, structure of textbooks and learning from training examples to
construct or learn prerequisite relationships.

The main issue with these techniques is that they ignore the multiple facets of
understanding of a query. Consequently, the prerequisites returned by these tech-
niques are not grouped into facets. For example, for artificial neural network,
along with concepts such as perceptron, concepts such as matlab, octave or
phoneme are returned together. matlab and octave are relevant if the user is
interested in implementing artificial neural network. So, instead of return-
ing them together, it is desirable if they are returned as facets. Table 1 shows
four facets for prerequisites for artificial neural network, 1) neural network

and perceptron, which are related to neural networks 2) binary classification,
medical classification, and phoneme, which help the user understand applica-
tions of artificial neural network, 3) backpropagation, optimization algorithm,
and gradient descent, which help the user understand algorithms related to the
query, and 4) octave and matlab, which help the user implement the query. All
four of them are important towards an overall understanding of the concept. So,
instead of returning all of them together, it is desirable to have a system that
returns them as facets or groups.

One way to build such a system is to use existing techniques to solve the
two sub-problems separately, namely facet extraction [9,18,32] and prerequi-
site determination [4,22] i.e. we can first extract facets for a query and then
only retain concepts that are prerequisites to the query in each facet. However,
this approach does not guarantee good results. There are two main reasons for
this. Firstly, query-based facets are generally extracted using entities and rela-
tionships from open-domain knowledge bases like Freebase [18]. Using Freebase
to retrieve facets for queries in Computer Science retrieves little or no results
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because the domain-specific relationships and entities are under-represented in
them [37]. So, there is a need to use domain-specific knowledge bases such as
TeKnowbase [36,37]. The second reason is that the proposed techniques assume
that the knowledge base is sufficient to extract facets from FreeBase [9,18]. The
key challenge they address is the efficient ranking of facets because they gen-
erate a large number of candidate facets in the open domain. This assumption
does not hold for domain specific knowledge bases such as TeKnowbase because
they are sparse. Moreover, these techniques retrieve poor quality facets when
the knowledge base is from a different domain. We need a new technique to
automatically extract more and better quality facets.

To address these issues, we introduce the novel problem of faceted prerequi-
site extraction and develop PreFace1, which solves the problem of facet extrac-
tion and prerequisite determination for a query. We formulate this as a retrieval
problem where we first generate high quality facets using TeKnowbase and the
Open Research Corpus [1]. The facets and the query are then represented as
language models [29], and ranked balancing the trade-off between the relevance
and diversity of retrieved facets. Our evaluation over a standard benchmark
set of queries shows that PreFace extracts better facets and prerequisites than
state-of-the-art facet and pre-requisite extraction systems.

Contributions. The salient contributions of this paper are:

– Introduction of the novel problem of faceted retrieval of prerequisites
– Development of PreFace, which is a language model framework to retrieve

interesting facets as well as prerequisites for a query of interest using a
domain-specific knowledge base and a corpus of research papers.

– Demonstrating that PreFace can retrieve better facets and prerequisites
together than separately retrieving them using state-of-the art techniques.

– PreFace is designed to work with any prerequisite function.

This paper is organized as follows. Section 2 describes the retrieval model
for PreFace and the estimation techniques. Section 3 describes the experimental
setup and results are discussed in Sect. 4. Section 5 discusses the related work.

2 Framework for PreFace

Figure 1 shows the architecture of PreFace. It takes a query and returns a ranked
list of facets containing prerequisites. The terminologies are as follows:

Concept. A concept is any technical topic that can be studied and understood.
In our case, a concept is an entity in the domain of Computer Science.

Query. A query is a concept about which the user wishes to study. For example
artificial neural network is a query.

1 The code and dataset for PreFace is available at http://www.cse.iitd.ac.in/∼prajna/
preface.html.

http://www.cse.iitd.ac.in/~prajna/preface.html
http://www.cse.iitd.ac.in/~prajna/preface.html
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Fig. 1. Components of PreFace. It takes a query and returns a ranked list of facets
containing pre-requisites for the query.

Aspect. An aspect describes some subtopic of the query that the user is inter-
ested in. For example, application or implementation are aspects of interest for
artificial neural network.

Prerequisite. A prerequisite of a concept a is another concept b that can be
suggested to be studied before a for better understanding of a. For example,
perceptron is a prerequisite for artificial neural network. It also includes con-
cepts such as matlab or phoneme, which helps the user understand different aspects
of the query, such as implementation or application respectively.

Facet. A facet is a set of prerequisites to the query that describe an aspect of the
query. For example, facet number 4 in Table 1 consists of matlab and octave which
are pre-requisites for the implementation aspect for artificial neural network.

An overview of the main components of PreFace is described as follows:

Facet Extraction. This component generates candidate facets using TeKnow-
base and a corpus of research papers.

Ranking of Facets. The extracted facets as well as the query are represented as
language models. The language model for the query is estimated using TeKnow-
base. The candidate facets are ranked balancing the trade-off between the simi-
larity of their language model with the query language model, and the diversity
of the retrieved facets.

TeKnowbase. TeKnowbase is the backbone of PreFace. It helps in the extrac-
tion as well as the modeling of the relevance of the facets. All these components
are described in details in the following subsection.

2.1 Facet Extraction

A facet is a group of prerequisites for the query that describes some aspect of
the query. We used the relevant documents returned in the top positions for the
query to generate candidate facets. The key idea used is to extract frequently
occurring key-phrases from these documents and cluster them to generate facets.
Below we describe in detail these two steps:
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Extracting Key-Phrases from Documents. We indexed the Open Research Cor-
pus dataset2 on Galago3 and retrieved top-1000 documents for a query. We then
used Rake4, a tool to extract and score essential phrases from a document. To
further clean the list of extracted phrases, we performed two data cleaning oper-
ations as follows – i) we retained only those phrases that had a length of at most
5, and ii) phrases with a score (returned by Rake) less than 5 were removed from
the set of candidate phrases. The main reason for using phrases instead of entities
or terms is because phrases capture the context better than entities. For exam-
ple, consider the phrase applications like robot navigation and robots using

new camera technologies retrieved for query computer vision. The phrases men-
tion entities from TeKnowbase such as robot navigation or camera. Additionally,
presence of terms, which are not entities in TeKnowbase, such as applications

and using indicate that these phrases are relevant for the application aspect for
computer vision, because they are modeled by our aspect-based retrieval model
[38].

Clustering Key-Phrases into Facets. The next step is to cluster these phrases
and obtain candidate facets. To generate semantically related clusters, we used
a bag of entities representation for the key-phrases along with bag of words. The
phrases were tagged with entities from TeKnowbase. Additionally, this set was
expanded by adding entities situated at a 1-hop distance from already tagged
entities in TeKnowbase. This was done to capture better context. Consider
the phrase using backpropagation extracted for artificial neural network. The
triple 〈backpropagation, type, algorithm〉 exists in TeKnowbase, so algorithm

exists in its 1-hop neighborhood and will be added to its feature set. So, it will
have high similarity to other phrases containing algorithm, and will likely appear
in the same cluster as them. Having such a representation, these phrases were
clustered into semantically related groups using agglomerative clustering algo-
rithm with complete linkage. The distance between the phrases was measured
using cosine distance.

2.2 Ranking of Facets

Modelling Facet Relevance. Given a query q, we address this problem by
defining a language model for the query as well as the facet. As already defined
in Sect. 2, a facet consists of prerequisites relevant for some aspect of the query.
So, it should contain terms that are found in prerequisites of the query, as well as
terms relevant for the query and the aspect. The challenge lies in identifying the
pre-requisites and the aspects for the query, and then modeling the relevance for
the query and the aspect. The facets should also contain items that are highly
similar to each other. So, the relevance is modeled by two components:

2 https://allenai.org/data/s2orc.
3 https://www.lemurproject.org/galago.php.
4 https://pypi.org/project/rake-nltk/.

https://allenai.org/data/s2orc
https://www.lemurproject.org/galago.php
https://pypi.org/project/rake-nltk/
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1) Query dependant facet relevance. This is denoted by PreFace(w|q).

PreFace(w|q) = λPreq(w|q) + (1 − λ)
∑

i

P (qi|q)P (w|q, qi), (1)

It consists of two components, Preq(w|q) and
∑

i P (qi|q)P (w|q, qi), which are
mixed using λ. These two components are described as follows:

i) Prerequisite probability. Preq(w|q) models the probability of a word w
appearing in a prerequisite for the query.
ii) Query and aspect probability. To be able to retrieve other concepts that
help understand other aspects of the query, we first have to identify these aspects.

After identifying the set of aspects A with qi ∈ A, the relevance of a term w for
q and qi is modeled using the technique proposed by us in [38]. The query and
the aspect component is represented by P (w|q, qi) and is modeled as follows:

P (w|q, qi) = γPind(w|qi) + (1 − γ)Pdep(w|q, qi) (2)

where Pind(w|qi) is the component determined by the aspect alone and
Pdep(w|q, qi) is the query dependent component, determined by both the query
and the aspect. γ is used to mix these two components.

2) Query independent facet relevance. The query independent facet relevance
models the relevance of the facet independent of the query. This is determined
by the quality of facet, dependent on the size of the facet and the strength of
the similarity between its items. A facet that contains a large number of similar
entities is more important than one that contains lesser number of entities, pro-
vided the strength of similarity between the two is the same. So, we first apply a
similarity threshold on the facets, and then use the size of the facet as a measure
of its quality. The query independent facet relevance is denoted by Q(f).

Algorithm 1: Probabilistic framework for PreFace (λ, τ, F, q)

S = ∅;
PreFace(w|q) = λPreq(w|q) + (1 − λ)

∑
i P (qi|q)P (w|q, qi);

f∗ = argmaxf∈FQ(f) ∗ 1
DKL(PreFace||Mf )

;

S = S ∪ {f∗};
while |S| < τ − 1 do

f∗ = argmaxf∈F\SQ(f) ∗ DKL(Mf ||MS)

DKL(PreFace||Mf )
;

F = F \ {f∗};
S = S ∪ {f∗};

end
return S
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Modeling Facet Diversity. Algorithm 1 describes the procedure for the rank-
ing of facets. It takes a query (q), the number of facets to be returned (τ), the
mixing parameter to combine the two components of Eq. 1 (λ), and the set of
candidate facets (F ) as input and returns a ranked list of facets S. It greedily
selects the best facet at each iteration that balances the trade-off between its
relevance to the query and dissimilarity to the facets already retrieved. The user
should be recommended facets that are diverse to one another. This means that
if a facet describing the algorithms for understanding artificial neural network

appears in the top-k position, it is desirable that it is not suggested again. This
is done by returning facets whose language model diverges the most from the
language model of already retrieved facets and least from the query. Each facet
is scored according to the following equation:

DKL(Mf ||MS)

DKL(PreFace||Mf )
=

∑
w Mf (w)log

Mf (w)

Ms(w)
∑

w PreFace(w)log PreFace(w)
Mf (w)

(3)

where Mf is the language model of a facet f and MS is the language model
representation of the set of facets already retrieved. DKL(Mf ||MS) is the KL
divergence between facet language model and the language model for the set
of facets already retrieved. DKL(PreFace||Mf ) is the KL divergence between
the language model for the query (PreFace(q)) and the language model for the
facet. The language model of a facet f and set S is described by the following
equations. These models are smoothed using additive smoothing techniques.

Mf (w) =
tf(w, f) + 1

length(f) + |V | (4) MS(w) =

∑
fi∈S tf(w, fi) + 1

∑
fi∈S length(fi) + |V | (5)

where tf(w, f) and length(f) is the frequency of w in f and number of terms
in f , respectively. In other words, greater the divergence between the language
model of the facet and language model of S, better is the facet and lower the
divergence between the query language model and the facet language model,
better the facet. The facets are re-ranked at each iteration, until the desirable
number (τ) of facets are retrieved using the following equation:

f∗ = argmaxf∈F\SQ(f) ∗ DKL(Mf ||MS)
DKL(PreFace||Mf )

(6)

where Q(f) is the quality of a facet. The facet retrieved at this position is
removed from the pool of candidate facets and added to S.

Estimation of Components. In this section, we describe the techniques to
estimate the probabilities that are used in our probabilistic framework.

Estimating Preq(w|q). This component models the probability of words likely
to appear in prerequisites of the query. To estimate this component, we can use
any standard prerequisite function from the literature. For our work, we used
the well-known prerequisite function, RefD (or reference distance) [22], because
it is a simple, unsupervised metric and gives good results. RefD takes two
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concepts as input and returns a score denoting the strength of the pre-requisite
relationship between them. We further identified the set of siblings Siblings(q)
of q (entities in TeKnowbase that share same parent in its taxonomy) and also
their pre-requisites to estimate Preq(w|q). At first, we computed Preqs(w|si)
for each sibling si of q in Siblings(q).

Preqs(w|si) =

∑
ek∈ent(w) RefD(ek, si)∑

ek∈C RefD(ek, si)
, RefD(ek, si) > thresh (7)

Then, Preq(w|q) is estimated as follows:

Preq(w|q) =
1

|Siblings(q)|
∑

si∈Siblings(q)

Preqs(w|si) (8)

where C is the concept space and ent(w) ⊂ C is the set of entities that contain
the term w in TeKnowbase. The intuition behind using a mixture of Preqs(w|si),
where si is an entity that shares the same parent as q is that siblings in TeKnow-
base taxonomy have similar prerequisites, and we can make our distribution more
accurate by including concepts that were not returned as prerequisites for q.

Estimating Query and Aspect Probability. The second component in Eq. 1 mod-
els the query and the aspect probability. To estimate this component, we first
have to identify the set A of aspects for q. As already described in Sect. 2, aspects
describe some subtopic for the query, which can be entities or relationships in
TeKnowbase. The key-idea used is to acquire entities from key-phrases and clus-
ter them into groups based on the graph structure of TeKnowbase and identify
a representative from each group to be used as the aspect. The procedure to
generate A is described as follows:

1) Acquiring set of entities. We tagged entities from TeKnowbase in the set
of key-phrases retrieved using the procedure described in Sect. 2.1 and obtained
the set of relevant entities E. Each e ∈ E was scored using the following formula:

score(e) = co occ(e, q)RefD(e, q), RefD(e, q) > thresh (9)

where co occ(e, q) counts the number of times e and q have appeared together
in a document across the top-1000 relevant documents retrieved for q. An entity
that frequently co-occurs with the query in relevant documents should be more
important to the query, so is assigned a higher score using this formula.

2) Using TeKnowbase entities as aspects. Having a set of entities E, we
have to partition it into groups such that each group is highly relevant to the
query as well as is semantically similar to each other. We can then choose a
representative from each group as an aspect for q. To do this, we used the links
in TeKnowbase and created an induced sub-graph G on TeKnowbase using the
set of entities in E and then applied the star clustering algorithm [2] on G to
cluster entities into groups. Star Clustering algorithm works on a graph and takes
a similarity threshold σ as input. It retains edges that have strength greater than
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σ and then clusters the nodes of the graph into groups. It is a greedy algorithm
that chooses the node with the highest degree first and assigns all its adjacent
nodes to its cluster. It repeats the procedure with other nodes that have not yet
been assigned to any cluster. In TeKnowbase, all links are assumed to have a
strength of 1, so σ was set to 1. We scored each cluster using the sum of scores of
its entities, given by:

∑
ci∈C score(ci), where score(ci) is the score of each entity

calculated using Eq. 9. From every top-10 scored clusters, we chose the highest
scored entity to be added to A.

3) Using TeKnowbase relationships as aspects. Apart from using entities
in TeKnowbase as aspects, we expanded the set by adding relationships from
TeKnowbase as aspects. We used the aspects that were used in [38] for query
q, namely algorithm, application and implementation. We also added type and
technique to the set of aspects A.

After generating the set of aspects A, we have to estimate P (q, qi) for each
qi ∈ A. As already described in Sect. 2.2, we used our previously proposed aspect
based retrieval [38] technique to model this component. The query independent
and dependent components of this model were estimated as follows:

1) Estimating Pind(w|qi). We estimated the query-independent aspect prob-
ability by explicitly querying for the aspect term alone and retrieving the top
documents. To further make our estimation accurate, we retained only those
documents that mention the aspect term in the title or abstract. Having this
set of documents D, we estimated the query independent aspect probability as
follows:

Pind(w|qi) =
1

|D|
∑

d∈D

tf(w, d)∑
w′∈d tf(w′, d)

(10)

where tf(w, d) is the frequency of w in a document d.

2) Estimating Pdep(w|q, qi). We estimated this component from both the search
results and TeKnowbase. To estimate this component from search results, we
explicitly queried for q and qi together and retrieved top ranked documents. To
further make our estimation accurate, we only retained those documents that
contained both the query and aspect terms in either the title or the abstract.
This probability was estimated as follows:

Pdocs(w|q, qi) =
1

|D′|
∑

d∈D′

tf(w, d)∑
w′∈d tf(w′, d)

(11)

where tf(w, d) is the frequency of w in a document d and D′ is the set of docu-
ments with each document containing the query and the aspect term both. We
also used TeKnowbase to further improve the accuracy of estimation. TeKnow-
base consists of entities connected to q via relation described by the aspect
qi. So, the words appearing in entities connected to the q via qi should also
be considered for estimation. For example, TeKnowbase consists of the triple
〈activity recognition, application, hidden markov model〉, which implies that
activity recognition can be suggested as a prerequisite for the application
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aspect. However, TeKnowbase is sparse and only using those links to estimate
this probability will not result in an accurate estimation. So, we used the app-
roach adopted in [38] for improving the estimation using meta-paths [34] in
TeKnowbase, which computes the probability DIei(ej) of two entities being
connected via the relation described by the aspect qi. This is used to estimate
PKB(w|q, qi) as follows:

PKB(w|q, qi) =
∑

e∈ent(w)

DIe(q) (12)

We then computed the query and aspect probability by mixing the probability
distributions given by Eq. 11 and Eq. 12. The final probability for query and
aspect, both, is given as follows:

Pdep(w|q, qi) = αPdocs(w|q, qi) + (1 − α)PKB(w|q, qi) (13)

3) Estimating P (qi|q). This models how important is the aspect qi to q. All the
aspects can be given equal probability or the probability can be proportional to
score(qi), described by Eq. 9. Given A, the set of aspects, the second component
of the final relevance equation is a linear combination of the query and aspect
probabilities, described as follows:

∑

i

P (qi|q)P (w|q, qi) (14)

The final relevance equation is a mixture of Eq. 14 and Eq. 8.

4) Ranking of facets. After estimating the query dependent probability of
terms given a query, we rank the facets according to Algorithm 1.

Item Ranking. After the facets have been ranked, we have to rank the enti-
ties in the facet to be shown as pre-requisites to the user. To do so, we first
identified a representative element re for each facet. We tagged entities in the
facet and chose the most frequently occurring entity as the representative. After
choosing the representative, we computed the score for each entity e tagged in
the facet as follows: freq(e)sim(e, re), where sim(e, re) is the normalized cosine
similarity between the vector representations of entities e and re. These vector
representations were obtained by training Node2Vec algorithm on TeKnowbase.
The entities in each facet are then ranked in decreasing order of this score.

3 Experiments

3.1 Setup

We experimented with the Wikipedia and the Open Research Corpus datasets.
The values of λ, γ and α were set to 0.5. thresh was set to 0. For every baseline,
we retrieved the top-5 facets for each query. Then, in each facet, the top 3 items
were shown to the users for evaluation.
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artificial neural network , backpropagation, collaborative filtering,
computer vision, conditional random field, context-sensitive grammar,
cross entropy, dimensionality reduction, generative adversarial networks,
genetic algorithm, gradient descent, hidden markov model, latent

dirichlet allocation, linear regression, logistic regression, optical

character recognition, pagerank, probabilistic context-free grammar,
question answering, recursive neural network, regular expression,
reinforcement learning, sentiment analysis, shallow parsing, singular

value decomposition, spectral clustering, speech recognition, statistical

machine translation, word-sense disambiguation, word2vec

Fig. 2. Benchmark queries

3.2 Benchmark Queries

We chose 30 queries from the set of topics released by [21] (listed in Fig. 2), which
is a set of concepts annotated with their prerequisites. We used these annotations
to measure the precision of prerequisites retrieved by our technique as well as
the baselines. We additionally conducted user-studies to evaluate the precision
of concepts that were retrieved but not already in that dataset. We restricted
ourselves to queries that have a Wikipedia page because the prerequisite function
RefD uses Wikipedia to compute reference distance between concepts.

3.3 Baselines

As already stated in Sect. 1, we can solve the two sub-problems separately using
existing state-of-the-art techniques, as in the baselines mentioned below:

1) QDMKB + RefD. QDMKB [18] is a state-of-the art facet retrieval tech-
nique for extracting facets from knowledge bases and search results. It improves
upon the results of its predecessor, QDMiner [8] and other state-of-the-art tech-
niques QF-I and QF-J [19]. QDMKB extracts first and second-hop properties
(or relationships the query participates in) for the query from the knowledge
base, assuming that each property is a candidate facet. It ranks them according
to the frequency of the entities appearing in the relevant documents. RefD is
a state-of-the-art prerequisite function already described in Sect. 2.2. We imple-
mented QDMKB and extracted facets for a query from TeKnowbase. Then, for
each facet, we retained only those entities that were returned as prerequisites
for the query according to RefD.

2) RefD + TKB. We can also retrieve facets for prerequisites of a query
by clustering them into groups. We used the links in TeKnowbase to cluster
the candidate prerequisites into meaningful groups. We tagged entities from
TeKnowbase in the top-1000 results. We then constructed an induced sub-graph
from these entities on TeKnowbase and applied star clustering algorithm [2] on
it, as described in Sect. 2.2. Each cluster was scored according to the following
equation. The clusters were then ranked according to score(C) (Eq. 15).
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score(C) =
∑

ci∈C

RefD(ci, q), RefD(ci, q) > thresh (15)

3) PreFace. This is our technique that extractes facets using TeKnowbase and a
corpus of research papers and then ranks them by representing them as language
models using Algorithm 1.

3.4 Evaluation Scheme

There are two components to evaluate – 1) quality of facets 2) quality of prereq-
uisites. Owing to the lack of a standard dataset for evaluation, we used human
evaluators (computer science researchers) to evaluate the generated facets. Top 5
facets with 3 items in each facet were shown to two evaluators (computer science
researchers) who evaluated it for its quality.

Evaluation of Facet Quality. To evaluate the quality of facets retrieved, we
conducted the following experiments. Each facet was evaluated for the quality
of clustering and ranking of facets. We used semantic similarity to measure the
quality of clusters retrieved by each technique and DCG (Discounted Cumulative
Gain) to measure the ranking of facets. The methodology to evaluate both the
qualities is described as follows:

Ranking of Facets. To evaluate the ranking quality, each user was shown a
representative item from each facet and asked if that item was relevant to
the query. For Preface, the entity that was most frequently occurring in the
facet was shown as the representative. For RefD + TKB, the representative was
the star centre of each cluster generated by the star clustering algorithm. For
QDMKB + RefD, we chose the item in the facet that obtained the highest score
for RefD. The relevance scores could be 0: not relevant at all, 1: somewhat rele-
vant, and 2: very relevant. We then used these scores to compute DCG values.

Clustering Quality. We have to evaluate the quality of facets generated by our
technique as well as the baselines. To judge the clustering quality, we asked the
user to score the similarity between other entities in the facet to the representa-
tive of the facet. The score could be 2: very similar, 1: somewhat similar, and 0:
not similar at all. For example, quadratic convex function and general smooth n-

onlinear function approximator are similar to each other because both are func-
tions, whereas algorithm and integer are not similar to each other. For PreF-
ace, we showed the top-3 items ranked according to the approach described in
Sect. 2.2. For RefD + TKB, we showed the top-3 entities scored according to
RefD scores that were added to the clusters after their star centres were cho-
sen. For QDMKB, top 3 entities ranked in decreasing order of their RefD scores
were shown. We computed the score for each pair and normalised the similarity
score so that it lies between 0 and 1.
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Evaluation of Prerequisites. Apart from evaluating the quality of facets,
we also have to evaluate the prerequisites retrieved by our technique. We used
the set of prerequisite concept pairs released by [21] as the ground truth. The
same items that were shown to the user for evaluating the quality of facets were
shown to be evaluated as prerequisites. Since the definition of our prerequisites
is broader than in earlier work, we performed a user study to judge the relevance
of prerequisites not present in the dataset. The top 5 facets were used for eval-
uation of prerequisite concept. Each prerequisite was annotated by 2 evaluators
(computer science researchers) with scores of 0 or 1. A score of 1 was assigned
if the prerequisite was judged to be relevant for the aspect described by the
representative item of that facet. In other cases, a score of 0 is assigned.

4 Results and Discussion

4.1 Results

Facet Quality. Table 2(a) shows the values for facet quality for all 3 techniques.
Our technique outperforms the baselines in retrieving better quality facets.

Table 2. Tables showing results for a) DCG and cluster similarity values for facet
ranking and facet quality, respectively, for all 3 techniques b) Precision of prerequisites
retrieved by PreFace and competing techniques.

Techniques DCG @5 Cluster

similarity

PreFace 5.80 0.95

QDMKB + RefD 4.26 0.80

RefD + TKB 5.56 0.77

Techniques Precision

PreFace 0.76

QDMKB + RefD 0.636

RefD + TKB 0.68

Clustering Quality. The average cluster similarity for our technique was
0.95, which is very high and the highest among other techniques. This was
possible because of the bag-of-words and entities representation of items
using TeKnowbase. QDMKB + RefD obtains a cluster similarity score of
0.8. The reason for it performing worse than PreFace is that not all the
facets returned by QDMKB + RefD contain semantically similar items with
respect to the query. For example, Table 3 shows the facets retrieved for
artificial neural network by all the techniques. QDMKB + RefD returns a
facet consisting of items machine learning, probability, hidden markov models

and decision tree. This facet was returned because all the items in the facet are
related to artificial neural network via the sequence 〈research(relatedTo),
artificial intelligence, techniquein inverse〉. Amongst these items, probab-
ility is not semantically similar to machine learning. So, all the sec-
ond hop properties may not lead to good quality facets. RefD + TKB
obtains a cluster similarity score of 0.77. The reason for the lower
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similarity value is that the semantics of relations are not considered
while clustering the entities. For example, for the same query, a facet
retrieved at 3rd position consists of computer science and matlab. Both
these items are not similar to each other, but have appeared together
because they participate in the following triples with programming language:
〈matlab, typeof, programming language〉 and 〈programming language, issoftwa-

re notations and tools(relatedto), computer science〉 in TeKnowbase.

Ranking Quality. The ranking quality of the facets is measured using DCG.
Our technique outperforms the baselines in ranking of facets. QDMKB + RefD
performs worse because it fails to retrieve at least 5 facets for all the queries.
RefD + TKB performs better than QDMKB + RefD. Overall, PreFace generates
much better facets as compared to its competitors.

Quality of Prerequisites. Table 2(b) shows the precision of retrieved prereq-
uisites. PreFace outperforms both the baselines by obtaining a precision of 0.76
across all queries. RefD + TKB comes second in retrieving prerequisites to our
technique because it uses RefD to construct facets. It obtains a precision of
0.68. QDMKB + RefD performs the worst because it returns few prerequisites
in each facet and the facet is also not relevant to the query. This shows that our
retrieval system is able to return better prerequisites than other techniques.

Table 3. Prerequisites retrieved for artificial neural network by PreFace,
QDMKB + RefD and RefD + TKB for top 6 facets

PreFace RefD + TKB QDMKB + RefD

neural network,
network model,
perceptron,
backpropagation

integer, turing machine,
information theory,
differential equation

software, theorem

genetic algorithm,
backpropagation,
optimization algorithm,
gradient descent

mathematics, statistics,
regression analysis,
statistical inference

machine learning,
probability,
hidden markov models,
decision tree

transfer function,
activation function,
linear, basis function

computer science, matlab,
fortran, natural

metaheuristic,
syntactic pattern reco-
gnition

computer security,
program,
laptop computer,
quantum computer

continuous function,
transfer function,
computable function,
integral

binary classification,
medical classification,
tumor, phoneme

probability distribution,
multiplication,
linear system,
impulse response

statistical software,
system software, octave,
matlab

machine learning,
artificial intelligence,
statistical estimation
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5 Related Work

While ours is the first attempt at retrieving faceted pre-requisites, both of these
techniques i.e., facet extraction and prerequisite determination have been inde-
pendently explored. Below we review both the approaches.

5.1 Facet Extraction

Extracting facets has been studied over a long time, using knowledge graphs
and/or search results. Below we list related work in each of these areas.

Facets are either pre-defined categories on the corpus or are built dynami-
cally based on the query. Among existing work that use static facet categories
are Ontogator [26] and mSpace [32] that use RDF graphs to annotate images
to facilitate faceted browsing. [27] developed BrowseRDF, that helps the user
browse an RDF graph by providing constraints to be applied on graph proper-
ties. They also proposed metrics to measure the quality of facets and rank them.
[14] helps a user answer complex queries using faceted search on Wikipedia. The
properties are extracted from Wikipedia info-boxes and displayed to the user for
further refining the results. gFacet [16] and VisiNav [15] are tools that provide
visualization of web of data supported with faceted filtering techniques using
RDF graphs and properties. [6] proposed a system to construct facet hierarchies
for a text corpus and then assign the documents to each of these facets. This is
different from our facets which are co-ordinate and not hierarchies.

Among the systems that generate facets dynamically are those that build
SPARQL queries on the fly to be executed on the respective SPARQL end-
points. [10] and [9] have used these approaches to build facets for a query. The
authors proposed QDMiner [8] to retrieve facets from search results by extract-
ing frequently occurring lists in relevant documents. These lists were extracted
from structured data in the documents, like HTML lists or tables. [18] proposed
QDMKB that improved the results generated by [8] by using FreeBase. Another
extension to QDMiner was done by [19] where they improved the quality of
facets generated by using a probabilistic graphical model. Both QDMiner and
QDMKB assume that the corpus is rich in meta-data, which is not always true.
The techniques that use knowledge bases to generate facets assume that they
are sufficient, which may not be the case for domain-specific graphs.

In the context of academic search, [11] built Scienstein that allows users to
search for papers using authors or reference lists apart from the usual keyword-
query search. These tools make use of the underlying structure of the cita-
tion graph as well as machine learning techniques on the document text. [7]
made an effort to provide faceted retrieval for research papers in computer sci-
ence. The facets were – publication years, authors or conferences. These facets
are different from aspects in our scenario. [3] proposed techniques to further
categorise the relationships between the query paper and the recommended
paper. These relationships are expressed in the form of facets like background,
alternative approaches, methods and comparisons. [5] used similar facets to



616 P. Upadhyay and M. Ramanath

summarize scientific papers. These facets are extracted by identifying the context
of the text surrounding the citation.

5.2 Prerequisite Determination

Among the techniques that determine prerequisites between a pair of concepts,
[35] used crowd-sourcing to create a gold standard dataset that was used to
train a classifier using features from Wikipedia. In [22], the authors proposed
RefD using frame semantics to compute prerequisites between concepts using
Wikipedia. In [31], the authors make use of Wikipedia clickstream data to build
the classifier. In [23], the authors used RefD to infer concept prerequisite rela-
tionships from course prerequisite pairs. They later proposed active learning
techniques to reduce the amount of training data in [24]. [12] proposed infor-
mation theoretic measures to determine dependencies between concepts in a
scientific corpus. In [28], authors trained classifier using lecture transcripts from
MOOCs to improve the prediction of prerequisite pairs. [41] proposed an opti-
mization framework to model prerequisite links among concepts as latent links
which can be used to infer prerequisite links between course pairs across universi-
ties. [30] proposed a neural model using siamese networks to improve prediction
of prerequisite relations. Supervised learning model has been used in [25] to
determine prerequisite relations by extracting high quality phrases from educa-
tional data.

A number of techniques have been proposed to present information in an
organized manner. These include generating hierarchies over document collec-
tions [20] or ordering documents in a sequence. [33] proposed metro-maps to
show the developments between research papers. [40] proposed methods to gen-
erate reading orders for a concept of interest in the domain of physics. [13] and
[17] proposed techniques to generate reading lists of research papers for a query.

Although a number of techniques exist that solve the two sub-problems inde-
pendently, to the best of our knowledge, there exists no other system that solves
both of these problems together.

6 Conclusion

In this paper, we developed PreFace, a system to automatically extract facets
together with prerequisites for a concept of interest. To the best of our knowledge,
ours is the first system that solves this problem. PreFace extracts facets using
TeKnowbase and a corpus of research papers and represents them as language
models. It then ranks them by balancing the trade-off between their relevance
and diversity. Our evaluation of the results shows that PreFace retrieves better
facets and prerequisites than state-of-the art techniques.
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Abstract. Automatically detecting semantic shifts (i.e., meaning
changes) of single words has recently received strong research attention,
e.g., to quantify the impact of real-world events on online communi-
ties. These computational approaches have introduced various measures,
which are intended to capture the somewhat elusive and undifferentiated
concept of semantic shift. On the other hand, there is a longstanding and
well established distinction in linguistics between a word’s paradigmatic
(i.e., terms that can replace a word) and syntagmatic associations (i.e.,
terms that typically occur next to a word). In this work, we join these
two lines of research by introducing a method that captures a measure’s
sensitivity for paradigmatic and/or syntagmatic (association) shifts. For
this purpose, we perform synthetic distortions on textual corpora that in
turn induce shifts in word embeddings trained on them. We find that the
Local Neighborhood is sensitive to paradigmatic and the Global Semantic
Displacement is sensitive to syntagmatic shift in word embeddings. By
applying the newly validated paradigmatic and syntagmatic measures
on three real-world datasets (Amazon, Reddit and Wikipedia) we find
examples of words that undergo paradigmatic and syntagmatic shift both
separately and at the same time. With this more nuanced understand-
ing of semantic shift on word embeddings, we hope to analyze a similar
concept of semantic shift on RDF graph embeddings in the future.

Keywords: Semantic shift detection · Paradigmatic associations ·
Syntagmatic associations · RDF embedding shift

1 Introduction

In the context of word meaning, linguistic theory has long since distinguished
between two fundamentally different types of word relations (e.g., [25,26]) that
even have been claimed to correspond to basic operations in the brain, cf. [6,
29]: Paradigmatic associations of a word w are terms that occur with the same
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context words as w (i.e., which can substitute w without changing the sentence’s
grammatical structure), e.g., “cat” and “dog”. Syntagmatic associations of a
word w are terms that co-occur with w, e.g., “cat” and “wild”. This notion is
transferable to knowledge representations such as RDF graphs: Paradigmatically
related entities would be those that can be replaced by each other (e.g., “cold” by
“sniffles” in a symptom-disease network). Syntagmatically related entities, would
be those that connect to each other in a network (e.g., “cold” and “coughs”).

On the other hand, popular methods for densely encoding word meaning for
computational use are word embeddings (e.g., word2vec or GloVe), which also
form the basis for important algorithms for knowledge graph embeddings [4,22].
When words or RDF graph entities change their meaning over time, text corpora
(resp. RDF graphs) from these time periods – and consequently the embeddings
trained on them – encode these semantic shifts. Several measures of seman-
tic (in-)stability, which can be used to infer meaning shifts from changes in
word embeddings, have been proposed in literature [11,12,16,17,30]. However,
it is currently unclear what exactly they are measuring in relation to paradig-
matic and syntagmatic associations. Thus, we evaluate different computational
approaches for detecting semantic shift in this paper. We define the semantic
shift of a word or entity as anything that affects its paradigmatic and syntag-
matic associations. While we focus on word embeddings in this paper, we see our
work also as a step towards analyzing changing knowledge graph embeddings in
the future [10,15].

Research Questions. In particular, we aim to investigate the following research
questions regarding word embeddings: (i) How can the sensitivity of semantic
shift measures to paradigmatic and syntagmatic shift be evaluated? (ii) What
are the differences in the measures’ sensitivity? (iii) Can both types of shift be
observed in real-world datasets and do they always co-occur with each other?

Approach. Based on theoretical considerations we perform a series of experi-
ments in which we synthetically modify a text corpus (similar to [28]) to induce
paradigmatic and/or syntagmatic shift. Then, we calculate word embeddings
on these corpora and check whether the measures detect the different types
of introduced shifts. We compare the performance of the different measures to
identify those that are best at detecting paradigmatic (syntagmatic) shift. We
apply those measures to detect words that underwent association shifts on three
real-world datasets and evaluate the relation between the two forms of shift on
them.

Results. By and large, our findings suggest that the Local Neighborhood is
sensitive to paradigmatic, and the Global Semantic Displacement is sensitive to
syntagmatic shift (both defined in [11]). Both types of shift occur in real-world
datasets. We find examples of simultaneous paradigmatic and syntagmatic shift,
paradigmatic without syntagmatic and syntagmatic without paradigmatic shift.

Contribution. We develop an evaluation framework of general semantic shift
measures on the basis of the longstanding linguistic distinction between different
forms of word associations. We demonstrate that the resulting forms of shift can
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⇒

(a) Paradigmatic distortion of the text
(left) and the resulting embedding shift

⇒

(b) Syntagmatic distortion of the text
(left) and the resulting embedding shift

Fig. 1. Examples of paradigmatic and syntagmatic shift. (a) illustrates a paradigmatic
shift of the word “refugee”: In the text, its paradigmatic association “displaced person”
is replaced by “migrant”. As a result, its nearest neighbors (NNs) in the embedding
change accordingly. On the other hand, the text in (b) demonstrates a syntagmatic
shift. Modifications of words co-occurring with “refugee” (e.g., “Syrian”) lead to a
shift in its embedding vector.

be inherently different. This contributes to a more nuanced understanding of
semantic shift mechanisms. This will enable future work to improve the explain-
ability of automatically detected semantic shift in word and RDF embeddings.

2 Related Work

This section discusses existing literature with respect to paradigmatic and syn-
tagmatic relations in computational approaches, the definition of semantic shift,
approaches to measuring semantic shift, and the performance of such measures.

For word space models, several considerations have been made with regard to
paradigmatic and syntagmatic relations (see [25,27,31]): Sahlgren concludes that
word space models based on either paradigmatic or syntagmatic relations capture
different semantic properties. Sun et al. [31] also emphasize that it is important
to capture both relations to represent linguistic properties. To our knowledge,
association shifts have not been considered before. In this work, we provide
empirical evidence for Hamilton et al. [11]’s theory that the Local Neighborhood
is more sensitive to shifts in a word’s paradigmatic than syntagmatic relations.

To our knowledge there exists no unambiguous definition of semantic shift
(for computational use). Most previous work on automatic semantic shift detec-
tion does not define semantic shift (e.g., [11,12,24,32]) or defines it circularly
(e.g., in [9,18,28]). Linguists seem to use a similar approach (e.g., [1,2,33]). There
are some attempts at further isolating this elusive concept by giving explicit
examples of what a semantic shift should not be (e.g., non-seasonality in [28]).

Regarding the quantification of semantic shift, the state-of-the-art methods
are based on word embeddings (e.g., [19]), which are subject to some inher-
ent drawbacks (c.f. [32]). Several detection approaches are utilized on them
(c.f. [18]): Neighborhood-based approaches compare the nearest neighbors of
a word between two time steps (e.g., [8,11,21]). Another group of common
measures calculate the cosine similarities between the word vectors of different



622 A. Wegmann et al.

embeddings (e.g., [11,14,16]). For this, embeddings are first made comparable,
e.g., by using previous results for embedding initialization (e.g., [16]) or by align-
ing embeddings after training them individually (e.g., [17]). Shoemark et al. [28]
find that aligned perform better than continuously trained embeddings.

Kim et al. [16] identify “interesting” shift words by selecting those with the
lowest similarity between the first and last embedding of the series. Others make
use of different correlation measures (e.g., [12,28]). Kulkarni et al. [17] search
for the words with the biggest mean similarity shift before and after a detected
shift point. Jatowt et al. [14] include word frequency in this consideration.

With respect to evaluating the performance of semantic measures, quantify-
ing the effect of noise (see [20,34]) can be a first step (e.g., [7,17,28]). Others rely
on human-annotated lists or qualitative human evaluation (e.g., [11,12,16,23]).
An increasingly popular approach is to use a form of synthetic evaluation (e.g.,
[17,24,28]). Rosenfeld et al. [24] expand the donor-receptor approach (see [17])
by modeling a gradual change from one meaning to another. Shoemark et al.
[28] validate the measures in separate experiments - those where the measure
should not and those where they should detect semantic shift.

3 Semantic Shift

Next, we define semantic shift, semantic measures for comparing two embeddings
and an approach for detecting interesting shifts on diachronic embeddings.

3.1 Paradigmatic and Syntagmatic Shift

The contextual normality approach, cf. [5], expresses that anything that affects
the way a word is normally used contributes to its meaning. According to struc-
turalist theories, the only types of relations between words are syntagmatic and
paradigmatic (cf. [25,26]). Consequently, we define a semantic shift of a word as
anything that affects its syntagmatic or paradigmatic associations (see Fig. 1).

General Problem Definition. The goal of semantic shift detection is usually
generalized as studying a word w over several texts T1, ..., Tk in time sensitive
order. For this, we use word embedding algorithms to train dense d-dimensional
representations of words. For a text Ti, we denote the word embeddings obtained
this way as Ei. Intuitively, the vector for word w in embedding Ei (i.e., a single
column in the embedding matrix) represents semantic properties of the word w
in text Ti. In this paper, we want to identify measures that can quantify paradig-
matic (syntagmatic) shifts. For an arbitrary word w and two texts T1 and T2, an
ideal measure of paradigmatic (syntagmatic) shift satisfies the following: (i) Its
range is [0, 1]. (ii) At a value of 0 the paradigmatic (syntagmatic) associations of
w in T1 and T2 have nothing in common. (iii) At a value of 1 the paradigmatic
(syntagmatic) associations are the same. (iv) The values between these extremes
change linearly with the shift in the paradigmatic (syntagmatic) associations.
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Fig. 2. Illustration of a Shift Mask. The Shift Mask [1, 0, 1, 1, 1, 1] for years 0–6 is
displayed. Here, we would be interested in words that undergo a significant change in
year 2, and only in year 2. The words that match this mask most closely might have
consecutive measure values that are similar to the blue curve.

3.2 Measuring Semantic Shift

To identify approximations of such an ideal measure, we investigate measures
from literature and introduce adaptations thereof. Different to the cited litera-
ture, we use cosine similarities and not cosine distances (i.e., 1 - cosine similarity).

Global Semantic Displacement. Hamilton et al. [12] define the Global
Semantic Displacement (SD). They use an embedding alignment approach by
solving the Orthogonal Procrustes Problem. Then, the cosine similarity between
the aligned word vectors of the word w is calculated.

Local Neighborhood. Another approach to this task is the Local Neighborhood
(LN) (see [11]). It computes semantic shift via the k nearest neighbors of the
word. More precisely, it is defined as the cosine similarity of the vector of cosine
similarities between w and its k nearest neighbors in E1 and E2 respectively. As
suggested, we use k = 25 throughout this work (cf. [11]).

Angle-Transitioned Local Neighborhood and Semantic Displacement.
The Global Semantic Displacement and the Local Neighborhood both utilize
the cosine similarity between word vectors. As a result, they are not linear
with regard to the change in the included angle. Still, the included angle might
change linearly with the paradigmatic (syntagmatic) shift. We propose the
angle-transitioned Semantic Displacement (f(SD)) and the angle-transitioned
Local Neighborhood (f(LN)). These can be computed by the function f(x) =
1 − 1

90 · arccos(max(x, 0)). It computes the relative size of the angle, when x is
the cosine similarity of the vectors. We assume that every angle over 90◦ already
indicates a maximal semantic distance between two word vectors.

3.3 Detecting Diachronic Semantic Shift

Let us assume that we know an ideal paradigmatic (syntagmatic) measure. Then,
in a diachronic embedding series E1,...,Ek, we want to detect words that under-
went an “interesting” shift:

First, we define (a) the consecutive measure values for a word w as all the
measure values for w between two subsequent embeddings of the diachronic
series, i.e., Ei and Ei+1 for an i ∈ {1, ..., k − 1} and (b) the reference measure
values for a word w as all the measure values for w between the first and every
other embedding of the diachronic series, i.e., E1 and Ei for i ∈ {2, ..., k}.
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Then, to find specific shift behavior, we compare these values with a user-
defined desired shift : It consists of (i) the considered type of shift (i.e., paradig-
matic or syntagmatic), (ii) the shift intervals (i.e., intervals in which the seman-
tic shift should occur) and (iii) the desired shift development (i.e., whether the
words should develop towards a new or back towards their original meaning).
(ii) is given by a Shift Mask (i.e., a series of k − 1 values that are 0 for the shift
interval and 1 otherwise), see Fig. 2. The comparison of the desired shift with
the actual paradigmatic (syntagmatic) measure behavior of every word w takes
place in two steps: (1) comparing the consecutive measure values of w and the
shift mask (see Fig. 2) and (2) comparing the reference measure values of w and
the desired shift development. The comparisons could, for example, take place
via a mean squared error, a Pearson Correlation or a threshold.

4 Simulating Semantic Shift

This section introduces a framework for simulating semantic shifts via five dif-
ferent types of synthetic corpus distortions, which we will call attacks. The core
idea is based on the donor-receptor approach, where the donor “donates” its
place in the corpus to the receptor word with a given probability (cf. [17]).
We compare three different semantic (Paradigmatic Attack, Syntagmatic Attack,
Combined Attack) and two baseline attacks (Baseline - No Change, Baseline -
Random Attack). We give an overview of the semantic attacks (cf. Table 1) and
the expected embedding change (cf. Fig. 3), where p signifies the extent of the
distortion.

Table 1. Overview of semantic attacks. For every attack, we summarize the words
affected by the introduced shift and what an ideal measure would detect.

Attack simulates shift on words ideal measure

Baseline - No no any constant at 1.0

Baseline - Random no donor constant at 1.0

Combined parad. and syntag receptor linear with 1
1+p

Parad parad donor linear with 1
1+p

Syntag syntag receptor linear with 1 − p

4.1 Baseline

No Attack. As a simple baseline, we train multiple embeddings on the same
corpus. Variations result from the inherent instability of the embedding algo-
rithms.

Random Attack. Additionally, we test robustness of measures under no asso-
ciation shift for the considered word but significant shift in other words:
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(a) Random (b) Combined (c) Paradigmatic (d) Syntagmatic

Fig. 3. Textual distortions and the expected embedding change resulting from different
attacks. In the first row examples of textual distortions with p = 1/2 are displayed. For
this purpose, “refugee” refers to the donor and if necessary, “dog” to the receptor with
“cat” being its only paradigmatic association. In the second row, the expected embed-
ding changes are displayed. These are the result of our intuitive understanding of the
mechanisms behind word embeddings and purely displayed for illustrational purposes.
Here, NNs refers to the nearest neighbors to the donor or receptor word. In Baseline -
Random Attack, only sentences with the donor and the paradigmatic associations of the
donor stay the same. In Combined Attack, the occurrences of the donor are replaced by
the receptor. In Paradigmatic Attack, the receptors increasingly occur with the context
words of the donor. In Syntagmatic Attack, the original co-occurrences of the receptor
and its paradigmatic associations are replaced by the donor’s.

For a donor (word) d and a bijection B : V ocabulary → V ocabulary, we
define the Random Distortion R(T, d, k, p,B) of a text corpus T to be T ′ where
each word v is replaced by B(v) with probability p. We additionally restrict the
distortion to only those sentences where neither d nor any of its k closest paradig-
matic associations occur (we denote this set of words as W ). Consequently, the
distortion induces no syntagmatic or paradigmatic shift for d (e.g., Fig. 3a).

We arrange every word in the corpus in an interval between 0 and 1 accord-
ing to frequency. We select 10 donor words per frequency interval in {[0.1, 0.2],
..., [0.8, 0.9]}, leaving out the 10% most frequent and least frequent words. The
bijection B is chosen randomly on V \W . We set k = 50 as we assume all paradig-
matic associations to be among the first 50 paradigmatically related words. We
calculate the embeddings on R(T, d, k, p,B) for all p ∈ {0.1, 0.2, ..., 1.0}.

In the resulting embedding series, the position of the donor and its nearest
neighbors is expected to stay the same as, by design, their co-occurrences do not
change. With increasing p, every other word should be subject to substantial
position change (cf. Fig. 3a).

4.2 Combined Attack

We test whether the measures can detect any, syntagmatic or paradigmatic,
shift:
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For a donor d and a receptor word r, we define the Paradigmatic and Syntag-
matic Distortion PS(T, d, r, p) of a text corpus T to be T ′ where every occurrence
of the donor d is replaced by the receptor r with probability p. Consequently,
the receptor word undergoes syntagmatic as well as paradigmatic shift (e.g., Fig.
3b).

We randomly select 10 word pairs from each frequency interval in {[0.1, 0.15],
..., [0.85, 0.9]}. Therefore, we consider 160 (donor, receptor)-pairs in total. We
calculate the embeddings on PS(T, d, r, p) for all p ∈ {0.1, 0.2, ..., 1.0}.

Due the frequency-based selection procedure, we assume the number of sen-
tences n in which d occurs in to be approximately equal to the number that r
occurs in. Then, 1

1+p = n
n+p·n equals the share of the receptor’s occurrences in

its original sentences (i.e., with its original paradigmatic/syntagmatic associa-
tions). The reference values of an ideal measure of paradigmatic (syntagmatic)
shift should be linear with this fraction for the receptor. The donor word should
undergo minor syntagmatic shift up until a point from which it drastically dete-
riorates to 0 as it does not occur in PS(T, d, r, p) for p = 1. Its paradigmatic
change might be significant with the function 1

1+p . The paradigmatic associations
of the donor and receptor word could also undergo some minor change with the
shift of the receptor and donor word. This could lead to a worse performance
in the altered words prediction of a paradigmatic compared to a syntagmatic
measure.

In the resulting embedding series, we expect the receptor representation to
develop towards the original donor representation with increasing p (cf. Fig. 3b).

4.3 Paradigmatic Attack

We test whether the measures can pick up on paradigmatic association changes:
For a donor word d, l receptor words (r1, ..., rl) =: r and probabilities p :=

p1, ..., pl ∈ [0, 1], we define the Paradigmatic Distortion P (T, d, r, p) of a text
corpus T to T ′. In T ′, for every sentence d occurs in and for each receptor word
ri, a new sentence is added with probability pi in which every occurrence of d
is replaced by ri. Consequently, we induce a paradigmatic but no syntagmatic
shift of the donor by adding sentences (e.g., Fig. 3c).

We randomly select 10 (donor, receptors)-pairs per 0.05 frequency interval
from 0.1 to 0.9, i.e., 160 donor words in total. We set l = 10 as we assume
the changes in the 10 closest paradigmatic associations to be significant for d.
We introduce increasing changes in 10 consecutive steps i. We set pj in step
i to δj,min(i,j), where δ is the Kronecker Delta. As a result, the 10 receptor
words successively become the new closest paradigmatic associations of the donor
word. For consistency, we will also refer to the different steps with p = i/10
for p ∈ {0.1, ..., 1.0}. We calculate the embeddings on P (T, d, r, p) for all p ∈
{0.1, 0.2, ..., 1.0}.

The paradigmatic change of the donor as well as the receptor words should
be linear with 1

1+p = 1
1+i·(1:l) = nl

nl+n·i for step i. This formula represents the
share of occurrences of the l = 10 receptor words in their original sentences.
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In the resulting embedding series, we expect the receptor representations
to successively develop towards the donor representation, therefore altering the
donor’s nearest neighbors (cf. Fig. 3c).

4.4 Syntagmatic Attack

Finally, we describe a test for whether measures can detect syntagmatic changes.
Here, we aim to distort the corpus such that the syntagmatic shift is significant
for the considered word, while the paradigmatic shift for the same word is smaller
or non-distinguishable from a larger set of words:

For a probability p ∈ [0, 1], a donor d, and a receptor r, we define the Syn-
tagmatic Distortion S(T, d, r, p, k) of the text corpus T to be T ′ where, for every
sentence d occurs in, the sentence is added k + 1 times with probability p. Here,
d is replaced by r or its ith paradigmatic association ni respectively for i ≤ k.
Moreover, for each original sentence r occurs in, r is deleted from the sentence
with probability p, leaving it “incomplete”. Similarly, for each original sentence
where ni occurs in, it is deleted with probability p/2. Thus, we introduce a syn-
tagmatic as well as a substantially less pronounced paradigmatic shift for r by
adding and altering sentences d, r or ni occur in (cf. Fig. 3d).

This is done for overall 32 donors – 4 out of each frequency interval in
{[0.1, 0.2], . . . , [0.8, 0.9]}. We set k = 25 as we assume that the 25 closest paradig-
matic associations include the most relevant. We chose to use significantly less
pairs and k < 50 as for each donor word k + 1 new sentences are added and,
additionally, any sentence where r or ni occur in are altered. This changes the
original corpus exponentially more than before. We calculate the embeddings on
S(T, d, r, p, k) for all p ∈ {0.1, 0.2, ..., 1.0}.

r undergoes the greatest syntagmatic shift among all words, since its original
occurrences decrease with 1 − p. As a result, the syntagmatic change of r is the
most correlated with 1 − p. The syntagmatic shift of its original k paradigmatic
associations is also related to 1 − p. d, r as well as the ni undergo paradigmatic
shift. However, the paradigmatic shift for r should be considerably smaller than
its syntagmatic shift as we perform similar changes for its paradigmatic associ-
ations.

The position of the receptor representation is expected to shift to the previous
donor position (see Fig. 3d). The nearest neighbors of the receptor word should
shift towards it as well but also stay between the original donor and receptor
representation.

5 Experiments

This section describes our experimental setup and results.
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5.1 Datasets and Training

We work with three different datasets: Firstly, the Reddit comments and sub-
missions from 2012–20181. Secondly, the “aggressively deduplicated” Amazon
reviews data from May 1996 - July 2014 (cf. [13]). Thirdly, the Wikipedia snap-
shots from 2014–20182. We converted each character to lowercase and filtered
out URLs. We removed each non-alphanumeric symbol and treated them as sep-
aration between words, i.e., conversion of “i’ve” to “i” and “ve”. We assume
that, simple tokenization works comparably well (cf. [3]). For all experiments,
we use the 2012 Reddit corpus with about 8.8 billion words, the 2014 Amazon
review corpus with about 1 billion words and the 2016 Wikipedia snapshot with
about 2.5 billion words as a basis. We call these corpora the basis corpora.

We use the multi-threaded Python framework gensim to train word2vec
embeddings in the faster CBOW variant and negative sampling at 5 (cf. [19]).
CBOW and negative sampling perform better for frequent than infrequent
words3. We use 300 dimensions and a general min count of 60. The number
of epochs is chosen at 4. All other parameters are left at their default values.

5.2 Approach

We test whether the synthetically distorted words (see Sect. 4) can be detected by
the different measures. As the words consistently change more with increasing
p, we skip (1) of the approach detailed in Sect. 3.3. Consequently, we assume
that (1) returned all words as candidates that could match the induced form of
shift. In (2), for every measure, we predict the synthetically altered words by
identifying those that have the highest Pearson Correlation with the expected
shift (i.e., 1

1+p or 1 − p, cf. Table 1). We perform the evaluation via an accuracy
curve, i.e., the share of the correctly predicted words out of the actually changed
words (cf. [17,28]).

5.3 Outcome

Representative results on the Reddit data for this approach are shown in Fig.
4. Results for the other datasets were equivalent. Key observations (in bold)
include:
All measures detect a form of paradigmatic or syntagmatic shift. The
results of the Combined Attack show that all measures detect a form of paradig-
matic and/or syntagmatic shift (see Fig. 4c). SD and f(SD) are even behaving

1 Baumgartner, J.: Reddit dataset, https://files.pushshift.io/reddit/, (accessed on
2019-09-25.

2 wikimedia: wikipedia snapshots on archive.org, https://archive.org/download/
enwiki-20150112, https://archive.org/download/enwiki-20160113, https://archive.
org/download/enwiki-20170101, https://archive.org/download/enwiki-20180101,
https://archive.org/details/enwiki-20190120, (accessed on 2019-09-25).

3 google: word2vec documentation, https://code.google.com/archive/p/word2vec/,
(accessed on 2019-09-25).

https://files.pushshift.io/reddit/
https://archive.org/download/enwiki-20150112
https://archive.org/download/enwiki-20150112
https://archive.org/download/enwiki-20160113
https://archive.org/download/enwiki-20170101
https://archive.org/download/enwiki-20170101
https://archive.org/download/enwiki-20180101
https://archive.org/details/enwiki-20190120
https://code.google.com/archive/p/word2vec/


Detecting Different Forms of Semantic Shift 629

mean ≈ 0.997
σ ≈ 0.015

mean ≈ 0.879
σ ≈ 0.081

(a) No Attack (b) Random Attack

(c) Combined Attack (d) Paradig. Attack (e) Syntag. Attack

Fig. 4. Experimental results on Reddit data. (a) shows heatmaps of the relative sorted
frequency for every word (rel count, where 1 is most frequent) and its mean semantic
shift according to LN and SD. Overall distributions are shown at the side and the
top of the plot. (b) displays the average measure values over the unchanged words for
each step. LN stays closest to the ideal constant value of 1.0. For the semantic attacks
(c,d,e), the accuracy curve shows the share of the altered words that were correctly
predicted by the Pearson Correlation. The dotted black line shows the ideal measure
behavior. All measures are able to measure syntagmatic and/or paradigmatic shift but
to a varying extent. For the Combined Attack and Syntagmatic Attack (c,d), SD and
its angle-transitioned variation f(SD) perform the best. By contrast in d), LN and its
angle-transitioned variation f(LN) are the best at detecting the induced paradigmatic
shifts.

close to linear with the expected paradigmatic and syntagmatic change of 1
1+p .

In Sect. 4.2, we expected the paradigmatic shift to correlate with more than just
the receptors. Therefore, LN and f(LN) could be less accurate because they are
more paradigmatic measures.

The LN-Measures Perform Best at Detecting Paradigmatic Shift.
f(LN) and LN are the best at detecting paradigmatic shift (see Fig. 4d). f(SD)
and SD do not pick up on paradigmatic shift at all. The upper limit of the x-axis
is at 160 · (1 + 10) = 1760 as not only the donor but also the receptors change
paradigmatically (cf. Sect. 4.3). Surprisingly, for LN-based measures, there is a
plateau reached after the first 160 predicted words. A potential reason for this
is that the measures cannot detect finer paradigmatic changes for some (donor,
receptors)-pairs that had a lower starting angle.

The SD-Measures Perform Best at Detecting Syntagmatic Shift. As
seen in Fig. 4c, the SD-based measures seem to change linearly with the intro-
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duced paradigmatic and/or syntagmatic shifts. Additionally, we discovered that
they do not detect paradigmatic shifts at all in Fig. 4d. Therefore, they must
be able to detect syntagmatic shifts considerably well. The Syntagmatic Attack
confirms this (see Fig. 4e). We look at the first 832 = 32 ·(1+25) ranks as the 25
nearest neighbors (chosen as an approximation for the paradigmatic associations,
see discussion) of the receptor word also change syntagmatically as discussed in
Sect. 4.4. f(SD) and SD behave the best at detecting syntagmatic changes, while
LN and f(LN) do not detect them at all.

f(SD) is Noisier than SD and f(LN) is Noisier than LN. We studied
whether the measures can pick up on paradigmatic (syntagmatic) changes. But
what if there is neither? The results of the Baseline experiments show that LN is
more robust than SD under no association changes (cf. Fig. 4a–4b). For Baseline
- No Attack (in Fig. 4a), all measures perform well for the most frequent words
and considerably worse for the least frequent words. LN performs the best and
f(SD) the worst, while f(LN) behaves better than the SD-variations. The plots
for f(LN) and f(SD) are left out as they are monotone distortions LN and SD.
Due to the chosen linearization approach, they are a lot more sensitive to the
random differences between word embeddings trained on the same corpus. This
noise seems not to be worth the small advantage (see Fig. 4e) of having a linear
change measure. The results for Baseline - Random Attack (see Fig. 4b) are
comparable.

Overall, we conclude that SD is the best measure for detecting syntagmatic
and LN is the best measure to detect paradigmatic shift.

Table 2. Top 3 syntagmatic and paradigmatic shift words. The overlap specifies the
number of the top 5 most changed words according to one measure that are contained in
the top 25 words of to the other. Words do not undergo paradigmatic and syntagmatic
shift to the same extent.

Shift in Top-3 syn. shift words Top-3 para. shift words overlap

never songs, get, story 1991, 1975, 1973 0 0

2007 kindle, plastics, leopard kindle, hg, reroute 2 1

2012 insurgent, vita, g5 vita, bared, marquee 2 4

Amazon reviews from 2005 to 2014

never cdotas, pidamente, abdomen 01100011, 01100100, 01110101 0 0

2014 braum, oras, 20ex w33, triche, oras 2 1

2016 ladybonersgw, nougat, trumper grubbin, coolheaded, tdil 1 1

Reddit from 2012 to 2018

never jeandat, subsidiaries, migrate 1885, 1842, 13 0 0

2016 attd, andp, binaria sanep, thrret, wk14 4 2

2017 vlindernet, 14px, dcrj intret, kilmainemore, pastorally 2 0

Wikipedia from 2014 to 2018
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(a) Syntag. Shift for “fifty”
on Amazon

(b) Paradig. Shift for
“blighttown” on Reddit

(c) Synchronous Shift for
“kindle” on Amazon

(d) Syntag. Shift: “fifty” in
11 vs. 12

(e) Paradig. Shift: “blight-
town” in 13 vs. 14

(f) Joint Shift: “kindle” in
06 vs. 07

Fig. 5. Conflicting and synchronous behavior of the paradigmatic and syntagmatic mea-
sures. Plots in the first row display consecutive (continuous line) and reference (dashed
line) point values of the paradig. and the syntag. measure. Plots in the lower row show
the t-SNE projection of embeddings before (grey) and after the shift (blue dots). Green
words were not present in the previous year. “fifty” has a syntagmatic but no paradig-
matic shift point in 2012. The nearest neighbors of “fifty” stay the same, the vector
however moves away from its original position (blue arrow) similar to Fig. 1b The
word “blighttown” exhibits a paradigmatic shift between 2013 and 2014. “blighttown”
and its former nearest neighbors stay at a similar position, but new words appear. The
measures synchronously detect a change for “kindle”. The “kindle” vector moves out of
the previous nearest neighbors in 2006 towards new nearest neighbors in 2007. (Color
figure online)

6 Application Examples

We use the our new insights to detect paradigmatic and syntagmatic shifts in
real world data, i.e., the Amazon, Reddit, and Wikipedia corpora. Based on our
previous results, we utilize LN as the paradigmatic and SD as the syntagmatic
measure. We define the shift interval of the desired shift (cf. Sect. 3.3) as an
empty or one point interval (i.e., words with one shift point or none at all). We
detect the most interesting words as those with the lowest mean squared error
to the desired shift mask. We observe the following key findings:

A Word Can Undergo Paradigmatic and Syntagmatic Shift to Differ-
ent Extent. For example, the number of words that were among most shifting
words in a given year according to the paradigmatic (syntagmatic) measure and
also are within the most shifting 25 according to the syntagmatic (paradigmatic)
measure is consistently less than 5 (cf. overlap in Table 2). The overlap is 0 for
no shift points: LN mostly detects (year) numbers and SD detects nouns and
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verbs as the most constant words. A reason for this could be that the position of
a year in a sentence is rather unique, while the exact words it occurs with (i.e.,
syntagmatic associations) change. We give two examples of words undergoing
paradigmatic and syntagmatic shift to different extent:

The word “fifty” (see Fig. 5a) is the 16th matched word to the shift mask
introducing change in 2012 on the Amazon reviews corpus for the syntagmatic
measure. The paradigmatic measure does not display any meaningful shift as the
closest paradigmatic associations stay the same (“twenty”, “sixty”, ... in Fig. 5d).
The t-SNE projections in Fig. 5 were calculated via the 200 nearest neighbors of
the considered word (similar to [12]). The syntagmatic change probably occurred
because of the published print of Fifty Shades by E. L. James in 20124. This
assumption is based on the fact that the search of “fifty” returns Fifty Shades
products on Amazon5 and it is to be expected that there have been many copies
of the bestselling book sold via Amazon in its publishing year.

The word “blighttown” (see Fig. 5b) underwent significant paradigmatic but
no syntagmatic change. We detected it by selecting for words with a low Pear-
son Correlation between the reference measure values of the paradigmatic and
syntagmatic measure. The paradigmatic curve shows a shift in 2014, the syntag-
matic measure does not. “blighttown” is the name of an area in the video game
Dark Souls. In 2014, Dark Souls II was released with the new areas “shulva”6 and
“fofg” (short for “Forest of Fallen Giants”7), which correspond to new nearest
neighbors of “blighttown”. The position of “blighttown” and the other nearest
neighbors did not change (cf. Fig. 5e).

Words with an Extreme Shift in One Measure Follow a Similar Trend
in the Other. The Pearson Correlation of the paradigmatic and syntagmatic
reference measure values for the words in the top 25 is mostly moderate to high
(above 0.2). Therefore, although different words are predicted for the greatest
paradigmatic vs. syntagmatic changes, it is still likely that words with an extreme
shift in one measure also undergo a shift in the other. For example, the word
“kindle” is the first predicted word for the shift point in 2007 for both measures
(plot see Fig. 5c). The Amazon kindle was introduced in 2007.

7 Discussion

In the following, we address potential criticism and limitations of our work:

“Paradigmatic (syntagmatic) shifts are not necessarily semantic shifts according
to common understanding” Words like “christmas” are talked about differently
4 Wikipedia: Fifty shades of grey, https://en.wikipedia.org/wiki/Fifty Shades of Grey

(accessed on 2019-10-14).
5 Amazon: amazon search for “fifty”, https://www.amazon.com/s?k=fifty&ref=nb

sb noss (accessed on 2019-09-18).
6 Darksouls.fandom.com: Shulva, Sanctum City, https://darksouls.fandom.com/wiki/

Shulva, Sanctum City (accessed on 2019-09-30).
7 Darksouls.fandom.com: Forest of fallen giants, https://darksouls.fandom.com/wiki/

Forest of Fallen Giants (accessed on 2019-09-30).

https://en.wikipedia.org/wiki/Fifty_Shades_of_Grey
https://www.amazon.com/s?k=fifty&ref=nb_sb_noss
https://www.amazon.com/s?k=fifty&ref=nb_sb_noss
https://darksouls.fandom.com/wiki/Shulva,_Sanctum_City
https://darksouls.fandom.com/wiki/Shulva,_Sanctum_City
https://darksouls.fandom.com/wiki/Forest_of_Fallen_Giants
https://darksouls.fandom.com/wiki/Forest_of_Fallen_Giants
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in December than in April due to seasonal variations. Arguably there has also
been a shift in the way people use “refugee” after 2015. Are those types of shifts
semantic shifts? According to our approach they are. According to the common
rather fuzzy understanding, they are probably not. We still decided for those
types of changes to be defined as semantic shift as they describe interesting
societal dynamics and changes in the way people think about different concepts.
“Measure shifts do not necessarily occur due to paradigmatic or syntagmatic
shift” We showed that paradigmatic (syntagmatic) shifts lead to measure shifts.
We partly evaluate the reverse with the baseline experiments. We recommend
the addition of further experiments (e.g., for word frequency as done in [28]).

“There are regularities in the types of words that are changing the most.”
We did not statistically evaluate which word types are prevalent. However, LN is
more sensitive to changes in nouns than SD (see [11]). This could be connected to
the paradigmatic vs. syntagmatic association distinction: Nouns are more likely
to undergo “cultural shift” (see [11]). As a result their paradigmatic associations
might be completely replaced while syntagmatic associations stay more constant
(due to, e.g., co-occurring verbs and grammatical forms).

“Paradigmatic associations in texts might not be the same as the nearest
neighbors in embeddings” In (a) Baseline - Random Attack and (b) Syntagmatic
Attack, we assume that the closest paradigmatic associations of a word have
a significant overlap with its nearest neighbors in the embedding. This is an
intuitive assumption since the positions of the word vectors should mostly be
determined by their syntagmatic associations. The results from the Paradigmatic
Attack, which was performed independently from (a) and (b), also make this
assumption reasonable: LN, which calculates shifts via nearest neighbor changes,
performed the best at detecting paradigmatic association changes.

“There is not only syntagmatic shift introduced in the Syntagmatic Attack”
In designing the Syntagmatic Attack, we found no simple method to syntheti-
cally introduce the same kind of syntagmatic shift for a group of words without
introducing similar paradigmatic shift for a subset of this group as well. This is
because as soon as a syntagmatic change to a word w is introduced, the previous
paradigmatic associations are less strongly related to w than before. Altering
those paradigmatic associations again introduces syntagmatic change.

“The synthetic corpus changes might introduce unwanted association shifts”
We add several sentences with nearly the same words or remove single words
from sentences in the Paradigmatic and the Syntagmatic Attack. Here, we want
to only introduce syntagmatic change to one word. The other words in the added
sentences also undergo syntagmatic change. However, we assume this effect to
be negligible since most co-occurrences stay the same.

8 Conclusion

In this work, we introduced an operationalization of semantic shift via paradig-
matic and syntagmatic associations. We studied a variety of measures in their
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abilities for detecting and discerning between paradigmatic and syntagmatic
shifts. We evaluated them on word embeddings trained on corpora that were syn-
thetically distorted. We observed that the Local Neighborhood captures paradig-
matic shift, while the Global Semantic Displacement captures syntagmatic shift.
We showed examples where those measures are behaving differently. The main
contributions are (i) the differentiation of semantic shift with the help of a well-
established linguistic approach, (ii) the introduction of an evaluation framework
of semantic shift measures via synthetic experiments, (iii) the identification of
the best paradigmatic and syntagmatic measure and (iv) a demonstration that
the two associations shifts can be inherently different. Future work will include
the application of the paradigmatic (syntagmatic) measure for the analysis of
diachronic shift in RDF graphs. Then, thresholding of our approach could give
a clear signal for when a public RDF graph or embedding should be updated.
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Abstract. The sparse data and large computational overhead in the
use of large-scale knowledge graphs have caused widespread attention to
Knowledge Representation Learning (KRL) technology. Although many
KRL models have been proposed to embed structure information, their
ability to accurately represent newly added entities or entities with
few relations is significantly insufficient. In some studies, the introduc-
tion of textual information has partially solved this problem. However,
most existing text-enhanced models only consider the shallow description
information of the entities, and ignore the relation mention information
between entities, and deep semantic information between sentences and
words, which is not optimized for long texts supplementary information
like Wikipedia.

In this paper, we proposed a long text friendly structure-text joint
KRL model, named BCRL (BERT and CNN Representation Learning),
which can effectively explore rich semantics embedded in entity descrip-
tion and relation mention text taking Wikipedia as supplementary infor-
mation. For the obtained text of entity description and relation men-
tion, the model first uses the BERT model to generate sentence vector
representation respectively. Then it uses a convolutional neural network
with an attention mechanism to select valid information in the text and
obtain the overall vector representation of the text. Finally, the gate
mechanism is used to combine the structure-based and the text-based
vectors to generate the final joint representation. We evaluated the per-
formance of our BCRL model on link prediction tasks using FB15K and
WN18 datasets. The experimental results show that BCRL outperforms
structure-only models and text-enhanced models in most cases, and has
significant advantages in complex relation representation.
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1 Introduction

In recent years, the Knowledge Graph (KG) has received extensive attention
from academia and industry for its powerful semantic expression capabilities,
and has been widely used in fields such as question answering [5,21] systems and
web search. In order to solve the problems of low computing efficiency and sparse
data, KRL technology has been widely concerned. Its main goal is to represent
the entities and relations of a KG in a low-dimensional dense real-valued vector
space. In this way, it improves the efficiency of complex semantic relationship
computation within entities, relations, and between them.

The translation models typified by TransE (Translating Embedding) [3] are
recent research hotspots of KRL. They are not only simple in model, high in com-
putational efficiency, but also can guarantee good knowledge expression ability.
However, their ability to accurately represent newly added entities or entities
with few relationships is insufficient because only the structural information of
triples is taken into consideration in such models. To tackle this problem, some
work began to introduce textual information [1,16] to help improve knowledge
representation. Entity description is the most common type of such textual infor-
mation. As exemplified in Fig. 1, the head entity and the tail entity of a triple
from the Freebase KG are each associated with a piece of textual description.

Fig. 1. An example of entity descriptions in Freebase

However, the existing text-enhanced KRL methods are still facing challenges.
i) It is difficult to capture the exact meaning of relations in context

text. A typical situation is how to distinguish multiple different semantics of
the same relation. For example, the relation “parentOf” can mean either “being
the father of” or “being the mother of” depending on the entities in triples.

ii) The representation of entity description is not comprehensive
enough. For example, the semantics between sentences (or words) in the case
of long description texts are usually ignored. And the reflection of the semantic
difference of the same entity in different triple contexts is generally lacking.

One of the possible reasons behind these problems is that existing methods
do not make full use of the rich semantics in long texts, i.e. multiple sentences.
Therefore, we proposed a long text friendly structure-text joint KRL model,
named BCRL, which can effectively explore rich semantics embedded in entity
description and relation mention texts that are obtained from Wikipedia as sup-
plementary information. Firstly, the model obtains accurate text information of
entities and relations through lemmatization, stop words removal, and similarity
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calculations for relation mentions. Secondly, the BERT model is used to obtain
the sentence vector and learn the semantic information between words in the
sentence. Furthermore, the CNN with sentence-level positional information cod-
ing is employed to learn the semantic information between sentences to obtain
the overall vector representation of the text. Finally, the gate mechanism is intro-
duced to realize the joint representation of structural information and textual
information on top of the TransE framework. In addition, for the entity descrip-
tion text, a relation-related attention mechanism is added to further enhance
the text embedding of the entity.

In summary, the contributions of this paper are as follows:

1. The proposed model achieves long text friendly by introducing BERT and
CNN to gradually capture the semantics of different granularities (word level
and sentence level) in the text.

2. To meet the first challenge, relation mention information is introduced in the
model to enhance the knowledge representation as well, which is obtained
from all entity descriptions in the triples involved by the relation.

3. To meet the second challenge, the model makes the representation of entity
description more comprehensive by introducing a relation-oriented attention
mechanism that captures the most relevant information in the entity descrip-
tion in different contexts through a triple-relation text vector.

We evaluate our model on link prediction task, using benchmark datasets
from Freebase and Wordnet with the text corpus. Experimental results show
that, our model achieves the state-of-the-art performance, and significantly out-
performs previous text-enhanced models.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents the long text friendly text representation model in detail.
Section 4 presents the structure-text joint learning. Empirical evaluation of the
proposed model and comparison with other state-of-the art models are presented
in Sect. 5. Finally, Sect. 6 summarises the whole paper and points out some future
work.

2 Related Work

2.1 Translation-Based Models

In recent years, there has been a great deal of work on KRL, and most stud-
ies concentrate on translation-based models. This kind of models propose to
embed both entities and relations into a continuous low-dimensional vector space
according to some distance-based scoring functions.

One of the most representative translation models is TransE which regards
the relationships in the KG as some kind of translation vector between entities.
Specifically, for each fact triple (h, r, t), it represents entities and relationships in
the same vector space, and considers the relationship vector r as the translation
between the head entity vector h and the tail entity vector t, i.e., “h + r ≈ t”.
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Thus, the scoring function is defined as fr(h, t) = ‖h + r − t‖L1/L2. Where h, r
and t represent the vectors of head entity h, relation r and tail entity t, respec-
tively. And L1 and L2 represent 1-norm and 2-norm respectively. If the fact
(h, r, t) is true, the score fr(h, t) tends to be close to zero.

Though TransE is an effective KRL model for representing 1-to-1 relation, its
rough translation idea has flaws in dealing with more complicated relations like
1-to-N, N-to-1 and N-to-N. This motivates the proposal of subsequent improve-
ments such as TransH [17], TransR [9], TransD [8], etc., which allow entities to
have different representations when different relationships are involved. TransE
is a simple and efficient method for KRL.

2.2 Introducing Text Information

In order to improve the KRL, many research works have been proposed to embed
text information to improve the knowledge representation.

Embedding KGs with textual information to improve the knowledge repre-
sentation can be traced back to the neural tensor network model (NTN) proposed
by Socher et al. [13], where textual information is simply used to initialize the
entity representation. Specifically, NTN first learns word embeddings from the
auxiliary news corpus, and then initializes the representation of each entity by
averaging the vectors of words contained in its name. For example, the embed-
ding of AlfredHitchcock is initialized by the average word embeddings of Alfred
and Hitchcock. Since this method separates text information from KG facts,
it cannot effectively utilize the interactive information between fact triple enti-
ties. Moreover, the method initializes the representation only on the basis of the
entity name, which makes it impossible to make full use of textual information.

Wang et al. [17] proposed a joint model, which aligns the entity name and
the Wikipedia anchor text to project KG’s knowledge and Wikipedia text into
the same space, which can better use text information in the embedding process
and improve the accuracy of fact prediction.

Toutanova et al. [14] used convolutional neural networks to derive continuous
representations for text relations, which has greatly improved entities with text
representations. Xu et al. [19] learns the joint representation of structure and
text through LSTM network with gate mechanism.

Xie et al. [18] proposed a text-enhanced TransE model which uses continuous
bag-of-words model and CNN to encode the entity description information. The
model jointly represents the structure-based and description-based two parts.
The former captures the structural information of the facts of the KGs, and
the latter captures the textual information of the entity description. Although
CNN is used to encode text information, it only includes convolutional layers
and pooling layers, and cannot learn semantic information between multiple
sentences of text. In addition, the method has not considered the filtering and
screening of textual information and the effective form of joint representation.
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3 Long Text Friendly Text Representation

As stated in the introduction, effective use of long texts may be one of the
possible ways to better meet the novel challenges of KRL. In this section, we
first present the preparation of long texts for entities and relations respectively,
and then focus on the long text friendly text representation model.

3.1 Long Text Friendly Text Information Extraction

Entity Description Extraction. The sparseness and staleness of entity
description information is very common in a single KG. Taking Freebase as
an example, due to the premature establishment of the knowledge base, a lot of
information is out of date, and the length of different entity description varies
widely, from 350 words to several words. Linking Wikipedia information for KG
entities is a commonly used solution for this case. For example, Freebase pro-
vides entity mapping files on Wikipedia1. In this paper, the abstract text of the
linked Wikipedia entry is taken as the supplementary of the entity description in
this way. General entity link tools can also be used to obtain the corresponding
supplementary information, such as TAGME [6] and AIDA [20].

Relation Mention Extraction. For the relation in a triple, it is acceptable to
supplement text information with the entities mentioned in the triple. To this
end, a corpus is built with all the text corresponding to the Wikipedia entries
linked in the entity linking process. Then the text of a relation mention can be
extracted from the corpus. The relation dataset is made available on GitHub2.
Specifically, given a relation r of the triple (h, r, t), all sentences containing both
the head entity h and the tail entity t in the triple are extracted from the corpus
as candidate relation mentions [1].

Obviously, this will involve a lot of noise that is not actually related to the
relation r, which will affect subsequent textual representations. In order to effec-
tively filter noise, similarity calculations are performed between relations and
their candidate mentions from the lexical level and the semantic level respec-
tively.

For the lexical-level, a candidate mention sentence s is determined
to be similar to the relation r if any of the synonyms and superordi-
nate words of r in WordNet are found in s. For example, for a triple
(Pain,/medicine/disease/prevention factors, Capsicum), a sentence can be
regarded as an accurate relation only if the sentence contains the triple head
and tail entities and at least one synonym or superordinate word about the
relation Mention. In the example, medicine and disease are the hypernyms of
prevention factors, drug is a synonym of medicine in WordNet, and the rela-
tionship set is (prevention factors, disease, medicine, drug).

1 http://storage.googleapis.com/freebase-public/fb2w.nt.gz.
2 https://github.com/BoBoManTou/KG.

http://storage.googleapis.com/freebase-public/fb2w.nt.gz
https://github.com/BoBoManTou/KG
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Hence, its similarity can be calculated by the vector space model. For exam-
ple, the sentence “Many capsicum medicines have been used in the management
of pain in various traditional systems” is processed into text to obtain a set of
words medicine, manage, tradition, system. Each word represents a dimension,
and its value is 0 or 1, indicating whether the word appears in the current text.
Take {prevention factors, disease, medicine, drug, manage, tradition, system} as
the dimension to get mention and relationship. The two vector representations
are 0, 0, 1, 0, 1, 1, 1, 1 and 1, 1, 1, 1, 0, 0, 0. Suppose m represents the candidate
relation mention set, r is the corresponding relation set, Vm represents the space
vector representation of the mention set, and Vr represents the vector represen-
tation of the relation set. Then the similarity between the two can be expressed
by the cosine distance. The calculation method is shown in Eq. 1.

cos (Vm, Vr) =
Vm · Vr

|Vm||Vr| (1)

Sentences of relation mentionSentences of relation mention

Fully connected layerFully connected layer

Dropout layerDropout layer

Pooling layerPooling layer Pooling layerPooling layer

Convolutional layerConvolutional layer
(Window size is 1)
Convolutional layer
(Window size is 1)

Convolutional layerConvolutional layer
(Window size is 2)
Convolutional layer
(Window size is 2)

Word embeddingWord embedding

Relation setRelation set

Word embeddingWord embedding

Average word embeddingAverage word embedding

Cosine layerCosine layer

Fig. 2. Semantic level similarity calculation

Further filtering from the semantic level similarity is necessary especially
when the relation mention sentence does not contain any superordinate words or
synonyms of the corresponding relation. Here, a combination of CNN and Skip-
gram [11] is developed to model candidate relation mention sentences in semantic
vectors, and the vector space model can be used to calculate the similarity to the
word embedding of the relation. As shown in Fig. 2, two parallel CNN models
are used to learn the vector representation of the sentence mentioned in the
candidate relations, and the average word embedding method is used to learn
the vector representation of the relation.
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For relation-mentioned sentences, the beginning of the model is to use the
Skip-gram [11] model to obtain the word embedding of the relation-mentioned
sentences based on the corpus in the previous article. Two convolution kernels
with different window sizes of 1 and 2 are used in the convolution layer to extract
local features with different granularities to maximize information utilization. In
this paper, the activation function in the convolutional layer uses ReLU. The
pooling layer after the convolutional layer is used to select a variety of semantic
combinations, extract the main features, and change the variable-length input
into a fixed-length output. The pooling layer adopts Max-pooling operation,
and selects the strongest value of the input vector in each window to form a new
vector. The output after the pooling operation passes through a Dropout layer.
Dropout sets each feature extracted by the pooling layer to 0 with a certain prob-
ability. This can avoid overfitting caused by the model’s excessive dependence on
certain features, thereby improving the generalization ability of the model. For
the extracted main features, the non-linear recombination is performed through
the fully connected layer to obtain the semantic vector representation of the
input mentioned sentence.

For the relation set, the model also uses the skip-gram model to obtain the
word embedding of the relation set. Then this paper obtains the vector repre-
sentation of the relation set by averaging the word embeddings of all the words
in the set. Finally, the cosine distance is used to express the semantic similar-
ity between the relation mention sentence and the corresponding relation set.
Suppose m represents the candidate relation mention sentence, r is the corre-
sponding relation set, Vm represents the semantic vector representation of the
reference set, and Vr represents the semantic vector representation of the relation
set, so the similarity between the two can be calculated by Eq. 2. If the similarity
exceeds the set threshold ε, the sentence is mentioned as the exact text of the
relationship.

sim(m, r) = cos (Vm, Vr) (2)

3.2 Text Representation Model of BCRL

In the design of the text representation model of BCRL, several technologies
are introduced and integrated to adapt to long texts, including BERT, CNN,
attention mechanism, and sentence position coding. Figure 3 shows the overall
framework of the text-enhanced representation model. The function of each part
of the model is explained in detail below.

The Overall Framework of Text Representation Model
The above entity description and relation mention extraction methods bring
more accurate long text information. In order to embed as much semantic infor-
mation as possible within and between sentences into the text representation, we
propose to combine the BERT language model and the CNN. Sentence sequence
vectors are first generated by the BERT model, and then these sentence-level
feature vectors are input into a convolutional neural network to form final overall
text vector. In addition, the attention mechanism and position coding are added
to CNN to further enrich textual representation of the entity description.



BCRL: Long Text Friendly Knowledge Graph Representation Learning 643

Fig. 3. The overall framework of text representation model

BERT. The BERT model is derived from the paper [4], which is a language
model based on two-way Transformer proposed by Google. This paper uses the
BERT model to obtain the sentence vector representation of the text. In order
to achieve this, the value of BERT’s parameter max seq len should be increased.
Hence, we set the value of max seq len to be the average length of the entity
description texts. Although theoretically the output value of any layer of the
transformer can be used as a sentence vector, the experimental results show
that the value of the penultimate layer is better. The input of the BERT model
is a sequence of preprocessed sentences d where the sequence length is n and each
sentence contains m words. Thus, the input is defined as d1 : n = d1, d2, · · · , dn.
Where di ∈ Dm representing m words of the ith sentence of an entity description
text. For the sentence sequence d, in order to prevent overfitting problems in text
processing, the output value of the penultimate layer with a dimension of 768 is
selected as the output sentence vector v.
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d=6
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Fig. 4. The CNN network

CNN. The CNN network consists of a convolutional layer, a pooling layer, a
Dropout layer, and a fully connected layer. Figure 4 illustrates an example that
takes a sequence of 8 sentence vectors as input. Each sentence dimension is 6. For
each convolution kernel size j = 2, 3, and 4, the convolution operation, pooling
operation, and full connection are performed in sequence.

Specifically, in our model, the input of the CNN convolutional layer are n
sentence vectors v obtained by previous BERT where each sentence dimension is
768. The convolution layer performs convolution operation on these n sentence
vectors with a sliding window of size j, and outputs the feature map q. The
sentence vector sequence processed by the sliding window is defined as vi:i+j−1 =
vi, vi+1, . . . , vi+j−1. The i-th output feature vector after convolution is shown in
Eq. 3, where w ∈ Rj×m is the filter, b ∈ R is the bias term, and f is the activation
function. In this paper, RELU is selected as the activation function.

qi = f(w · vi,i+j−1 + b) (3)

The first k maximum pooling (K-Max Pooling) is used here, i.e., the first k
maximum values are selected for the input vectors in each window to form a
new vector. The i-th vector output by the pooling layer with a window size of
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np can be calculated by using Eq. 4. When the number of filters is l, the output
of the pooling layer is p = [p1, . . . , pl].

pi = max
k

(qnp·i, . . . , qnp·(i+1)−1) (4)

The model also provides a Dropout layer working in a Bernoulli process to
further prevent overfitting. As shown in Eq. 5, the output of the Dropout layer
is p̃ where vector β̂ ∼ Bernoulli(ρ) with probability ρ.

p̃ = β̂ ∗ p (5)

The output of the CNN fully connected layer is defined as Eq. 6 where wo is
a parameter matrix and bo is an optional bias term.

ed = wo · p̃ + bo (6)

Relation-Based Attention for Entity Text Representation
As we know, in addition to the common 1-1 relations, there are also complex
relations such as 1-N, N-1, and N-N in a knowledge graph. For the entity descrip-
tion information, CNN semantically encodes the entire text, without considering
that the description information contains the different semantics of the entity
under multiple relations. This means that given a triple, the relationship is given,
which will cause some interference for the entity description to contain infor-
mation about other relations. In order to make CNN sensitive to the different
semantics of the entity under various relations, an attention mechanism is inte-
grated between the convolutional layer and the pooling layer. In this way, the
most relevant relations between entities can be effectively captured with the help
of generated relation mention vectors.

Given the sentence vector sequence v1:n = v1, v2, . . . , vn of an entity and a
relation r ∈ Rm, the textual representation rd of the relation r is believed to be
closely related to the relationship mention information. Therefore, the relation-
based attention of entity description is defined as Eq. 7. Suppose the output of
the convolution layer is q, then the output with the relation-based attention is
defined to be q̃ = qα(r), which can be used as the input of the pooling layer.

α(r) = Softmax(v1:nrd) (7)

Sentence Level Positional Encoding for Entity Text Representation
Another useful but overlooked feature is the sentence order information in the
sentence sequence. Although BERT considers the order information of the words
in the sentence, CNN does not include the order feature of the sentence when
encoding the whole text, and part of the semantics may be lost. Therefore,
to make effective use of this information, the sentence position is encoded as
position vector γi and then combined with the sentence vector vi into a new
vector Ci by addition.

The position vector γi is generated by using the sine and cosine functions on
position pos at different frequencies according to Vaswani’s method, expressed as
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Eqs. 8 and 9. Here, pos corresponds to the input position, and d is the dimension
of the position vector.

γ(pos,2i) = sin pos/100002i/d (8)

γ(pos,2i+1) = cos pos/100002i/d (9)

Given a sentence sequence vector v1:n = v1, · · · , vn, its position vector γ1:n =
(γ1, · · · , γn), the new input of CNN after adding location information is C1:n =
(v1 + γ1, · · · , vn + γn).

4 Structure-Text Joint Knowledge Graph Learning

4.1 TransE-Based Structural Representation

TransE-based representation models perform well in tasks such as knowledge
reasoning and relationship extraction, and have become a research hotspot for
knowledge representation.

Given a triple (head entity, relation, tail entity), express it as (h, r, t). The
corresponding vector of the triple (h, r, t) is represented as (h, r, t). TransE aims
to express entities and relationships as low-dimensional continuous vectors. The
legal triple vector should satisfy the formula h + r ≈ t, and the wrong triple
does not. Therefore, TransE defines the following score function to measure the
quality of the triple, as shown in Eq. 10.

fr(h, t) = ‖h + r − t‖L1/L2
,

s.t. : ‖h‖22 ≤ 1; ‖t‖22 ≤ 1
(10)

Equation 10 is the L1 or L2 distance between vectors h+r and t. For a reasonable
scoring function, the score of the legal triple is lower than the score of the wrong
triple.

4.2 Structure-Text Joint Representation

As shown in Fig. 5, the model jointly expresses structure information and text
information through a gate mechanism.

In this paper, the gate mechanism proposed by Xu et al. [19] is used for the
fusion of the learned textual representation and the structural representation
from TransE. As defined in Eq. 11 and 12, it means that the joint representation
Vj is regarded as the result of the weighted sum of the textual representation Vd

and the structural representation Vs. Here, gs and gd are the gates that balance
the two information sources, and � is the element multiplication.

Vj = gs � Vs + gd � Vd (11)

s.t. gd = 1 − gs; gs, gd ∈ [0, 1] (12)
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Fig. 5. Structure-text joint representation

The gate g is defined as g = Softmax(ĝ), where ĝ ∼ uniform(0, 1) is a real-
valued vector initialized randomly in a uniform distribution. Softmax function
is employed here to constrain the value of the gate control to [0, 1]. Note that
the Sigmoid function is also applicable for computing the gate as stated in [19].

Similar to the TransE series model, the structure-text joint representation
score function is defined as shown in Eq. 13.

f(h, r, t; dh, dr, dt) = ||(ghs � hs + ghd � hd) + (grs � rs + grd � rd)
− (gts � ts + gtd � td)||L1/L2

(13)

Among them, ghs and ghd are the doors of the head entity, grs and grd are the
door of the relation, and gts and gtd are the door of the tail entity.

4.3 Model Training

According to the TransE, the maximum interval method [3] is utilized to train
the model. The loss function of the triples (h, r, t) is described in Eq. 14 where
f is the score function of our model, γ > 0 is the margin between golden tuples
and negative tuples, D is the set of valid triples in the KG, and D̂ is the set of
invalid triples not in the KG.

L =
∑

(h,r,t)∈D

∑
(ĥ,r̂,t̂)∈D̂

[
f (h, r, t) + γ − f

(
ĥ, r̂, t̂

)]

+
(14)

This paper uses the method proposed by Wang et al. [17] to set different proba-
bilities to replace the head or tail entities according to the Bernoulli distribution,
which divides the relations into four different types according to the number of
connected entities at both ends: 1-1, 1-N, N-1, and N-N. If it is a 1-N relation,
it increases the chance of replacing the head entity, and if it is an N-1 relation,
it increases the chance of replacing the tail entity, which can effectively improve
the model training effect. For each triple, a valid triple (h, r, t) is defined as
D̂ =

{(
ĥ, r, t

)}
∪ {(h, r̂, t)} ∪ {(

h, r, t̂
)}

.
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5 Experiments

5.1 Experiment Settings

Two popular KRL benchmark datasets FB15K and WN183 are chosen in the
experiments. The inverse relations of the existing relations are considered to
expand the datasets. In this way, the number of relations and training triples
are doubled.

Initial entity descriptions are available from GitHub4. A simplified corpus was
then built on the existing entities by performing entity linking with the English
Wikipedia5 data (May 16, 2019) which is about 15.5G in size and contains
more than 1.2 billion words. The entity description representation and relation
mention representation in the experiments are all based on this corpus.

In order to accelerate the convergence, the vectors and matrices of BCRL are
initialized through the RTransE [7] model. The entity/relation vector dimension
d ∈ {50, 100}, the learning rate α ∈ {0.01, 0.001, 0.0001, 0.0005}, and the max-
imum interval γ ∈ {0.1, 1, 2, 4, 4.5, 5, 5.5, 6}. The pre-trained BERT in the text
representation model is BERT-Base-Uncased. The window size of the convolu-
tional layer j ∈ {2, 3, 4, 5}, the number of filters l ∈ {50, 100}, and the drop rate
is set to 0.5. The L1 normal form is used in the scoring function. The train-
ing process iterates the MBGD (mini-batch gradient descent method) algorithm
2000 times.

In order to better compare with other knowledge representation learning
models such as TransE, the same evaluation criteria as TransE are used, i.e.,
Mean Rank and Hits@10. The smaller the Mean Rank is, the better the Hits@10
is.

In addition, in order to better analyze the impact of text information on
knowledge graph representation learning, we divide the relations into four types:
1-1, 1-N, N-1, and N-N. Compare the results of Hits@10 (Filtered) on the dataset.

5.2 Experiment Introduction

Link prediction refers to the task of predicting entities that may have specific
relations with a given entity. Specifically, for a triple (h, r, t), it means to predict
tail t when given head h and relation r, and to predict head h when given relation
r and tail t. The former can be denoted as (?, r, t), and the latter can be denoted
as (h, r, ?). The candidate prediction result entities are returned as a ranked set.

Two sets of comparative experiments were performed on the link prediction
task to evaluate the performance of the proposed BCRL model. The comparison
models can be divided into two categories.

– Structure-only models: SME [2], TransE [3], TransH [17], TransR [9],
TransD [8], HolE [12], ANALOGY [10], CompleEx [15].

3 https://everest.hds.utc.fr/doku.php?id=en:transe.
4 https://github.com/xrb92/DKRL.
5 https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2.

https://everest.hds.utc.fr/doku.php?id=en:transe
https://github.com/xrb92/DKRL
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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– Text-enhanced model: Jointly(LSTM) [19], Jointly(A-LSTM) [19],
TEKE E [1], AATE E [1], CNN+TransE [18].

Experiment 1. Compare the BCRL model with other representation learning
models such as that those use only structural information and that those intro-
duce textual information, and evaluate the relative accuracy of the model in
the average ranking and the top ten rankings. In order to investigate the effect
of attention mechanism and position information introduced in BCRL on the
ability of model representation, BCRL-A (add attention mechanism), BCRL-
PA (add location and attention mechanism) and BCRL (neither of them are
added) were also added for comparative experiments.

Experiment 2. In order to specifically analyze the impact of text information
on different relations, BCRL, BCRL-A, BCRL-PA, TransE, and other represen-
tation learning models that introduce textual information were compared exper-
imentally for 1-1, 1-N, N-1 and N-N four relations. This part of the experiment
was only done on the FB15K data set.

5.3 Experiment Results

Table 1. The result of the experiment about BCRL on the task of link prediction.

Method WN18 FB15K

MeanRank Hits@10 MeanRank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

SME 545 533 65.1 74.1 274 154 30.7 40.8

TransE 263 251 75.4 89.2 243 125 34.9 47.1

TransH 401 388 73.0 82.3 212 87 45.7 64.4

TransR 238 225 79.8 92.0 198 77 48.2 68.7

TransD 224 212 79.6 92.2 194 91 53.4 77.3

HolE – – – 94.9 - 65 – 81.0

ANALOGY – – – 94.7 – – – 85.4

CompleEx – – – 94.7 – – – 84.0

CNN+TransE – – – – 181 91 49.6 67.4

Jointly (LSTM) 117 95 79.5 91.6 179 90 49.3 69.7

Jointly (A-LSTM) 134 123 78.6 90.9 167 73 52.9 75.5

TEKE E – 127 – 93.8 – 79 - 67.6

AATE E – 123 – 94.1 – 76 - 76.1

TransE (our) 304 291 72.4 82.5 211 75 49.1 65.0

BCRL 110 97 77.7 92.3 165 67 53.6 83.5

BCRL-A 107 92 78.7 94.5 159 63 55.3 84.7

BCRL-PA 106 90 80.7 94.9 164 67 52.9 82.3
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Experiment 1. In order to exhibit the performance under the same environ-
ment, we implemented both the TransE model and the BCRL model. The per-
formance of our TransE is significantly different from that of the original paper
TransE system on the FB15K dataset. All the results of Experiment 1 are listed
in Table 1. The best result values in each group of experiments are highlighted in
bold, and the underlined ones indicate the suboptimal values. The result values
of the baseline evaluations are from their original work. The “–”s in the table
indicate those results not reported in previous work. The same applies to the
following experimental result table.

The following conclusions can be drawn according to Table 1.

– The performance of the BCRL-A model in this paper is significantly better
than the TransE model (TransE is a baseline KRL model). For the WN18 and
FB15K datasets, the average ranking effect has improved by 64.8%, 68.4%,
8.7%, and 14.5%, and the top ten rankings have increased by 24.6%, 16.0%,
12.6%, and 30.3%. They are also superior to the other structure-based models
TransH, TransR, and TransD. The results confirm that textual information
is beneficial to a structure-based knowledge graph representation learning
model.

– The metrics of the BCRL-A model on the WN18 and FB15K datasets are
similar to those of the current best semantic matching model ANALOGY,
and the MeanRank on the FB15k dataset has achieved the best results so
far. Since our BCRL model is simply based on the TransE framework, there
is still much room for improvement.

– Compared with the typical text representation model Jointly (A-LSTM),
most of the metrics value of the BCRL-A model are superior, which indi-
cates that our BCRL model can effectively capture the semantics in textual
information, and has certain effects in joint representation of textual infor-
mation and structural information.

– Comparing three variants of our model, BCRL-A is significantly better than
BCRL, which means that introducing relation-based attention mechanism
can strengthen the semantic difference of entity description information and
further improve the discrimination of entity representation. On the FB15k
dataset, BCRL-PA with additional position-coding information performs
worse than BCRL-A with only the attention mechanism. This may be due to
the differences in the number of description sentences and the length between
different entities in the dataset. Position-coded information cannot effectively
reflect such difference, and even becomes interference information. However,
BCRL-PA performs better than BCRL-A on the WN18 dataset. A possible
reason is that the sentence length of the WN18 dataset is short and the differ-
ence in sentence length is not large. Thus, the position coding is more suitable
in this case.
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Table 2. Hit@10 of link prediction on different type of relations on FB15k dataset.

Task Head entity prediction Tail entity prediction

Relationship type 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

Jointly(A-LSTM) 83.8 95.1 21.1 47.9 83.0 30.8 94.7 53.1

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

BCRL 85.9 95.2 36.9 81.8 85.1 46.5 95.6 84.3

BCRL-A 87.8 96.9 40.7 83.5 87.8 50.4 95.7 85.6

BCRL-PA 85.4 95.7 37.8 81.2 85.8 46.7 95.3 84.4

Experiment 2. From Table 2, we can see that our BCRL model has better per-
formance than the basic model on all types of relations (1-1, 1-N, N-1, and N-N).
In addition, the BCRL-A model has better results than the Jointly (A-LSTM)
model, especially for the head entity prediction under the N-1, N-N relation and
the tail entity prediction under 1-N, N-N. Since BCRL-A and Joint (A-LSTM)
are both based on TransE, we conclude that the introduction of relation mention
text is very meaningful for improving overall knowledge representation.

6 Conclusions

In this paper, we propose a text-enhanced knowledge graph representation
model, named BCRL, which utilizes entity description and relation mention
to enhance the knowledge representations of a triple. It tackles the challenges of
incomprehensive entity description representation, and inaccurate relation men-
tion representation from the perspective of text-sentence representation. The
experimental results show that BCRL can capture the semantic information of
text more effectively than the previous textual information based model, and has
significant improvements on the link prediction task compared with the baseline
systems.
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Abstract. Knowledge Graph (KG) embedding has attracted more
attention in recent years. Most KG embedding models learn from time-
unaware triples. However, the inclusion of temporal information besides
triples would further improve the performance of a KGE model. In this
regard, we propose ATiSE, a temporal KG embedding model which
incorporates time information into entity/relation representations by
using Additive Time Series decomposition. Moreover, considering the
temporal uncertainty during the evolution of entity/relation representa-
tions over time, we map the representations of temporal KGs into the
space of multi-dimensional Gaussian distributions. The mean of each
entity/relation embedding at a time step shows the current expected
position, whereas its covariance (which is temporally stationary) repre-
sents its temporal uncertainty. Experimental results show that ATiSE
significantly outperforms the state-of-the-art KGE models and the exist-
ing temporal KGE models on link prediction over four temporal KGs.

Keywords: Temporal knowledge graph · Knowledge representation
and reasoning · Time series decomposition

1 Introduction

Knowledge Graphs (KGs) are being used for gathering and organizing scattered
human knowledge into structured knowledge systems. YAGO [22], DBpedia [1],
WordNet [18] and Freebase [3] are among existing KGs that have been success-
fully used in various applications including question answering, assistant systems,
information retrieval, etc. In these KGs, knowledge can be represented as RDF
triples (s, p, o) in which s (subject) and o (object) are entities (nodes), and p
(predicate) is the relation (edge) between them.
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KG embedding attempts to learn the representations of entities and relations
in high-dimensional latent feature spaces while preserving certain properties of
the original graph. Recently, KG embedding has become a very active research
topic due to the wide ranges of downstream applications. Different KG embed-
ding models have been proposed so far to efficiently learn the representations of
KGs and perform KG completion as well as inferencing [4,9,23,25,28,30].

We notice that most of existing KG embedding models solely learn from time-
unknown facts and ignore the useful temporal information in the KBs. In fact,
there are many time-aware facts (or events) in some temporal KBs. For example,
(Obama, wasBornIn, Hawaii) happened at August 4, 1961. (Obama, presidentOf,
USA) was true from 2009 to 2017. These temporal KGs, e.g. Integrated Crisis
Early Warning System (ICEWS) [14], Global Database of Events, Language, and
Tone (GDELT) [16], YAGO3 [17] and Wikidata [6], store such temporal infor-
mation either explicitly or implicitly. Traditional KBE models such as TransE
learn only from time-unknown facts. Therefore, they cannot distinguish entities
with similar semantic meaning. For instance, they often confuse entities such as
Barack Obama and Bill Clinton when predicting (?, presidentOf,USA, 2010).

To tackle this problem, temporal KGE models [5,7,15] encode time informa-
tion in their embeddings. TKGE models outperform traditional KGE models on
link prediction over temporal KGs. It justifies that incorporation of time infor-
mation can further improve the performance of a KGE model. Most existing
TKGE models embed time information into a latent space, e.g. representing
time as a vector. These models cannot capture some properties of time infor-
mation such as the length of time interval as well as order of two time points.
Moreover, these models ignore the uncertainty during the temporal evolution.
We argue that the evolution of entity representations has randomness, because
the features of an entity at a certain time are not completely determined by
the past information. For example, (Steve Jobs, diedIn, California) happened
on 2011-10-05. The semantic characteristics of this entity should have a sudden
change at this time point. However, due to the incompleteness of knowledge
in KGs, this change can not be predicted only according to its past evolution-
ary trend. Therefore, the representation of Steve Jobs is supposed to include
some random components to handle this uncertainty, e.g. a Gaussian noise
component.

In order to address the above problems, in this paper, we propose a temporal
KG embedding model, ATiSE1, which uses additive time series decomposition
to capture the evolution process of KG representations. ATiSE fits the evolution
process of an entity or relation as a multi-dimensional additive time series which
composes of a trend component, a seasonal component and a random compo-
nent. Our approach represents each entity and relation as a multi-dimensional
Gaussian distribution at each time step to introduce a random component. The
mean of an entity/relation representation at a certain time step indicates its
current expected position, which is obtained from its initial representation, its
linear change term, and its seasonality term. The covariance which describes

1 The code is available at https://github.com/soledad921/ATISE.

https://github.com/soledad921/ATISE


656 C. Xu et al.

the temporal uncertainty during its evolution, is denoted as a constant diagonal
matrix for computing efficiency. Our contributions are as follows.

– Learning the representations for temporal KGs is a relatively unexplored
problem because most existing KG embedding models only learn from time-
unknown facts. We propose ATiSE, a new KG embedding model to incorpo-
rate time information into the KG representations.

– We specially consider the temporal uncertainty during the evolution process
of KG representations. Thus, we model each entity/relation as a Gaussian
distribution at each time step. As shown in Fig. 1, the mean vectors of multi-
dimensional Gaussian distributions of entities and relations indicate their
position which changes over time and the covariance matrices indicate the
corresponding temporal uncertainty. A symmetric KL-divergence between
two Gaussian distributions is designed to compute the scores of facts for
optimization.

– Different from the previous temporal KG embedding models which use time
embedding to incorporate time information, ATiSE fits the evolution process
of KG representations as a multi-dimensional additive time series. Our work
establishes a previously unexplored connection between relational processes
and time series analysis with a potential to open a new direction of research
on reasoning over time.

– Our experimental results show that ATiSE significantly outperforms other
TKG models and some state-of-the-art static KGE on link prediction over
four TKG datasets.

Fig. 1. Illustration of the means and (diagonal) variances of entities and relations
in a temporal Gaussian Embedding Space. The labels indicate their position. In the
representations, we might infer that Bill Clinton was presidentOf USA in 1998 and
Barack Obama was presidentOf USA in 2010.

The rest of the paper is organized as follows: In the Sect. 2, we first review
related works; in the Sect. 3, we introduce the architecture and the learning
process of our proposed models; in the Sect. 4, we compare the performance of
our models with the state-of-the-art models; in the Sect. 5, we make a conclusion
in the end of this paper.
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2 Related Work

A large amount of research has been done in KG embeddings [26]. A few exam-
ples of state-of-the-art KGE models include TransE [4], TransH [27], TransCom-
plEx [20], RotatE [23], DistMult [28], ComplEx [25], ComplEx-N3 [13] and
QuatE [30].

The above methods achieve good results on link prediction in KGs. However,
these time-unaware KGE models have limitations on reasoning over TKGs. More
concretely, given two quadruples with the same subjects, predicates, objects
and different time stamps, i.e., (Barack Obama, presidentOf,USA, 2010) and
(Barack Obama, presidentOf,USA, 2020), static KGE models will model them
with the same scores due to their ignorance of time information, while the validi-
ties of these two quadruples might be different.

Recent researches illustrate that the performances of KG embedding models
can be further improved by incorporating time information in temporal KGs.

TAE [11] captures the temporal ordering that exists between some relation
types as well as additional common-sense constraints to generate more accurate
link predictions.

TTransE [15] and HyTE [5] adopt translational distance score functions and
encode time information in the entity-relation low dimensional spaces with time
embeddings and temporal hyperplanes.

Know-Evolve [24] models the occurrence of a fact as a temporal point process.
However, this method is built on a problematic formulation when dealing with
concurrent events, as shown in Sect. 4.3.

TA-TransE and TA-DistMult [7] utilize recurrent neural networks to learn
time-aware representations of relations and use standard scoring functions from
TransE and DistMult. These models can model time information in the form of
time points with or without some particular temporal modifiers, i.e., ‘occursS-
ince’ and ‘occursUntil ’.

DE-SimplE [8] incorporates time information into diachronic entity embed-
dings and achieves the state of the art results on event-based TKGs. However,
same as TA-TransE and TA-DistMult, DE-SimplE can not model facts involving
time intervals shaped like [2005, 2008].

Moreover, TEE [2] encodes representations of years into entity embeddings by
aggregating the representations of the entities that occur in event-based descrip-
tions of the years.

3 Our Method

In this section, we present a detailed description of our proposed method, ATiSE,
which not only uses relational properties between entities in triples but also
incorporates the associated temporal meta-data by using additive time series
decomposition.
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3.1 Additive Time Series Embedding Model

A time series is a series of time-oriented data. Time series analysis is widely
used in many fields, ranging from economics and finance to managing produc-
tion operations, to the analysis of political and social policy sessions [19]. An
important technique for time series analysis is additive time series decompo-
sition. This technique decomposes a time series Yt into three components as
follows,

Yt = Tt + St + Rt. (1)

where Tt, St and Rt denote the trend component, the seasonal component and
the random component (i.e. “noise”), respectively. Figure 2 shows an instance of
the additive time series decomposition of a time series.

Fig. 2. Illustration of additive time series decomposition.

In our method, we regard the evolution of an entity/relation representation
as an additive time series. For each entity/relation, we use a linear function
and a Sine function to fit the trend component and the seasonal component
respectively due to their simplicity. Considering the efficiency of model training,
we model the irregular term by using a Gaussian noise instead of a moving
average model (MA model) [10], since training an MA model requires a global
optimization algorithm which will lead to more computation consumption.

To incorporate temporal information into traditional KGs, a new temporal
dimension is added to fact triples, denoted as a quadruple (s, p, o, t). It represents
the creation of relationship edge p between subject entity s, and object entity o
at time step t. The score term xspot = ft (es, rp, eo) can represent the conditional
probability or the confidence value of this event xspot, where es, eo ∈ RLe , rp ∈
RLr are representations of s, o and p. In term of a long-term fact (s, p, o, [ts, te]),
we consider it to be a positive triple for each time step between ts and te. ts and
te denote the start and end time during which the triple (s, p, o) is valid.
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At each time step, the time-specific representations of an entity ei or a rela-
tion rp should be updated as ei,t or rp,t. Thus, the score of a quadruple (s, p, o, t)
can be represented as xspot = fe (es,t, rp,t, eo,t) or xspot = fr (es, rp,t, eo). We
utilize additive time series decomposition to fit the evolution processes of each
entity/relation representation as:

ei,t = ei + αe,iwe,it + βe,isin(2πωe,it) + N (0, Σe,i)
rp,t = rp + αr,pwr,pt + βr,psin(2πωr,pt) + N (0, Σr,p)

(2)

where the ei and rp are the time-independent latent representations of the ith
entity which is subjected to ||ei||2 = 1 and the pth relation which is subjected
to ||rp||2 = 1. ei + αe,iwe,it and rp + αr,pwr,pt are the trend components where
the coefficients |αe,i| and |αr,p| denote the evolutionary rates of ei,t and rp,t, the
vectors we,i and wr,p represents the corresponding evolutionary directions which
are restricted to ||we,i||2 = ||wr,p||2 = 1. βe,isin(2πωe,it) and βr,psin(2πωr,pt)
are the corresponding seasonal components where |βe,i| and |βr,p| denote the
amplitude vectors, |ωe,i| and |ωr,p| denote the frequency vectors. The Gaussian
noise terms N (0, Σe,i) and N (0, Σr,p) are the random components, where Σe,i

and Σr,p denote the corresponding diagonal covariance matrices.
In other words, for a fact (s, p, o, t), entity embeddings es,t and eo,t obey

Gaussian probability distributions: Ps,t ∼ N (es,t, Σs) and Po,t ∼ N (eo,t, Σo),
where es,t and eo,t are the mean vectors of es,t and eo,t, which do not include the
random components. Similarly, the predicate is represented as Pr,t ∼ N (rp, Σr).

Similar to translation-based KGE models, we consider the transformation
result of ATiSE from the subject to the object to be akin to the predicate
in a positive fact. We use the following formula to express this transformation:
Ps,t−Po,t, which corresponds to the probability distribution Pe,t ∼ N (μe,t, Σe).
Here, μe,t = es,t − eo,t and Σe = Σs + Σo. Combined with the probability of
relation Pr,t ∼ N (rp,t, Σr), we measure the similarity between Pe,t and Pr to
score the fact.

KL divergence is a straightforward method of measuring the similarity of
two probability distributions. We optimize the following score function based
on the KL divergence between the entity-transformed distribution and relation
distribution [29].

xspot = ft (es, rp, eo) = DKL(Pr,t, Pe,t)

=
∫

x∈Rke

N (x; rp,t, Σr)log
N (x;μe,t, Σe)
N (x; rp,t, Σr)

dx (3)

=
1
2

{
tr(Σ−1

r Σe) + (rp,t − μe,t)T Σ−1
r (rp,t − μe,t)

− log
det(Σe)
det(Σr)

− ke

}

where, tr(Σ) and Σ−1 indicate the trace and inverse of the diagonal covariance
matrix, respectively.
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Since the computation of the determinants of the covariance matrices in
Eq. 3 is time consuming, we define a symmetric similarity measure based on KL
divergence to simplify the computation of the score function.

ft (es, rp, eo) =
1
2
(DKL(Pr,t, Pe,t) + DKL(Pe,t, Pr,t)) (4)

Considering the simplified diagonal covariance, we can compute the trace
and inverse of the matrix simply and effectively for ATiSE. The gradient of log
determinant is ∂logdetA

∂A = A−1, the gradient ∂xT A−1y
∂A = −A−T xyT A−T , and the

gradient ∂tr(XT A−1Y )
∂A = −(A−1Y XT A−1)T [21].

3.2 Complexity

In Table 1, we summarize the scoring functions of several existing (T)KGE
approaches and our models and compare their space complexities. ne, nr, nt

and ntoken are numbers of entities, relations, time steps and temporal tokens
used in [7]; d is the dimensionality of embeddings. 〈x, y, z〉 =

∑
i xiyizi denotes

the tri-linear dot product; Re(·) denotes the real part of the complex embed-
ding [25]; ⊗ denotes the Hamilton product between quaternion embeddings; �
denotes the normalization of the quaternion embedding. Pt denotes the tempo-
ral projection for embeddings [5]; LSTM(·) denotes an LSTM neural network;
[rp; tseq] denotes the concatenation of the relation embedding and the sequence
of temporal tokens [7]; −→e and ←−e denote the temporal part and untemporal part
of a time-specific diachronic entity embedding et [8]; p−1 denotes the inverse
relation of p, i.e., (s, p, o, t) ↔ (o, p−1, s, t).

Table 1. Comparison of our models with several baseline models for space complexity.

Model Scoring function Space complexity Time
complexity

TransE ||es + rp − eo|| O(ned + nrd) O(d)

DistMult 〈es, rp, eo〉 O(ned + nrd) O(d)

ComplEx Re(〈es, rp, eo〉) O(ned + nrd) O(d)

RotatE ||es ◦ rp − eo|| O(ned + nrd) O(d)

QuatE es ⊗ r�
p · eo O(ned + nrd) O(d)

TTransE ||es + rp + wt − eo|| O(ned + nrd + ntd) O(d)

HyTE ||Pt(es) + Pt(rp) − Pt(eo)|| O(ned + nrd + ntd) O(d)

TA-TransE ||es + LSTM([rp; tseq]) − eo|| O(ned + nrd + ntokend) O(d)

TA-DistMult 〈es,LSTM([rp; tseq]), eo〉 O(ned + nrd + ntokend) O(d)

DE-SimplE 1
2
(〈−→e t

s, rp, ←−e t
o〉 + 〈−→e t

0, rp−1 , ←−e t
s〉) O(ned + nrd) O(d)

ATiSE DKL(Pe,t, Pr,t) O(ned + nrd) O(d)
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As shown in Sect. 3.2, our model has the same space complexity and time
complexity as static KGE models listed in Sect. 3.2 as well as DE-SimplE. On
the other hand, the space complexities of TTransE, HyTE, TA-TransE or TA-
DistMult will be higher than our models if nt or ntoken is much larger than ne

and nr.

3.3 Learning

In this paper, we use the same loss function as the negative sampling loss pro-
posed in [23] for optimizing ATiSE. This loss function has been proved to be
more effective than the margin rank loss function proposed in [4] on optimizing
translation-based KGE models.

L =
∑
t∈[T ]

∑
ξ∈D+

t

∑
ξ′ ∈D−

t

−log σ(γ − ft(ξ)) − log σ(ft(ξ
′
) − γ) (5)

where, [T ] is the set of time steps in the temporal KG, D+
t is the set of positive

triples with time stamp t, and D−
t is the set of negative sample corresponding to

D+
t . In this paper, we generate negative samples by randomly corrupting subjects

or objects of the positives such as (s
′
, p, o, t) and (s, p, o

′
, t). Moreover, we adopt

self-adversarial training proposed in [23] and reciprocal learning used in [8,13,30]
to further enhance the performances of our model. To avoid overfitting, we add
some regularizations while learning ATiSE. As described in the Sect. 3.1, the
norms of the original representations of entities and relations, as well as the
norms of all evolutionary direction vectors, are restricted by 1. Besides, the
following constraint is used for guaranteeing that the covariance matrices are
positive definite and of appropriate size when we minimize the loss:

∀l ∈ E ∪ R, cminI ≤ Σl ≤ cmaxI (6)

where, E and R are the set of entities and relations respectively, cmin and cmax

are two positive constants. We use Σl ← max(cmin,min(cmax, Σl)) to achieve
this regularization for diagonal covariance matrices. This constraint 6 for the
covariance is considered during both the initialization and training process.
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Algorithm: The learning algorithm of ATiSE

input: The training set D+ = {(s, p, o, t)}, entity set E, relation set R, embedding

dimensionality d, margin γ, batch size b, the ratio of negative samples over the

positives η, learning rate lr, restriction values cmin and cmax for covariance, and

a score function ft(es, rp, eo) where s, o ∈ E, p ∈ R.

output: Time-independent embeddings for each entity ei and relation rj (the

mean vectors and the covariance matrices), the evolutionary rate αiand the

evolutionary direction vector wi for each entity, where i ∈ E, j ∈ R.

1. initialize ei, rj ← uniform (− 6√
d
, 6√

d
), i ∈ E, j ∈ R

2. we,i, wr,j ← uniform (− 6√
d
, 6√

d
), i ∈ E, j ∈ R

3. Σe,i, Σr,j ← uniform (cmin, cmax), i ∈ E, j ∈ R
4. ωe,i, ωr,j ← uniform (cmin, cmax), i ∈ E, j ∈ R
5. αe,i, αr,j ← uniform (0, 0), i ∈ E, j ∈ R
6. βe,i, βr, j ← uniform (0, 0), i ∈ E, j ∈ R
7. loop

8. ei ← ei/||ei||2, i ∈ E
9. rj ← rj/||rj ||2, j ∈ R
10. we,i ← we,i/||we,i||2, i ∈ E
11. wr,j ← wr,j/||wr,j ||2, j ∈ R
12. D+

b ← sample(D+, b) // sample a minibatch

13. for (s, p, o, t) ∈ D+
b do

14. D−
b = {(s′

k, p, o
′
k, t)}k=1...η // generate η negative samples

15. end for

16. Update ei, wi, αi and rj based on Equation 4 and 5 w.r.t.

L =
∑

ξ∈D+
b

∑
ξ

′ ∈D−
b

−log σ(γ − ft(ξ)) − log σ(ft(ξ
′
) − γ)

17. regularize the covariances for each entity and relation based on Constraint 6,

Σe,i ←max(cmin, min(cmax, Σe,i)), i ∈ E
Σr,j ←max(cmin, min(cmax, Σr,j)), j ∈ R

18. end loop

4 Experiment

To show the capability of ATiSE, we compared it with some state-of-the-art
KGE models and the existing TKGE models on link prediction over four TKG
datasets. Particularly, we also did an ablation study to analyze the effect of
the dimensionality of entity/relation embeddings and various components of the
additive time series decomposition.

4.1 Datasets

As mentioned in Sect. 1, common TKGs include ICEWS [14], Wikidata [6]
and YAGO3 [17]. Four subsets of these TKGs are used as datasets in [7], i.e.,
ICEWS14, ICEWS05-15, YAGO15k and Wikidata11k. However, all of time inter-
vals in YAGO15k and Wikidata11k only contain either start dates or end dates,
shaped like ‘occursSince 2003’ or ‘occursUntil 2005’ while most of time intervals
in Wikidata and YAGO are presented by both start dates and end dates. -Thus,
we prefer using YAGO11k and Wikidata12k released in [5] instead of YAGO15k
and Wikidta12k. The statistics of the datasets used in this paper are listed in
Table 2.
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Table 2. Statistics of datasets.

#Entities #Relations #Time
steps

Time span #Training #Validation #Test

ICEWS14 6,869 230 365 2014 72,826 8,941 8,963

ICEWS05-15 10,094 251 4,017 2005–2015 368,962 46,275 46,092

YAGO11k 10,623 10 70 −453−2844 16,408 2,050 2,051

Wikidata12k 12,554 24 81 1709–2018 32,497 4,062 4,062

Table 3. Statistics of long-term facts

#Long-term relations #Training #Validation #Test

YAGO11k 8 12,579 1,470 1,442

Wikidata12k 20 18,398 2,194 2,200

ICEWS is a repository that contains political events with specific time
annotations, e.g., (Barack Obama, visits, Ukraine, 2014-07-08 ). ICEWS14 and
ICEWS05-15 are subsets of ICEWS [14], which correspond to the facts in 2014
and the facts between 2005 to 2015. These two datasets are filtered by only
selecting the most frequently occurring entities in the graph [7]. It is noteworthy
that all of time annotations in ICEWS datasets are time points.

YAGO11k is a subset of YAGO3 [17]. Different from ICEWS, a part of time
annotations in YAGO3 are represented as time intervals, e.g. (Paul Konchesky,
playsFor, England national football team, [2003-##-##, 2005-##-##]). Fol-
lowing the setting used in HyTE [5], we only deal with year level granularity by
dropping the month and date information and treat timestamps as 70 different
time steps in the consideration of the balance about numbers of triples in dif-
ferent time steps. For a time interval with the missing start date or end date,
e.g., [2003-##-##, ####-##-##] representing ‘since 2003’, we use the first
timestep or the last timestep to represent the missing start time or end time.

Wikidata12k is a subset of Wikidata [6]. Similar to YAGO11k, Wikidata12k
contains some facts involving time intervals. We treat timestamps as 81 different
time steps by using the same setting as YAGO11k.

As shown in Table 3, most of facts in YAGO11k and Wikidata12k involve time
intervals. For TKGE models, we discretized such facts (s, p, o, [ts, te]) involving
multiple timesteps into multiple quadruples which only involve single timesteps,
i.e., {(s, p, o, ts), (s, p, o, ts+1), · · · , (s, p, o, te)}, where ts and te denote the start
time and the end time.

4.2 Evaluation Metrics

We evaluate our model by testing the performances of our model on link predic-
tion task over TKGs. This task is to complete a time-wise fact with a missing
entity. For a test quadruple (s, p, o, t), we generate corrupted triples by replacing
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s or o with all possible entities. We sort scores of all the quadruples including
corrupted quadruples and the test quadruples and obtain the ranks of the test
quadruples. For a test fact involving multiple time steps, e.g., (s, p, o, [ts, te]),
the score of one corrupted fact (s, p, o′, [ts, te]) is the sum of scores of multiple
discreet quadruples, {(s, p, o′, ts), (s, p, o′, ts+1), · · · , (s, p, o′, te)}.

Two evaluation metrics are used here, i.e., Mean Reciprocal Rank and
Hits@k. The Mean Reciprocal Rank (MRR) is the means of the reciprocal values
of all computed ranks. And the fraction of test quadruples ranking in the top
k is called Hits@k. We adopt the time-wise filtered setting used in source code
released by [8]. Different from the original filtered setting proposed in [4], for
a test fact (s, p, o, t) or (s, p, o, [ts, te]), instead of removing all the triples that
appear either in the training, validation or test set from the list of corrupted
facts, we only filter the triples that occur at the time point t or throughout the
time interval [ts, te] from the list of corrupted facts. This ensures that the facts
that do not appear at t or throughout [ts, te] are still considered as corrupted
triplets for evaluating the given test fact.

4.3 Baselines

We compare our approach with several state-of-the-art KGE approaches and
existing TKGE approaches, including TransE [4], DistMult [28], ComplEx-
N3 [13], RotatE [23], QuatE2 [30], TTransE [15], TA-TransE, TA-DistMult [7]
and DE-SimplE [8]. ComplEx-N3 has been proven to have better performance
than ComplEx [25] on FreeBase and WordNet datasets. And QuatE2 has the
best performances among all variants of QuatE as reported in [30].

As mentioned in Sect. 2, TA-TransE, TA-DistMult and DE-SimplE mainly
focus on modeling temporal facts involving time points with or without some
particular temporal modifiers, ‘occursSince’ and ‘occursUntil’, and cannot model
time intervals shaped like [2003-##-##, 2005-##-##]. Besides, DE-SimplE
needs specific date information including year, month and day to score temporal
facts, while most of time annotations in YAGO and Wikidataset only contain
year-level information. Thus, we cannot test these three models on YAGO11k
and Wikidataset15k.

We do not take Know-Evolve [24] as baseline model due to its problematic
formulation and implementation issues. Know-Evolve uses the temporal point
process to model the temporal evolution of each entity. The intensity function of
Know-Evolve (equation 3 in [24]) is defined as λs,o

r (t|t) = f(gs,o
r (t))(t− t), where

g(·) is a score function, t is current time, and t is the most recent time point when
either subject or object entity was involved in an event. This intensity function
is used in inference to rank entity candidates. However, they don’t consider
concurrent event at the same time stamps, and thus t will become t after one
event. For example, we have events event1 = (s, r, o1, t1), event2 = (s, r, o2, t1).
After event1, t will become t (subject s’s most recent time point), and thus the
value of intensity function for event2 will be 0. This is problematic in inference
since if t = t, then the intensity function will always be 0 regardless of entity
candidates. In their code, they give the highest ranks (first rank) for all entities
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including the ground truth object in this case, which we think is unfair since
the scores of many entity candidates including the ground truth object might be
0 due to their formulation. It has been proven that the performances of Know-
Evolve on ICEWS datasets drop down to almost zero after this issue fixed [12].

4.4 Experimental Setup

We used Adam optimizer to train our model and selected the optimal hyper-
parameters by early validation stopping according to MRR on the validation
set. We restricted the maximum epoch to 5000. We fixed the mini-batch size b
as 512. We tuned the embedding dimensionalities d in {100, 200, 300, 400, 500},
the ratio of negatives over positive training samples η in {1, 3, 5, 10} and the
learning rate lr in {0.00003, 0.0001, 0.0003, 0.001}. The margins γ were varied
in the range {1, 2, 3, 5, 10, 20, · · · , 120}. We selected the pair of restriction
values cmin and cmax for covariance among {(0.0001, 0.1), (0.003, 0.3), (0.005,
0.5), (0.01, 1)}. The default configuration for ATiSE is as follows: lr = 0.00003,
d = 500, η = 10, γ = 1, (cmin, cmax) = (0.005, 0.5). Below, we only list the non-
default parameters: γ = 120, (cmin, cmax) = (0.003, 0.3) on ICEWS14; γ = 100,
(cmin, cmax) = (0.003, 0.3) on ICEWS05-15.

4.5 Experimental Results

Table 4 and 5 show the results for link prediction task. On ICEWS14 and
ICEWS05-15, ATiSE outperformed all baseline models, considering MR, MRR,
Hits@10 and Hits@1. Compared to DE-SimplE which is a very recent state-of-
the-art TKGE model, ATiSE got improvement of 4% on both datasets regarding
MRR, and improved Hits@10 by 4% and 6% on ICEWS14 and ICEWS05-15
respectively. On YAGO11k and Wikidata12k where time annotations in facts
are time intervals, ATiSE surpassed baseline models regarding MRR, Hits@1,
Hits@3. Regarding Hits@10, ATiSE achieved the state-of-the-art results on Wiki-
data12k and the second best results on YAGO11k. As mentioned in Sect. 4.3,
the results of TA-TransE, TA-DistMult and DE-SimplE on YAGO11k and Wiki-
data12k are unobtainable since they have difficulties in modeling facts involving
time intervals in these two datasets.

A part of results listed on Table 4 and 5 are obtained based on the implemen-
tations released in [5,13,23]. We list the implementation details of some baseline
models as follows:

– We used the implementation released in [23] to test RotatE on all four
datasets, and DistMult on YAGO11k and Wikidata12k. The source code was
revised to adopt the time-wise filtered setting. To search the optimal con-
figurations for RotatE and DistMult, we followed the experimental setups
reported in [23] except setting the maximum dimensionality as 500 and the
maximum negative sampling ratio as 10. The default optimal configuration
for RotatE and DistMult is as follows: lr = 0.0001, b = 1024, d = 500, η = 10.
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Table 4. Link prediction results on ICEWS14 and ICEWS05-15. *: results are taken
from [7]. �: results are taken from [8]. Dashes: results are unobtainable. The best results
among all models are written bold.

ICEWS14 ICEWS05-15

Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE* .280 .094 – .637 .294 .090 – .663

DistMult* .439 .323 – .672 .456 .337 – .691

ComplEx-N3 .467 .347 .527 .716 .481 .362 .535 .729

RotatE .418 .291 .478 .690 .304 .164 .355 .595

QuatE2 .471 .353 .530 .712 .482 .370 .529 .727

TTransE� .255 .074 – .601 .271 .084 – .616

HyTE� .297 .108 .416 .655 .316 .116 .445 .681

TA-TransE* .275 .095 – .625 .299 .096 – .668

TA-DistMult* .477 .363 – .686 .474 .346 – .728

DE-SimplE� .526 .418 .592 .725 .513 .392 .578 .748

ATiSE .545 .423 .632 .757 .533 .394 .623 .803

Table 5. Link prediction results on YAGO11k and Wikidata12k. The best results
among all models are written bold.

YAGO11k Wikidata12k

Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE .100 .015 .138 .244 .178 .100 .192 .339

DistMult .158 .107 .161 .268 .222 .119 .238 .460

ComplEx-N3 .167 .106 .154 .282 .233 .123 .253 .436

RotatE .177 .113 .177 .315 .221 .116 .236 .461

QuatE2 .164 .107 .148 .270 .230 .125 .243 .416

TTransE .108 .020 .150 .251 .172 .096 .184 .329

HyTE .105 .015 .143 .272 .180 .098 .197 .333

ATiSE .185 .126 .189 .301 .252 .148 .288 .462

Below, we only list the non-default parameters: for RotatE, the optimal mar-
gins are γ = 36 on ICEWS14, γ = 48 on ICEWS05-15, γ = 3 on YAGO11k
and γ = 6 on Wikidata12k; for DistMult, the optimal regularizer weights are
r = 0.00001 on YAGO11k and Wikidata12k.

– We used the implementation released in [13] to test ComplEx-N3 and QuatE2

on all four datasets. The source code was revised to adopt the time-wise
filtered setting. To search the optimal configurations for ComplEx-N3 and
QuatE2, we followed the experimental setups reported in [13] except setting
the maximum dimensionality as 500. The default optimal configuration for
ComplEx-N3 and QuatE2 is as follows: lr = 0.1, d = 500, b = 1000. Below, we
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list the optimal regularizer weights: for ComplEx-N3, r = 0.01 on ICEWS14
and ICEWS05-15, r = 0.1 on YAGO11k and Wikidata12k; for QuatE2, r =
0.01 on ICEWS14 and YAGO11k, r = 0.05 on ICEWS05-15, r = 0.1 on
Wikidata.

– We used the implementation released in [5] to test TransE, TTransE and
HyTE on YAGO11k and Wikidata12k for obtaining their performances
regarding MRR, Hits@1 and Hits@3. We followed the optimal configurations
reported in [5]. As shown in Table 5, Hits@10s of TransE and TTransE we
got were better than those reported in [5].

– As shown in Table 4, other baseline results are taken from [7,8].

4.6 Ablation Study

In this work, we analyze the effects of the dimensionality and various components
of entity/relation embeddings.

Fig. 3. Results for ATiSE with different embedding dimensionalities on ICEWS14.

The embedding dimensionality is an important hyperparameter for each
(T)KGE model. A high embedding dimensionality might be beneficial to boost
the performance of a (T)KGE model. For instance, ComplEx-N3 and QuatE2

achieved the state-of-the-art results on link prediction over static KGs with
2000-dimensional embeddings [13,30]. On the other hand, a lower embedding
dimensionality will lead to less consumption on training time and memory space,
which is quite important for the applications of (T)KGE models on large-scale
datasets. Figure 3 shows the performances of ATiSE with different embedding
dimensionalities on ICEWS14. With a same embedding dimensionality of 100 as
DE-SimplE [8], ATiSE still achieved the state-of-the-art results on ICEWS14. An
ATiSE model with an embedding dimensionality of 100 trained on ICEWS14 had
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a memory size of 14.2 Mb while a DE-SimplE model and a QuatE2 model with
the same embedding dimensionality had memory sizes of 13.3 Mb and 12.4 Mb.
And the memory size of an ATiSE model increases linearly with its embedding
dimensionality. Moreover, training an ATiSE model with an embedding dimen-
sionality of 100 took 2.8 s per epoch on a single GeForce RTX2080, and an ATiSE
with 500-dimensional embeddings took 3.7 s per epoch.

To analyze the effects of different components of entity/relation represen-
tation in ATiSE, we developed three comparison models, namely, ATiSE-SN,
ATiSE-TN and ATiSE-TS, which exclude the trend component, seasonal com-
ponent and the noise component respectively. The entity representations of these
three comparison models are as follows:

eSN
i,t = ei + βe,isin(2πωe,it) + N (0, Σe,i)

eTN
i,t = ei + αe,iwe,it + N (0, Σe,i)

eTS
i,t = ei + αe,iwe,it + βe,isin(2πωe,it)

(7)

For ATiSE-TS consisting of the trend component and the seasonal component,
we used the translation-based scoring function [4] to measure the plausibility of
the fact (s, p, o, t).

fTS
t (es, rp, eo) = ||eTS

s,t + rTS
p,t − eTS

o,t || (8)

We report the MRRs and Hits@10 of ATiSE-SN, ATiSE-TN and ATiSE-TS on
link prediction over ICEWS14 and YAGO11k. As shown in Table 6, we find that
the removal of the trend component and the noise component had a remarkable
negative effect on the performance of ATiSE on link prediction since the model
could not address the temporal uncertainty of entity/relation representations
without the noise component and the trend component contained the main time
information. In ATiSE, different types of entities might have big difference in
the trend component. For instance, we found that the embeddings of entities
representing people, e.g., Barack Obama, generally had higher evolution rates
than those representing cities or nations, e.g., USA.

Table 6. Link prediction results of ablation experiments.

Datasets ICEWS14 YAGO11KD

Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ATiSE-SN .405 .284 .488 .710 .139 .095 .143 .249

ATiSE-TN .536 .407 .626 .771 .167 .115 .171 .292

ATiSE-TS .323 .127 .429 .676 .115 .023 .145 .274

ATiSE .545 .423 .632 .757 .185 .126 .189 301

ATiSE-TN performed worse than ATiSE on YAGO11k where facts involve
time intervals. Different from ICEWS14 dataset which is an event-based dataset
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where all relations or predicates are instantaneous, there exist both short-term
relations and long-term relations in YAGO11k. Adding seasonal components
into evolving entity/relation representations is helpful to distinguish short-term
patterns and long-term patterns in YAGO11k. It can be seen from Table 7 that
short-term relations learned by ATiSE, e.g., wasBornIn, generally had higher
evolutionary rates, and their seasonal components had smaller amplitudes and
higher frequencies than long-term relations, e.g., isMarriedTo.

Table 7. Relations in YAGO11k and the mean step numbers of their duration time
(TS), as well as the corresponding parameters learned from ATiSE, including the evolu-
tionary rate |αr|, the mean amplitude |βr| and the mean frequency |ωr| of the seasonal
component for each relation.

Relations #TS |αr| |βr| |ωr|
wasBornIn 1.0 0.142 0.000 1.032

worksAt 18.7 0.046 0.058 0.294

playsFor 4.7 0.071 0.046 0.766

hasWonPrize 28.6 0.010 0.107 0.041

isMarriedTo 16.5 0.049 0.076 0.090

owns 24.9 0.017 0.088 0.101

graduatedFrom 38.1 0.016 0.104 0.029

deadIn 1.0 0.249 0.006 0.897

isAffliatedTo 25.8 0.014 0.049 0.126

created 27.1 0.011 0.040 0.087

5 Conclusion

We introduce ATiSE, a temporal KGE model that incorporates time informa-
tion into KG representations by fitting the temporal evolution of entity/relation
representations over time as additive time series. Considering the uncertainty
during the temporal evolution of KG representations, ATiSE maps the repre-
sentations of temporal KGs into the space of multi-dimensional Gaussian distri-
butions. The covariance of an entity/relation representation represents its ran-
domness component. Experimental results demonstrate that our method signif-
icantly outperforms the state-of-the-art methods on link prediction over four
TKG benchmarks.

Our work establishes a previously unexplored connection between relational
processes and time series analysis with a potential to open a new direction of
research on reasoning over time. In the future, we will explore to use more sophis-
ticated models to model different components of relation/entity representations,
e.g., an ARIMA model for the noise component and a polynomial model for the
trend component.
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Abstract. Based on Semantic Web technologies, knowledge graphs help
users to discover information of interest by using live SPARQL services.
Answer-seekers often examine intermediate results iteratively and mod-
ify SPARQL queries repeatedly in a search session. In this context,
understanding user behaviors is critical for effective intention predic-
tion and query optimization. However, these behaviors have not yet
been researched systematically at the SPARQL session level. This paper
reveals secrets of session-level user search behaviors by conducting a com-
prehensive investigation over massive real-world SPARQL query logs.
In particular, we thoroughly assess query changes made by users w.r.t.
structural and data-driven features of SPARQL queries. To illustrate the
potentiality of our findings, we employ an application example of how
to use our findings, which might be valuable to devise efficient SPARQL
caching, auto-completion, query suggestion, approximation, and relax-
ation techniques in the future (Code and data are available at: https://
github.com/seu-kse/SparqlSession.).

1 Introduction

Semantic Web technologies enable an increasing amount of data to be published
as knowledge graphs using RDF. SPARQL endpoints have emerged as useful
platforms for accessing knowledge graphs via live SPARQL querying. Currently,
there are billions of RDF triples available from hundreds of SPARQL endpoints1.
However, users often fail to express their information needs in one succinct query.
This is due to their unfamiliarity with the ontology underlying the endpoints
1 https://sparqles.ai.wu.ac.at/availability, accessed on October 22, 2020.
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SPARQL Query
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Already sa�sfied Change accordingly

… …

Detailed reformula�ons

Fig. 1. A typical SPARQL search session

they query, or with SPARQL’s syntax. This finding has been corroborated by
an analysis on the LSQ dataset [21], where 31.70% of the real-world queries
posted to 4 different SPARQL endpoints contain parse errors and 21.42% of
the queries produce zero answers. Therefore, SPARQL queries are continuously
refined to retrieve satisfying results in practice. We can use techniques based on
information about underlying data or query sequence history to assist users. The
underlying data is informative and useful, but in some cases, historical queries
are the main source of information that is available, e.g., where we do not have
access to data. In this paper, we provide session-level query analysis to enhance
techniques based on query sequence history.

In the field of Information Retrieval (IR), the continuous query reformula-
tion process is called a search session and has been well-studied to generate
query suggestions and enhance user satisfaction by utilizing implicit (e.g., query
changes [11], clicks and dwell time in a certain website [15]), and explicit (e.g.,
relevance scores [11]) user feedback. In a SPARQL search session, feedback from
users is generally only revealed in query changes, which makes it more chal-
lenging to understand drifting user intentions. Fortunately, SPARQL queries
contain richer information in query change types (Fig. 1) compared to the key-
word queries in IR. Thus, a more detailed session-level analysis of the real-world
SPARQL queries posted by users is both possible and of central importance
for devising efficient caching mechanisms [16], query relaxation [12,27], query
approximation [13], query auto-completion [9], and query suggestion [14].

Prior SPARQL query log analyses [2,18,21,26] have focused on analyzing the
structural features (e.g., usage of different SPARQL operators, triple patterns,
types of joins) of queries in isolation. The potential correlations between queries
in a search session have not been fully investigated. Similarities between queries
within the same session have been reported [7,19]. This property has been used
in query augmentation [16] to retrieve closely related results. However, these
works do not provide deeper insight into query changes within the search session.
In addition, there has been no distinction made between robotic queries (i.e.,
machine-generated) and organic (i.e., human-generated) queries. Given that the
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distribution of queries in SPARQL endpoints is heavily dominated by robotic
queries, in terms of volume and query load (over 99% in LSQ [21]), current
studies on the similarity of queries depend heavily on robotic queries.

In this paper, we fill the research gap discussed above via the session-level
analysis of real-world organic queries collected from 10 SPARQL endpoints.
Specifically, we study the evolvement of structural and data-driven (e.g., result
set size) features in single SPARQL search sessions. We also provide comprehen-
sive insights regarding session-level query reformulations on SPARQL operators,
triple patterns, and FILTER constraints. Furthermore, we implement an appli-
cation example about the usage of our findings which might be useful to devise
more efficient mechanisms for SPARQL query auto-completion, recommenda-
tions, caching, etc. Our contributions can be summarized as follows:

– We port the concept of sessions to SPARQL queries and give a specification
of SPARQL search sessions.

– We are the first, to the best of our knowledge, to investigate potential cor-
relations between SPARQL queries and provide a comprehensive analysis of
query reformulations in a given search session.

– We provide an application example of how our findings can be used to illus-
trate the potentiality of utilizing user behaviors in a search session.

2 Preliminaries

This section briefly introduces datasets and the pre-processing we use, followed
by a formal definition of the SPARQL search session, as well as structural and
data-driven features of SPARQL queries.

2.1 Datasets and Pre-processing

The difficulties of formulating a SPARQL query depend on the complexity of
schema of knowledge graphs. Also, SPARQL queries that are used to query
knowledge graphs from different domains have different features. Therefore, we
selected 10 LSQ datasets [21] (version 2, 15 from Bio2RDF and 3 others), con-
taining real-world SPARQL queries collected from public SPARQL endpoints
of these datasets. The selected datasets include 7/15 diverse datasets from
Bio2RDF [4] (a compendium of bioinformatics datasets in RDF), i.e., NCBI Gene
(Ncbigene), National Drug Code Directory (Ndc), Orphanet, Saccharomyces
Genome Database (Sgd), Side Effect Resource (Sider), Affymetrix, Gene Ontol-
ogy Annotation (Goa), and the remaining 3 datasets: DBpedia [6] (extracted
from Wikipedia), SWDF [17] (Semantic Web Dog Food about conferences meta-
data), and LinkedGeoData (LGD) [25] (a spatial RDF dataset).

Table 1 gives an overview of the selected datasets in terms of the number of
queries (#Queries) and their total number of executions (#Executions2) exe-
cuted by different users (#Users) within a time frame. The basic distribution of

2 A query can be executed multiple times on the same dataset.
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Table 1. Statistics of SPARQL query log datasets. (The “/” is used to show the
number of queries (executions) excluding/including parse errors, while colors are for
different domains.)

Dataset #Queries #Executions Begin time End time #Users

LGD 651,251/667,856 1,586,660/1,607,821 2015/11/22 2016/11/20 26,211

SWDF 520,740/521,250 1,415,438/1,415,993 2014/5/15 2014/11/12 936

DBpedia 3,001,541/4,196,762 3,552,212/6,248,139 2015/10/24 2016/2/11 39,922

Affymetrix 618,796/630,499 1,782,776/1,818,020 2013/5/5 2015/9/18 1,159

Goa 630,934/638,570 2,345,460/2,377,718 2013/5/5 2015/9/18 1,190

Ncbigene 679,586/689,885 1,561,592/1,593,958 2014/5/14 2015/9/18 417

Ndc 707,579/720,838 2,354,808/2,411,232 2013/5/16 2015/9/18 1,286

Sgd 618,670/630,891 1,992,800/2,038,097 2013/5/5 2015/9/18 1,304

Sider 186,122/187,976 677,950/681,247 2015/5/31 2015/9/18 216

Orphanet 476,603/477,036 1,521,797/1,523,459 2014/6/11 2015/9/18 171

Fig. 2. Distribution of the number of submitted queries x and time-span t of the
submitted queries for each user. The X-axis indicates different intervals of submitted
query numbers; The Y-axis indicates the number of users in the interval. Different
colors indicate different time-spans.

the number and time-span of the submitted queries for each user is presented in
Fig. 2. This figure shows the existence of robotic queries that are submitted in a
short period. These robotic queries do not show clear trends in individual human
usage [5] but easily cause analytic biases due to their sheer size. Therefore, we
need to remove robotic queries. There are generally three characteristics that can
be used to recognize them: (1) special agent names (e.g. Java) [5,19] (2) relatively
high query request frequency [19] (3) loop patterns existing in query sequences
submitted by one user [19], where the SPARQL structures remain the same in
contiguous queries, while only IRIs, literals, or variables change. However, due
to the privacy policy, agent names are usually unavailable in practice. Therefore,
we combine (2) and (3) to design a two-step process: (a) filtering out users who
submit queries with a high-request frequency, i.e., users who submit more than
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30 times in a 30 minutes sliding window. This threshold is a relatively high fre-
quency in our dataset. We use it to compute the average frequency. Also, to make
sure this is not a rigorous cut-off rule, we supplement the second step: (b) exam-
ining every query sequence submitted by one user. Those sequences with loop
patterns are excluded. After robotic query removal process, there are 51, 575
(0.64%) likely organic queries and 67, 594 (0.36%) executions in our datasets.
These executions come from 7, 718 (10.60%) users, each having submitted 8.76
queries on average.

2.2 Definitions

Formally, a SPARQL search session s = {Q,R, T} consists of a
sequence of queries Q = {q1, · · · , qi, · · · , qn}, retrieved result sets R =
{Rq1 , · · · , Rqi , · · · , Rqn}, and time information T = {Tq1 , · · · , Tqi , · · · , Tqn},
where n is the number of queries in the session (i.e., the session length) and
i indexes the queries. Each result set Rqi contains all the results of qi, while each
time information Tqi contains the time stamp and executing runtime of qi. In
practice, a SPARQL search session is recognized by three constraints3: queries
in a sequence are (1) executed by one user, which is identified by encrypted IP
addresses (2) within a time window of a fixed time threshold (inspired by [16,20],
we set time threshold to 1 h in this paper). (3) If we define term(q) (i.e., a term
set of one query) as a set which contains all the specified terms (i.e., RDF IRIs)
and variables used in the query, then for any pair of contiguous queries (qi, qi+1)
in the session, it satisfies term(qi) ∩ term(qi+1) �= ∅. Here, we include variables
in the term set term(q) because our experiments shows that users typically do
not change variable names in a session: 91% (27% for 1 variable, 35% for 2 vari-
ables, and 29% for more than 2 variables) of continuous query pairs in sessions
have at least one variable name in common. Please note that, (3) here is a min-
imum requirement for sessions, while the one user and 1-hour threshold setting
can ensure the topic continuity to a large extent, which can be evaluated by
the number of common variable names and high similarity score of IRI terms in
Fig. 7 (introduce later). Furthermore, although we acknowledge that there could
be other ways to identify sessions, the method we present here is reasonable.
Based on these constraints of sessions, we extract 14, 039 sessions from organic
queries in our dataset. The distribution of the organic session length is presented
in Fig. 3.

We follow [1,22–24] to define two types of SPARQL query features, i.e.,
structural and data-driven features, for the SPARQL session-level analysis.

Structural Features: The basic graph patterns (BGPs) in SPARQL queries
organize a set of triple patterns into different types of structures. We represent
each BGP of a SPARQL query as a directed hypergraph to easily compare the
structural changes between different queries in a search session. The hypergraph
3 We remove the queries with parse errors and the contiguous same queries before the

recognition. For example, q1, q2, q2, q3 is processed into q1, q2, q3.
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representation [24] contains nodes for all three components of the triple patterns
<s,p,o>. A hyperedge e = (s, (p, o)) ∈ E ⊆ V 3 connects the head vertex s and
the tail hypervertex (p, o), where E is the set of all hyperedges and V is the set
of all vertices in the hypergraph. The hypergraph of a complete SPARQL query
(consider BGPs only) is the union of hypergraph representations of all BGPs in
the query. An example is illustrated in Fig. 4. We define the following structural
features based on the hypergraph representation.

Fig. 3. Organic session length.

?v1  p1  ?v2.
?v1  p2  ?v3.
?v3  p3 ?v4.
?v5  p4  ?v4.
?v4  p5 ?v6.
?v7  p5 ?v8.

v1

Star Hybrid SinkPath Simple

p1

p2

p3

p4

v3

p5

v2

v4

v5 v6 v7

v8

Tail of 
hyperedge

hyperedge
edge connecƟng p and o

Fig. 4. Hypergraph of a BGP.

– The triple pattern count refers to the number of triple patterns in a BGP,
which distinguishes between simple and structural complex queries.

– The join vertex type is characterized by in-degrees and out-degrees for
vertices in BGPs. A star vertex only has (multiple) outgoing edges. A sink
vertex only has (multiple) incoming edges. There is only one in-degree and
one out-degree for a path vertex. The in-degree (or out-degree) of a hybrid
vertex is more than one while out-degree (or in-degree) is at least one.

– The join vertex degree indicates the summation of the in-degree and out-
degree of a join vertex. For a SPARQL query, we use the minimum, mean,
and maximum of join vertex degrees in the query to represent this feature.

– The projection variable count is the number of selected variables that
form the solution sequences in the SELECT query form.

– The IRI term set is the collection of used IRI terms in a SPARQL query.
This feature presents the information that users are interested in.

Data-Driven Features: We mainly consider the result size, i.e., |Rqi |, the
number of solutions for SPARQL queries in this paper. The change of result size
(decrease or increase) generally reflects whether users want more specific or more
general answers, and as a result, is an important feature to capture the drifting
query intentions.
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(a) GED for (qi, qi+1) (b) GED for ( q1, qi+1)(a) GED for (qi, qi+1) (b) GED for ( q1, qi+1)

Fig. 5. Evolvement of GED of Q in sessions. X-axis shows the query index “i”.

3 Query Changes in SPARQL Search Session

User search behaviors, represented by changes over queries, are the key to under-
stand user intentions. In this section, we investigate query changes based on the
aforementioned SPARQL query features from two aspects: (1) the evolvement of
query changes (Sect. 3.1); (2) detailed reformulation strategies (Sect. 3.2). Please
note that due to the space limitation, we only provide individual dataset-level
results when different datasets show very different results. More rudimentary
dataset analysis are provided in [21].

3.1 Evolvement of Query Changes

We study the query evolvement in terms of three structural aspects (i.e., graph
edit distance, graph pattern similarity, and IRI term similarity), as well as one
data-driven aspect, i.e., changes of result size.

Graph Edit Distance (GED): Given a query sequence Q of a session s, we
represent each BGP of queries as a directed hypergraph and utilize the normal-
ized GED to measure differences between hypergraphs. The GED between two
hypergraphs is normalized by dividing the maximum of the number of edges
and vertices in two hypergraphs. On this basis, the GED between two queries
is accessed by the average of GEDs between hypergraphs in different operator
blocks of the two queries. A GED numeric value ranges from 0 (no change), to
1 (complete change), indicating the degree of changes between two queries. We
conduct two types of comparisons: (1) GED between two contiguous queries,
i.e., (qi, qi+1), (2) GED between the initial query and the other query in a given
session, i.e., (q1, qi+1). Consider the sequence {q1, q2, q3} as an example: we cal-
culate GED values of (1) (q1, q2),(q2, q3), and (2) (q1, q2),(q1, q3). The average
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(a) Cosine similarity (b) KL divergence

Fig. 6. Graph pattern similarity of query sequence Q in sessions.

and variance of GEDs (given by mean and var respectively) in single search
sessions on our 10 datasets4 are presented in Fig. 5.

Graph Pattern Similarity: Based on [1,24], we select the following 10 struc-
tural features to form a feature vector56:

V = [&#triplePatterns, #BGP, #Projection, #SinkJoinV ertex,

#StarJoinV ertex, #HybridJoinV ertex, #PathJoinV ertex,

MaxJoinDegree, MinJoinDegree, MeanJoinDegree ].
(1)

For a query sequence Q = {q1, q2 · · · qn} in a single search session s, we
initialize vectors {Vq1 ,Vq2 · · ·Vqn} according to Eq. 1. Then, we normalize
every item (k indexes the item) in a vector by

V̂qi
(k) =

Vqi
(k)

maxj=1,···,n Vqj
(k)

. (2)

We use two metrics to measure graph pattern similarity between two
queries: (1) cosine distance, which is a symmetric measurement defined as
Cosine(V̂q1 , V̂q2) = Cosine(V̂q2 , V̂q1) and performed by:

Cosine(V̂q1 , V̂q2) =
V̂q1 · V̂q2∥

∥
∥V̂q1

∥
∥
∥

∥
∥
∥V̂q2

∥
∥
∥

(3)

(2) KL divergence, which is asymmetric, and performed by:

DKL(V̂q1 ||V̂q2) =
∑

V̂q1(k) log
V̂q1(k)
V̂q2(k)

. (4)

4 We use randomly selected sessions in DBpedia because the GED computation on
such large-scale data is NP-hard and time-consuming.

5 We append a 1 to vectors to avoid all-zero vectors.
6 Features in this vector can also be extended to more dimensions or features.
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(a) Cosine similarity (b) KL divergence

Fig. 7. IRI term similarity of query sequence Q in sessions.

Cosine similarity between two vectors ranges from 0 (complete change) to 1
(constant). Original KL divergence ranges from 0 (constant) to +∞. The +∞
is caused by zeros in denominators. To prevent this problem, we only calculate
DKL(V̂q1 ||V̂q2) when V̂q1(k) �= 0 and V̂q2(k) �= 0 here. The minus, zero, and
positive result of DKL(V̂q1 ||V̂q2) indicate that distribution of V̂q2 is more con-
centrated than, equal to, or more scattered than distribution of V̂q1 , respectively.
Results are presented in Fig. 6 as a m × m matrix M , where m is the longest
length of sessions. The rows and columns of M are indexed by the query qi in
a session. Mij in M presents the average cosine similarity (or KL divergence)
between vectors of qi and qj in single search sessions, i.e., V̂qi

and V̂qj
.

IRI Term Similarity: We construct a query-term matrix D which is a x × y
matrix for every dataset. x is the number of queries and y is the number of
terms used in queries of a certain dataset. The rows of D are indexed by queries
qi and columns are indexed by terms tj . Dij in this matrix represents whether
the term tj is used in query qi. If tj is used, Dij is 1. If not, Dij is 0. Query qi
can be represented by a vector Vqi

which is constituted by row i in this query-
term matrix D. The vector Vqi

indicates the IRI term distribution in qi
7. Then,

we use cosine similarity and KL divergence to visualize the evolvement of IRI
term similarity in single search sessions, as shown in Fig. 7. Please note that
the analyses and visualizations of Fig. 5, 6, 7 are based on raw data. Lengths of
sessions are not normalized. The motivation is to find different user behaviors by
session position, which is normally used in log analysis of web searching fields.

Change of Result Size: For the data-driven feature, we investigate the tran-
sition probability between three result size change states, i.e., decrease, remain
7 The query representation method can be replaced by other distributed representa-

tions such as trained embedding. We do not use embedding here because training
embeddings for 10 datasets is highly resource and time-consuming.
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Query Sequence 

Result Size

Result Size Change 
State Sequence

Markov Transi�on Matrix  

-1 +10

-1

+1

0

Fig. 8. Markov transition matrix of result size change states.

unchanged, and increase8, presented as −1, 0, +1 respectively. For a single
query sequence Q = {q1, q2, · · · , qn−1, qn}, we generate a result size change state
sequence {RC1,2, · · · , RCn−1,n} which is then used to calculate the Markov tran-
sition matrix between three types of RC states, i.e., −1, 0, and +1. A Markov
transition matrix is a square matrix describing the probabilities of transferring
from one state to another. The state transition probability is formulated by
P (RCi,i+1|RCi−1,i) = #(RCi−1,i,RCi,i+1)

#RCi−1,i
. The state transition probabilities in

single search sessions on our 10 datasets are shown in Fig. 8. The probability of
transferring from RCi−1,i to RCi,i+1 can be determined by the intersections of
the corresponding row and column in the Markov transition matrix. For exam-
ple, as shown in Fig. 8, the number 0.46 in row +1, column −1 indicates the
probability of moving from a result size increase state to a decrease state, i.e.,
P (−1|+1), is 0.46.

Key Findings: The above results allow us to make the following observations.

1. The GEDs between (qi, qi+1) decrease gradually in a session (as shown in
Fig. 5a), which indicates that query change between two contiguous queries
is increasingly indistinct as users getting closer to their information needs.
Interestingly, the GEDs between (q1, qi+1) increase consistently at first, then
decrease (Fig. 5b). Combining with key findings.3 (below), this suggests that
users may use prior query structures to explore other related information.

2. The graph patterns of queries in the same session are broadly similar, as
illustrated by the 0.78 ∼ 1 cosine similarity and −0.07 ∼ 0.46 KL divergence
in Fig. 6. This indicates that users usually change the structure of graph
patterns slightly in a SPARQL search session. The GEDs in Fig. 5 show this
conclusion as well.

3. The IRI term similarity is less and less similar, as shown in Fig. 7. In more
detail, the distribution of IRI terms used in queries is more scattered, which
indicates that users tend to include more IRI terms and express a clearer

8 We eliminate the processing error state here.
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intention as the session moves forward. However, please note that IRI terms
are not getting entirely different considering high numerical values (cosine
similarity (0.5 ∼ 1.0) and kl-divergence (up to 0.30) in Fig. 7).

4. The result size changes indicate that previous result size change does influ-
ence the intention of the current query: if the number of results is increased
(decreased) in the last query, then users tend to make their current queries
more specific (general). On the other hand, the same number of results
(mostly zero results) indicates the unfamiliarity of underlying data for users,
which may lead to an additional iteration of zero results.

3.2 Query Reformulations in Single SPARQL Sessions

We explore different types of reformulations over query sequences in single
SPARQL search sessions as discussed in detail below. Please note that we have
not considered semantically equivalent rewritings for now. We only track user
reformulations and try to find valuable findings about user behaviours.

Reformulations of SPARQL Operators: We first investigate reformulations
in terms of operators for contiguous query pairs. The usage of operators generally
reflects the query intent. For instance, the addition of Distinct may occur when
a user checks answers with many duplicates. For SPARQL query forms (i.e.,
SELECT, CONSTRUCT, ASK, DESCRIBE), only 2.51% SPARQL query pairs have
such changes. Among these changes, the most common one (49.26% relative
to the number of changes on query forms) is between SELECT and CONSTRUCT.
This indicates that users first check the underlying data in knowledge graphs
by SELECT, then construct a graph using CONSTRUCT. The second most frequent
change (22.60%) of the query form is between SELECT and ASK. In this scenario,
users may issue an ASK query to examine whether a specific solution exists,
followed by the SELECT query to get the desired results. Table 2 shows the
percentage-wise distribution of the different operators in terms of their usage
(i.e., presence of an operator) and reformulations (addition or removal) in the
query logs. Please note that removals and additions are relative to the total
usage of the operators in the query logs. The results show that a majority of the
selected operators are frequently reformulated in the query logs.

Reformulations of Triple Patterns: Given a contiguous query pair (qi, qi+1)
in a search session, there are three formulations possible pertaining to the triple
patterns used in the query pair: (1) new triple pattern(s) is added, (2) exist-
ing triple pattern(s) is deleted, (3) some changes (substitutions) are made in
the individual elements (subject, predicate, object) of the triple patterns. In this
section, we show reformulations of triple patterns within different SPARQL oper-
ator blocks (e.g.., Union, Optional) and the substitutions made on different join
vertex types and their connecting edges and nodes.

(1) Operator Block-wise Reformulations: There are 78.24% pairs of
contiguous queries that show changes in triple patterns. We list the triple pat-
tern reformulations that occur in the top-6 most frequent SPARQL operator



Revealing Secrets in SPARQL Session Level 683

Table 2. Percentages (%) of the total usage and reformulations (removals and addi-
tions) of operators over all query logs. Coloring is used to show different groups of
operators, namely, graph patterns, property paths, aggregations, and solution modi-
fiers.

Operator Total-usage Removals Additions Operator Total-usage Removals Additions

Filter 64.67 11.13 10.99 Count 2.64 38.06 31.00

Union 23.42 9.63 9.56 Sample 0.17 27.19 32.46

Optional 15.14 18.62 19.02 GroupConcat 0.10 23.19 20.29

Graph 1.71 25.33 26.45 Sum 0.03 50.00 50.00

Bind 0.98 24.55 25.00 Min 0.06 12.50 15.00

Minus 0.37 52.63 42.91 Max 0.02 45.45 27.27

Service 0.33 17.49 21.08 Avg 0.02 14.29 28.57

Values <0.01 0 100 Distinct 50.63 4.08 3.73

SeqPath 2.22 4.20 5.93 Limit 21.84 13.58 14.00

MulPath 0.67 11.62 12.06 OrderBy 7.97 25.83 24.29

AltPath 0.30 7.43 26.73 Offset 2.60 16.06 21.58

InvPath 0.05 14.29 8.57 GroupBy 1.35 23.85 26.04

Projection 67.77 3.29 3.34 Having 0.22 18.00 26.67

blocks in Table 3. In addition, we show reformulations in the Main block which
does not contain any of the operator blocks. An example of the Main block is the
body of the SPARQL SELECT query, which only contains a set of triple patterns
as the BGP. The triple patterns in the Graph Template operator block represent
the graph templates used in the CONSTRUCT queries. The combined substitutions
represent the made-in-one or more-than-one elements of the triple patterns. The
percentages reported in this table are relative to the total usage of certain opera-
tor blocks in query logs. Note that the reformulations on triple patterns are only
considered when the corresponding operator block exists both in qi and qi+1.
The additions and removals of operators are not included in Table 3.

The results suggest that reformulations are very common in different operator
blocks. In most operator blocks, substitutions are more frequent than additions
and removals. This indicates that users first make changes in the elements of the
existing triple patterns, rather than inserting or deleting new triple patterns.
Substitutions happening in subject, predicate and object are mostly evenly dis-
tributed.

(2) Substitutions on Different Join Vertex Types and Neighbors:
To further study user preferences on substitutions, we investigate the elements
in hypergraphs of the queries in which substitutions appear most frequently. To
this end, we consider the join vertex (the center), the direct subjects and objects
this vertex connects to (neighbor nodes), and the direct predicates this vertex
connects to (neighbor edges). Also, for hybrid vertices, we divide their neighbors
into incoming and outgoing types. The distribution of substitutions on different
positions is shown in Table 4. These percentages are relative to the occurrence of
join vertex types and the neighbors of centers. We use red to indicate the highest
value in each column. The results indicate that most ssubstitutions happen on
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Table 3. Percentages (%) of reformulations (additions, removals, and substitutions)
on triple patterns in 6 most frequent operator blocks, as well as percentages (%) of
substitutions occurring in different elements of triple patterns. (Template = Graph
Template).

Main Template Union Optional Service Graph Subquery

Addition 21.92 42.00 7.79 4.30 6.87 4.21 79.95

Removal 21.28 26.33 8.30 3.00 7.63 3.31 80.06

Combined Substitution 61.10 55.92 43.16 17.76 9.16 8.93 1.21

Subject substitution 37.97 28.95 49.81 40.41 54.55 18.66 73.88

Predicate substitution 28.06 36.44 18.49 9.56 18.18 36.27 5.22

Object substitution 33.97 34.61 31.70 50.02 27.27 45.07 20.90

Table 4. Percentages (%) of substitutions on join vertex types and neighbors. (neigh
= neighbor, in = incoming, out = outgoing)

Ncbigene Ndc Orphanet Sgd Sider Affymetrix Goa SWDF LGD DBpedia

center 20.51 12.50 11.40 1.98 20.37 2.08 1.96 6.93 28.48 29.38

neigh edges 3.20 2.37 3.35 11.44 0.77 3.75 2.88 3.77 8.63 7.11Star

neigh nodes 12.32 9.34 14.13 13.14 35.00 20.13 18.86 6.40 9.38 12.67

center 5.26 5.88 3.70 8.68 45.75 2.94 0.64 7.41 0.64 15.52

neigh edges 0 5.88 0 4.25 0.08 22.73 0 4.00 0.27 11.96Sink

neigh nodes 19.51 10.73 22.22 51.73 11.18 65.24 61.83 6.62 26.06 22.12

center 26.67 22.81 21.43 6.19 6.28 17.13 24.53 7.91 29.04 27.28
Path

neigh edges 1.67 5.26 7.14 13.84 0.88 7.69 8.49 4.73 14.31 5.42

center 18.75 0 0 90.88 13.04 87.53 68.84 11.51 43.92 45.54

in edges 0 0 0 0 0 0 0 0.66 0.80 15.19

in nodes 0 0 0 37.15 2.94 36.06 28.70 5.81 18.73 24.41

out edges 23.81 19.23 30.00 0.38 0 0.18 1.27 1.12 0.27 5.72

Hybrid

out nodes 47.62 41.67 60.00 2.62 16.83 1.68 7.84 4.45 18.31 13.66

incoming nodes of the hybrid vertex. This is because the hybrid node has the
highest connectivity with other nodes in the query hypergraph. As such, it is
likely to be changed more frequently by the users.

Reformulations of FILTER Constraints: A constraint, expressed by the
keyword FILTER, is a restriction on solutions over the whole group in which the
FILTER appears9. Similar to reformulations of triple patterns, there are three
reformulations for FILTER constraints: addition(s), removal(s), and substitutions
on elements of FILTER constraints. But unlike the triple pattern, which has three
elements, a FILTER constraint can have different elements that are used inside
its body. Therefore, we express FILTER constraints as parse trees (see Fig. 9).
On this basis, we compare two parse trees of FILTER constraints in contiguous
queries, i.e., qi and qi+1, and find changes in corresponding elements (substitu-
tions). For example, the elements with the same patterns in Fig. 9 are compared.
9 https://www.w3.org/TR/sparql11-query/#scopeFilters.

https://www.w3.org/TR/sparql11-query/#scopeFilters
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FILTER FILTER
Q1: FILTER  bif:st_intersects (?g, bif:st_point(12.372, 51.310), 0.1) Q2: FILTER bif:st_intersects (?sg, ?xg, 0.1)

Func: 
bif:st_intersects

Arg1:?sg Arg3:0.1Arg2:?xgFunc: 
bif:st_intersects

Arg1:?g Arg3:0.1

Func: 
bif:st_points

Arg2: 
51.310

Arg1: 
12.372

Arg2:join

Fig. 9. Example of corresponding elements of two FILTER constraints.

Table 5. Substitutions on FILTER constraints.

Dataset Ncbigene Ndc Orphanet Sgd Sider Affymetrix Goa SWDF LGD DBpedia

Block Subs 0 20 8 121 3 94 7 34 11,787 3,155

Specific Subs 4 69 52 67 32 97 17 137 5,017 5,702

variable 25.00 24.64 21.15 17.91 0 39.18 11.76 19.71 3.41 21.43

IRI 0 59.42 5.77 74.63 0 20.62 35.29 8.03 1.14 30.90

string 75.00 15.94 73.08 7.46 100 38.14 29.41 64.96 3.37 28.20

number 0 0 0 0 0 0 0 0.73 90.53 7.33

Please note that corresponding elements are not only between single values, i.e.,
specific substitutions, which can be compared directly, but also between one sin-
gle value and another constraint function or between constraint functions i.e.,
block substitutions. The Arg2 in Fig. 9 is an example of block substitution.

Among all the contiguous query pairs in the same session, 37.68% have refor-
mulations about FILTER constraints. Again, the majority of the reformulations
(92.17%) are substitutions. We present distributions of block and specific substi-
tutions in different datasets in Table 5. The first two rows present the number
of block and specific substitutions. For specific substitutions, we also list the per-
centage of specific substitutions on different data types: variable, IRI, string,
and number. Substitutions on FILTER constraints show very different distribu-
tions in different datasets, especially in the LGD. The LGD is a knowledge
graph that contains spatial datasets [25]. Geometry data types and functions
embedded in GEOSPARQL [3] are used to satisfy the needs for representing and
retrieving spatially related data. Functions like intersects, overlaps involve many
numeric calculations, which makes numbers-specific substitutions more dominant
(90.53%) compared to other substitutions. Furthermore, FILTER constraints in
the LGD are more complex than other datasets: the number of block substitutions
is twice the number of specific substitutions. For other datasets, substitutions
usually happen in strings, which serve as an argument in functions of strings.
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Result Size:

Query Change State Seq:
(Observable State Seq )

15 10 100

Result Size Change State Seq:
(Hidden State Seq )

-1 0+1

v2 v3v1

Query Sequence :

Result Size Change States Hidden States 
Query Change States Observable States  

-1 0.30 0.23 0.11 0.18 0.22 0.41

0 0.18 0.17 0.05 0.07 0.16 0.40

+1 0.30 0.31 0.16 0.10 0.21 0.42

Triple paƩerns AddiƟon
Triple paƩerns Removal

Triple paƩerns SubsƟtuƟon

P

-1 0.19

0 0.34

+1 0.18

<

<

<

<

>

<

≈

Parameters 
of HMM

HMM 
Model

Fig. 10. HMM model of the SPARQL search session.

4 An Application Example of Findings

To show the potentiality of our findings, we use a simple model to predict user
intentions of a given session and give reformulation suggestions based on the
predicted intention. In single sessions, continuous query reformulations can be
captured, while the drifting user intentions are abstract and can not be observed
directly. We utilize a Hidden Markov Model (HMM) to characterize this process,
and model the intention sequence as an unobservable sequence, the reformula-
tion sequence as an observable sequence. We assume that H={h1, h2 · · · he} is
the set of hidden states and U={u1, u2 · · · uf} is the set of observable states (e
and f are the number of corresponding states), while HS=(hs1, hs2 · · · hst) and
OS=(os1, os2 · · · ost) are the sequence of hidden states and observable states,
respectively. We use result size changes to model drifting intentions, i.e., the
hidden states H, and consider changes in triple patterns as observable states U .
We employ the maximum likelihood estimation to calculate parameters of the
HMM model, i.e., initial state distribution π, transition probability matrix A
for hidden states, and the emission probability matrix B. The matrix A is the
Markov transition matrix in Fig. 8. The details and parameters of the model
are presented in Fig. 10. In summary, our model is capable of (1) inferring
user intentions based on the observable query change sequence, i.e., a decod-
ing problem: given λ=(A,B, π) and OS=(os1, os2 · · · ost), calculate a sequence
HS=(hs1, hs2 · · · hst) that maximizes P (HS|OS); (2) suggesting reformulation
strategies by the possibility of subsequent reformulation strategies, i.e., an eval-
uation problem: given parameters of HMM λ=(A,B, π), calculate p(OS|λ).

Case Study: We use a session shown in Fig. 11 to illustrate how our model
works. In this session, the user use 6 queries in total to find the locations of the
conferenceEvent. By recommending adding a generic triple pattern to impose
a restriction on the variable a first, then making it specific according to the
retrieved results, we assist this user omitting a few inefficient reformulations.

Discussions: Here are some possible directions to update the model: (1) More
comprehensive ways to model states in HMM. (2) Consider correlations between
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,  Result size: 1102
?a  :hasLocaƟon ?l 

, Result size: 599
?a :hasLocaƟon ?l .     
?l  :label              ?place .

, Result size: 0
?a  :hasLocaƟon ?l .        
?a  :label             :ConferenceEvent .     
?l   :label             ?place 

, Result size: 40
?a  :type  :ConferenceEvent

, Result size: 2
?a :type              :ConferenceEvent . 
?a :hasLocaƟon ?l .     
?l  :label             ?loc

, Result size: 9
?a  :type              :ConferenceEvent .
?a  :hasLocaƟon ?l   

Our suggestion:
?a  :hasLocaƟon ?l .        
?a  ?p(or :type)   ?o .
?l   :label              ?place 

Fig. 11. A session (only BGPs without prefixes) from SWDF log dataset.

queries in query sequences, not just correlations of contiguous query pairs. (3)
Combination with techniques based on the underlying data.

5 Related Work

SPARQL Query Log Analysis in Session Level: Previous SPARQL query
log analyses have given a comprehensive analysis of SPARQL queries in terms
of structural features in isolation, such as the most frequent patterns [26], topo-
logical structures [7] and the join vertex types [2] etc. However, the analysis
of potential correlations between queries is limited. Raghuveer et al. [19] first
define the query sequence executed by the same user as a SPARQL user session.
On this basis, they introduce the important feature of robotic queries, the loop
patterns, to describe the repetitive patterns of sessions. Bonifati et al. [7] illus-
trate the similarity of queries in a query sequence as per the distribution of the
length of so-called streaks. However, the similarity property introduced in these
studies [7,19] applies more to robotic queries from which organic queries are not
separated. Bonifati et al. [8] analyze robotic and organic queries separately, but
not at the session level. In this paper, we seek a more specific definition of the
search session, and comprehensively analyze the evolvements of structure and
data-driven features of the organic queries in sessions.

Applications Based on Session-Level Analysis: The similarity property
proposed by previous researchers [7,19] has been utilized in query augmenta-
tion [16] to retrieve more related results. Lorey et al. [16] focus on retrieving
SPARQL queries with high similarity with current queries, but fail to capture
the drifting intentions behind queries in single search sessions. Utilizing explicit
user feedback directly, Lehmann et al. [14] use active learning to determine differ-
ent reformulation strategies, which is similar to the example we conduct in this
study. However, explicit feedback is usually unavailable in most search scenarios.
We utilize reformulations between queries as implicit user feedback.

SPARQL Similarity: Different SPARQL similarity measures have been used
in this paper to capture the query changes in sessions. Dividino et al. [10] clas-
sify SPARQL similarity measures into 4 categories: (1) query structure, where
SPARQL queries are expressed as strings or graph structures; (2) query content,
where triple patterns are expressed as strings, ontological terms, or numerical
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values; (3) query languages, based on operators usages; (4) result sets. Dividino et
al. [10] also argue that the choice of different measurements is dependent on the
application at hand. In our work, we consider all these dimensions separately
and conduct a comprehensive analysis of query changes in the sessions.

6 Conclusions

This paper reveals secrets of user search behaviors in SPARQL search ses-
sions by investigating 10 real-world SPARQL query logs. Specifically, we analyze
the evolvement of query changes, w.r.t. structural and data-driven features of
SPARQL queries in sessions, and reach a series of novel findings. We thoroughly
investigate reformulations in terms of SPARQL operators, triple patterns, and
FILTER constraints. Furthermore, we provide an application example about the
usage of our findings. We hope results presented here will serve as a basis for
future SPARQL caching, auto-completion, suggestion, and relaxation techniques.
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